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Abstract. For analytic functions in the open unit diskU, we introduce a general family of integral operators.
The main object of the this paper is to present a systematic study if this general family of integral operators
and to determine the associated univalence conditions. Relevant connections of the results derived in this
paper with those in several earlier works are also indicated.

1. Introduction, Definitions and Preliminaries

LetA be the class of functions f (z) of the form:

f (z) = z +

∞∑
k=2

akzk (z ∈ U), (1)

which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}

and satisfy the following normalization conditions:

f (0) = f ′(0) − 1 = 0.

We denote by S the class of functions inAwhich are also univalent inU (see, for details, [4] and [11]).

A function f ∈ A is said to be in the class S∗(κ) of starlike functions of order κ (0 5 κ < 1) in U if it
satisfies the following inequality:

<

(
z f ′(z)

f (z)

)
> κ (z ∈ U; 0 5 κ < 1).
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We denote by K (κ) the class of convex functions of order κ (0 5 κ < 1) in U, that is, the class of functions
inAwhich satisfy the following inequality:

<

(
z f ′′(z)
f ′(z)

+ 1
)
> κ (z ∈ U; 0 5 κ < 1).

A function f ∈ A is said to belong to the class R(κ) (0 5 β < 1) if

<[ f ′(z)] > κ (z ∈ U; 0 5 κ < 1).

Recently, Frasin and Jahangiri [6] studied the classB(µ, κ) (µ = 0; 0 5 κ < 1), which consists of functions
f ∈ A that satisfy the following condition:∣∣∣∣∣∣ f ′(z)

(
z

f (z)

)µ
− 1

∣∣∣∣∣∣ < 1 − κ (z ∈ U; 0 5 κ < 1; µ = 0). (2)

This class B(µ, κ) is a comprehensive class of normalized analytic functions inU that contains several other
classes of analytic and univalent functions inU such as

B(1, κ) =: S∗κ, B(0, κ) =: Rκ and B(2, κ) =: B(κ).

In particular, the analytic and univalent function class B(κ) was studied by Frasin and Darus [5].
The problem of finding sufficient conditions for univalence of various integral operators has been

investigated in many recent works (see, for example, [1–3, 9, 10, 12, 13]; see also the other relevant references
cited in each of these earlier works). Here, in our present investigation, we study the univalence conditions
for the function In,β(z) given by the following integral operator:

In,β(z) :=

β
∫ z

0
tβ−1

n∏
j=1

[(
f j(t)

t

) (
1 j(t)

t

)γ j
]

dt


1
β

(3)

when<(β) > 0 and the functions f1(z), · · · , fn(z) and 11(z), · · · , 1n(z) are constrained suitably.
We note here that the following theorems on univalence conditions of certain given integral operators

were proven recently by Pascu [9] and Pescar [10], respectively.

Theorem 1. (see Pascu [9]) Let f ∈ A and β ∈ C. If<(β) > 0 and

1 − |z|2<(β)

<(β)

∣∣∣∣∣z f ′′(z)
f ′(z)

∣∣∣∣∣ 5 1 (z ∈ U) ,

then the function Fβ(z) defined by

Fβ(z) :=
(
β

∫ z

0
tβ−1 f ′(t)dt

) 1
β

(z ∈ U),

is in the class S of analytic and univalent functions inU.

Theorem 2. (see Pescar [10]) Let c, α ∈ C with

<(α) > 0 and |c| 5 1 (c , −1).

If the function f (z), regular inU, is given by (1) and∣∣∣∣∣c |z|2α +
(
1 − |z|2α

) z f ′′(z)
α f ′(z)

∣∣∣∣∣ 5 1 (z ∈ U), (4)
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then the function Fα(z) given by

Fα(z) =

(
α

∫ z

0
tα−1 f ′(t)dt

) 1
α

= z +

∞∑
k=2

akzk (z ∈ U)

is in the class S of regular and univalent functions inU.

In order to derive our main results, we recall here the General Schwarz Lemma as follows.

General Schwarz Lemma (see, for example, [7] and [8]). Let the function f be regular in the disk

UR = {z : z ∈ C and |z| < R}

with ∣∣∣ f (z)
∣∣∣ < M (|z| < UR; M > 0)

for fixed M > 0. If f has one zero at z = 0 with multiplicity = m, then∣∣∣ f (z)
∣∣∣ 5 M

Rm |z|
m (z ∈ UR). (5)

The equality in (5) holds true for z , 0 only if

f (z) = eiθ M
Rm zm (z ∈ UR),

where θ is a constant.

2. Univalence Conditions on the ClassB(µ, α)

In this section, we first prove the univalence condition for the function In,β(z) which is given in terms of
the integral operator defined by (3).

Theorem 3. Let the functions f j, 1 j ∈ A ( j = 1, · · · ,n). Suppose that

β, γ j ∈ C, <(β) > 0 and M j,N j = 1 ( j = 1, · · · ,n).

Also let

<(β) =
n∑

j=1

[( (
2 − α j

)
Mµ j−1

j + 1
)

+ |γ j|

( (
2 − α j

)
Nµ j−1

j + 1
)]
. (6)

If
f j, 1 j ∈ B(µ j, α j), 0 5 α j < 1 and µ j = 0 ( j = 1, · · · ,n)

and ∣∣∣ f j(z)
∣∣∣ 5M j and

∣∣∣1 j(z)
∣∣∣ 5 N j (z ∈ U; j = 1, · · · ,n),

then the function In,β(z) given by the integral operator (3) is in the class S of analytic and univalent functions inU.

Proof. We begin by considering the function h(z) defined by

h(z) :=
∫ z

0

n∏
j=1

[(
f j(t)

t

) (
1 j(t)

t

)γ j
]

dt (z ∈ U). (7)
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For this function h(z), which is regular in U, we calculate the first-order and the second-order derivatives
as follows:

h′(z) =

n∏
j=1

[(
f j(z)

z

) (
1 j(z)

z

)γ j
]

(8)

and

h′′(z) =

n∑
j=1

z f ′j (z) − f j(z)

z2

 (1 j(z)
z

)γ j
 n∏

k=1
(k, j)

[(
fk(z)

z

) (
1k(z)

z

)γk
]

+

n∑
j=1

( f j(z)
z

)
γ j

(
1 j(z)

z

)γ j−1 z1′j(z) − 1 j(z)

z2


·

n∏
k=1
(k, j

[(
fk(z)

z

) (
1k(z)

z

)γk
]
. (9)

From (8) and (9), we get

zh′′(z)
h′(z)

=

n∑
j=1

z f ′j (z)

f j(z)
− 1

 + γ j

z1′j(z)

1 j(z)
− 1

 , (10)

which readily yields

∣∣∣∣∣zh′′(z)
h′(z)

∣∣∣∣∣ 5 n∑
j=1


∣∣∣∣∣∣∣z f ′j (z)

f j(z)
− 1

∣∣∣∣∣∣∣ +
∣∣∣γ j

∣∣∣ ∣∣∣∣∣∣z1
′

j(z)

1 j(z)
− 1

∣∣∣∣∣∣
 . (11)

Thus, clearly, we find from this last inequality (11) that

1 − |z|2<(β)

<(β)

∣∣∣∣∣zh′′(z)
h′(z)

∣∣∣∣∣
5

1 − |z|2<(β)

<(β)

n∑
j=1



∣∣∣∣∣∣∣z f ′j (z)

f j(z)

∣∣∣∣∣∣∣ + 1

 +
∣∣∣γ j

∣∣∣ ∣∣∣∣∣∣z1
′

j(z)

1 j(z)

∣∣∣∣∣∣ + 1




5
1 − |z|2<(β)

<(β)

n∑
j=1


∣∣∣∣∣∣ f ′j (z)

(
z

f j(z)

)µ j
∣∣∣∣∣∣ ·

∣∣∣∣∣∣ f j(z)
z

∣∣∣∣∣∣µ j−1

+ 1


+

1 − |z|2<(β)

<(β)

n∑
j=1

|γ j|


∣∣∣∣∣∣1′j(z)

(
z
1 j(z)

)µ j
∣∣∣∣∣∣ ·

∣∣∣∣∣∣1 j(z)
z

∣∣∣∣∣∣µ j−1

+ 1

 . (12)

By the hypothesis of Theorem 3, we have

| f j(z)| 5M j and |1 j(z)| 5 N j (z ∈ U; j = 1, · · · ,n).

Therefore, by applying the General Schwarz Lemma to the functions f1, · · · , fn and 11, · · · , 1n, we obtain

| f j(z)| 5M j|z| and |1 j(z)| 5 N j|z| (z ∈ U; j = 1, · · · ,n). (13)
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Now, by using the inequalities (2) and (13), we get

1 − |z|2<(β)

<(β)

∣∣∣∣∣zh′′(z)
h′(z)

∣∣∣∣∣
5

1 − |z|2<(β)

<(β)

n∑
j=1

[(∣∣∣∣∣∣ f ′j (z)
(

z
f j(z)

)µ j

− 1

∣∣∣∣∣∣ + 1
)

Mµ j−1
j + 1

]

+
1 − |z|2<(β)

<(β)

n∑
j=1

|γ j|

[(∣∣∣∣∣∣1′j(z)
(

z
1 j(z)

)µ j

− 1

∣∣∣∣∣∣ + 1
)

Nµ j−1
j + 1

]
(14)

(z ∈ U),

which can be rewritten as follows:

1 − |z|2<(β)

<(β)

∣∣∣∣∣zh′′(z)
h′(z)

∣∣∣∣∣
5

1
<(β)

n∑
j=1

[((
2 − α j

)
Mµ j−1

j + 1
)

+ |γ j|
((

2 − α j

)
Nµ j−1

j + 1
)]

(15)

(z ∈ U).

If we make use of the condition (6) from the hypothesis of Theorem 3, this last inequality (15) yields

1 − |z|2<(β)

<(β)

∣∣∣∣∣zh′′(z)
h′(z)

∣∣∣∣∣ 5 1 (z ∈ U). (16)

Finally, we apply Theorem 1 to the function h(z) defined by (7). We thus conclude that the function
In,β(z) given by (3) is in the class S of analytic and univalent functions inU.

Corollary 1. Let the functions f j(z) ( j = 1, · · · ,n) and 1 j(z) ( j = 1, · · · ,n) be in the class A. Suppose also that
β, γ j ∈ C ( j = 1, · · · ,n) with<(β) > 0 and

<(β) =
n∑

j=1

[(
3 − α j

)
+ |γ j|

(
3 − α j

)]
. (17)

If f j, 1 j ∈ S
∗(α j) ( j = 1, · · · ,n) for 0 5 α j 5 1 ( j = 1, · · · ,n) and

| f j(z)| 5 1 and |1 j(z)| 5 1 (z ∈ U; j = 1, · · · ,n),

then the function In,β(z) given by (3) under that above constraints is in the class S of analytic and univalent functions
inU.

Proof. Corollary 1 follows readily by setting

µ j = M j = N j = 1 ( j = 1, · · · ,n)

in Theorem 3.

Corollary 2. Let the functions f (z) and 1(z) be in the class A. Suppose also that β, γ ∈ C with <(β) > 0, M = 1,
N = 1 and

<(β) = ((2 − α)Mµ−1 + 1) + |γ|((2 − α)Nµ−1 + 1). (18)
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If f , 1 ∈ B(µ, α) (0 5 α < 1; µ = 0) and

| f (z)| 5M and |1(z)| 5 N (z ∈ U),

then the function Jβ(z) given by

Jβ(z) :=
[
β

∫ z

0
tβ−1

(
f (t)
t

) (
1(t)

t

)γ
dt

] 1
β

(19)

is in the class S of analytic and univalent functions inU.

Proof. Since

Jβ(z) = I1,β(z)
(
z ∈ U; <(β) > 0

)
,

which is an immediate consequence of the definitions (3) and (19), Corollary 2 corresponds to the special
case of Theorem 3 when n = 1.

Next, by using Theorem 2 of Pescar [10], we get the following result.

Theorem 4. Let the functions f j, 1 j ∈ A ( j = 1, · · · ,n). Suppose that

c, β, γ j ∈ C, <(β) > 0 and M j,N j = 1 ( j = 1, · · · ,n).

Also let

<(β) =
n∑

j=1

[( (
2 − α j

)
Mµ j−1

j + 1
)

+ |γ j|

( (
2 − α j

)
Nµ j−1

j + 1
)]

(20)

and

|c| 5 1 −
1
<(β)

n∑
j=1

[( (
2 − α j

)
Mµ j−1

j + 1
)

+ |γ j|

( (
2 − α j

)
Nµ j−1

j + 1
)]
. (21)

If

f j, 1 j ∈ B(µ j, α j), 0 5 α j < 1 and µ j = 0 ( j = 1, · · · ,n)

and ∣∣∣ f j(z)
∣∣∣ 5M j and

∣∣∣1 j(z)
∣∣∣ 5 N j (z ∈ U; j = 1, · · · ,n),

then the function In,β(z) given by the integral operator (3) is in the class S of analytic and univalent functions inU.

Proof. Just as in the proof of Theorem 3, we have

zh′′(z)
h′(z)

=

n∑
j=1

z f ′j (z)

f j(z)
− 1

 + γ j

z1′j(z)

1 j(z)
− 1

 (z ∈ U), (22)
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which, for a given constant c ∈ C, yields∣∣∣∣∣c|z|2β + (1 − |z|2β)
zh′′(z)
βh′(z)

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣c|z|2β + (1 − |z|2β)
1
β

n∑
j=1

z f ′j (z)

f j(z)
− 1

 + γ j

z1′j(z)

1 j(z)
− 1


∣∣∣∣∣∣∣∣

5 |c| +
1
|β|

n∑
j=1



∣∣∣∣∣∣∣z f ′j (z)

f j(z)

∣∣∣∣∣∣∣ + 1

 + |γ j|

∣∣∣∣∣∣z1
′

j(z)

1 j(z)

∣∣∣∣∣∣ + 1




5 |c| +
1
|β|

n∑
j=1


∣∣∣∣∣∣ f ′j (z)

(
z

f j(z)

)µ j
∣∣∣∣∣∣ ·

∣∣∣∣∣∣ f j(z)
z

∣∣∣∣∣∣µ j−1

+ 1


+

1
|β|

n∑
j=1

|γ j|

∣∣∣∣∣∣1′j(z)
(

z
1 j(z)

)µ j
∣∣∣∣∣∣ ·

∣∣∣∣∣∣1 j(z)
z

∣∣∣∣∣∣µ j−1

+ 1

 (z ∈ U). (23)

Now, from the hypothesis of Theorem 4, we have

| f j(z)| 5M j and |1 j(z)| 5 N j (z ∈ U; j = 1, · · · ,n).

Applying the General Schwarz Lemma to the functions f1, · · · , fn and 11, · · · , 1n, we obtain

| f j(z)| 5M j|z| and |1 j(z)| 5 N j|z| (z ∈ U; j = 1, · · · ,n), (24)

which, in conjunction with the inequality (2), leads us to following result:∣∣∣∣∣c|z|2β + (1 − |z|2β)
zh′′(z)
βh′(z)

∣∣∣∣∣
5 |c| +

1
|β|

n∑
j=1

[(∣∣∣∣∣∣ f ′j (z)
(

z
f j(z)

)µ j

− 1

∣∣∣∣∣∣ + 1
)

Mµ j−1
j + 1

]

+
1
|β|

n∑
j=1

|γ j|

[(∣∣∣∣∣∣1′j(z)
(

z
1 j(z)

)µ j

− 1

∣∣∣∣∣∣ + 1
)

Nµ j−1
j + 1

]

5 |c| +
1
<(β)

n∑
j=1

[((
2 − α j

)
Mµ j−1

j + 1
)

+ |γ j|
((

2 − α j

)
Nµ j−1

j + 1
)]

(25)

(z ∈ U).

Thus, from the condition (21) of Theorem 4, we find that∣∣∣∣∣c|z|2β + (1 − |z|2β)
zh′′(z)
βh′(z)

∣∣∣∣∣ 5 1 (z ∈ U). (26)

Finally, by applying Theorem 2 to the function h(z) given by (7), we deduce the desired assertion that
the function In,β(z) given by the integral operator (3) is in the class S of analytic and univalent functions in
U.

Corollary 3. Let the functions f j(z) ( j = 1, · · · ,n) and 1 j(z) ( j = 1, · · · ,n) be in the class A. Suppose also that
c, β, γ j ∈ C ( j = 1, · · · ,n) with<(β) > 0 and

<(β) =
n∑

j=1

[(
3 − α j

)
+ |γ j|

(
3 − α j

)]
. (27)
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If f j, 1 j ∈ S
∗(α j) ( j = 1, · · · ,n) for 0 5 α j 5 1 ( j = 1, · · · ,n),

| f j(z)| 5 1 and |1 j(z)| 5 1 (z ∈ U; j = 1, · · · ,n)

and

|c| 5 1 −
1
<(β)

n∑
j=1

[(
3 − α j

)
+ |γ j|

(
3 − α j

)]
, (28)

then the function In,β(z) given by (3) under the above constraints is in the class S of analytic and univalent functions
inU.

Proof. Corollary 3 follows easily upon setting

µ j = M j = N j = 1 ( j = 1, · · · ,n)

in Theorem 4.

Corollary 4. Let the functions f (z) and 1(z) be in the classA. Suppose also that c, β, γ ∈ C with<(β) > 0, M = 1,
N = 1 and

<(β) = ((2 − α)Mµ−1 + 1) + |γ|((2 − α)Nµ−1 + 1). (29)

If f , 1 ∈ B(µ, α) (0 5 α < 1; µ = 0),

| f (z)| 5M and |1(z)| 5 N (z ∈ U)

and

|c| 5 1 −
1
<(β)

[(
2 − α)Mµ−1 + 1) + |γ|(2 − α)Nµ−1 + 1

)]
, (30)

then the function Jβ(z) given by (19) is in the class S of analytic and univalent functions inU.

Proof. In its special case when n = 1, Theorem 4 would obviously correspond to Corollary 4.

3. Concluding Remarks and Observations

Our present investigation was motivated essentially by several recent works dealing with the interesting
problem of finding sufficient conditions for univalence of normalized analytic functions which are defined
in terms of various families integral operators (see, for example, [1–3, 9, 10, 12, 13]; see also the other relevant
references cited in each of these earlier works). In our study here, we have successfully determined the
univalence conditions for the function In,β(z) given by the general family of integral operators in (3).

Our main results (Theorems 3 and 4 in this paper) are shown to yield several corollaries and conse-
quences. Some of these applications of our main results are stated here as Corollaries 1, 2, 3 and 4.

Derivations of further corollaries and consequences of the results presented in this paper, including also
their connections with known results given in several earlier works, are being left here as exercises for the
interested reader.
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