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Abstract. In this paper, we consider a class of nonsmooth minimax programming problems in which
functions are locally Lipschitz. Sufficient optimality conditions are discussed under locally Lipschitz
generalized (Φ, ρ)-invex functions. Moreover, usual duality results are proved under the said assumptions.

1. Introduction

Minimax problems occur frequently in many important areas like game theory, Chebychev approxima-
tion, economics, financial planning and facility location [11]. Some of the basic results of minimax problems
can be found in [10]. Chew [5] Minimax problems under the assumptions of pseudolinear function is
studied in [5]. Tanimoto [17] derived duality theorems for some minimax type problems involving convex
functions. Mond and Weir [14] discussed optimality conditions and duality for minimax problem under
pseudoconvexity. Antczak [2] established sufficiency and duality results for minimax problems under
(p, r)-invexity.

Convexity plays an important role in many aspects of mathematical programming including optimality
conditions, duality theorems and alternative theorems. But, due to insufficiency of convexity notion in many
mathematical models used in decision science, economics, engineering, etc., there has been an increasing
interest in relaxing convexity assumptions in connection with sufficiency and duality theorems. One of the
most lively generalizations of convexity is due to Hanson [12], which was named as invexity by Craven [7].
Since many practical problems encountered in economics, engineering design and management science, etc.,
can be described only by nonsmooth functions; consequently, the theory of nonsmooth optimization using
locally Lipschitz functions was put forward by Francis Clarke in 1980’s (see [6]). He extended the properties
of convex functions to the case of locally Lipschitz functions by suitably defining a generalized derivative
and a subdifferential. Later on, the notion of invexity was extended to locally Lipschitz functions in [8], by
replacing the derivative with Clarke generalized gradient. Reiland [15] pointed out that under the invexity
assumption the Kuhn-Tucker conditions also assures the optimality in nondifferentiable programming
involving locally Lipschitz functions.

The definition of (Φ, ρ)-invexity notion has been introduced by Caristi et al. [4] for differentiable
function and established sufficient optimality conditions and duality results for differentiable optimization
problems. Stefanescu and Stefanescu [16] used the (Φ, ρ)-invexity to discuss the optimality conditions and
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duality results for differentiable minimax programming problem. Recently, Antczak [3] generalize the
definition of (Φ, ρ)invexity notion introduced by Caristi et al. [4] for differentiable optimization problems to
the case of mathematical programming problems with locally Lipschitz functions and established sufficient
optimality conditions and Mond-Weir duality results for a new class of nonconvex nonsmooth mathematical
programming problems.

The purpose of this article is to discuss the application of locally Lipschitz generalized (Φ, ρ)-invexity
for a class of nonsmooth minimax programming problems. We discuss the sufficient optimality conditions
and duality results for a minimax programming problem.

2. Preliminaries

Throughout this section, X is a nonempty open subset of Rn.
A function f : Rn

→ R is said to locally Lipschitz at a point x̄ ∈ Rn if there exist scalars ζ > 0 and ε > 0 such
that

| f (x1) − f (x2)| ≤ ζ‖x1
− x2
‖, for all x1, x2

∈ x̄ + εB

where x̄ + εB is the open ball of radius ε around x̄, and ‖ · ‖ being any norm in Rn.
The Clarke generalized directional derivative [6] of a locally Lipschitz function f : Rn

→ R at x̄ in the
direction v ∈ Rn, denoted by f ◦(x̄; v), is defined as

f ◦(x̄; v) = lim
t↓0

sup
y→x̄

f (y + tv) − f (y)
t

,

where y is a vector in Rn.
The Clarke generalized gradient [6] of f : Rn

→ R at x̄, denoted by ∂ f (x̄), is defined as

∂ f (x̄) = {ξ ∈ Rn : f ◦(x̄; v) ≥ ξ>v, ∀ v ∈ Rn
}.

It follows that for any v ∈ Rn, f ◦(x̄; v) = max{ξTv : ξ ∈ ∂ f (x̄)}.

The following result was given by Clarke [6].

Theorem 2.1. If a locally Lipschitz function f : X→ R attains a local minimum or maximum at x̄, then 0 ∈ ∂ f (x̄).

In the definitions below, Φ is a real valued locally Lipschitz function defined on X × X × Rn+1 such that
Φ(x, x̄, .) is convex on Rn+1 and Φ(x, x̄, (0, a)) ≥ 0 for every x ∈ X and any ā ∈ R+, and a real number ρ.

Definition 2.1. [3]. f is said to be locally Lipschitz (Φ, ρ)-invex at x̄ on X if

f (x) − f (x̄) ≥ Φ(x, x̄, (ξ, ρ))

holds for any ξ ∈ ∂ f (x̄) and all x ∈ X.

Now, we introduce the definition of locally Lipschitz pseudo(Φ, ρ)-invex and locally Lipschitz quasi(Φ, ρ)-
invex functions.

Definition 2.2. f is said to be locally Lipschitz pseudo(Φ, ρ)-invex at x̄ on X if for any ξ ∈ ∂ f (x̄) and all x ∈ X

Φ(x, x̄, (ξ, ρ)) ≥ 0⇒ f (x) − f (x̄) ≥ 0.

Definition 2.3. f is said to be locally Lipschitz quasi(Φ, ρ)-invex at x̄ on X if for any ξ ∈ ∂ f (x̄) and all x ∈ X

f (x) − f (x̄) ≤ 0⇒ Φ(x, x̄, (ξ, ρ)) ≤ 0.

In the Definition 2.3, if the inequalities hold as strict inequalities, then f is said to be locally Lipschitz
semistrict quasi(Φ, ρ)-invex at x̄
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3. Nonsmooth Minimax Programming

We consider the following minimax programming problem:

(P) min
x∈X

max
1≤i≤k

fi(x)

subject to

1 j(x) ≤ 0, j = 1, 2, · · · ,m, (1)

where fi : X → R, i = 1, 2, . . . , k, 1 j : X → R, j = 1, 2, . . . ,m are locally Lipschitz functions, and X is a
non-empty open subset of Rn. Let D = {x ∈ X : 1 j(x) ≤ 0, j = 1, 2, . . . ,m} be set of all feasible solutions of
(P). Let J(x) = { j : 1 j(x̄) = 0} be the set of active constraint at x̄ ∈ D.

It is well known (see example [9]) that the problem (P) is equivalent to the following problem (EP) in
the sense of the Lemma 3.1 and 3.2 given further

(EP) min v
subject to f (x) ≤ ve (2)

1 j(x) ≤ 0, j = 1, 2, · · · ,m, (3)
(x, v) ∈ X × R. (4)

Here e is the k-dimensional vector with entries 1 and f (x) = ( f1(x), f2(x), · · · , fk(x)). Let A = {(x, v) ∈ X × R :
f (x) ≤ ve, 1 j(x) ≤ 0, j = 1, 2 . . . ,m} be set of all feasible solutions of (EP).

Lemma 3.1. If a point (x, v) is feasible for (EP), then x is a feasible point for (P). Moreover, if a point x is feasible for
(P) then there exists v ∈ R such that (x, v) is feasible point for (EP).

Lemma 3.2. A point x̄ is an optimal solution for (P) with the corresponding value of the objective function of (P)
equal to v̄ if and only if a point (x̄, v̄) is an optimal solution of (EP) with the corresponding optimal value of the
objective function of (EP) equal to v̄.

Note that (EP) is a nonsmooth minimization nonlinear programming problem. The following necessary
optimality conditions are the nonsmooth version of the necessary optimality conditions given in [2].

Theorem 3.1. (Kuhn-Tucker type necessary optimality conditions). Let x̄ ∈ D be an optimal solution of (P) with the
corresponding optimal value for (P) equal to v̄ and a Slater’s constraint qualification is satisfied at x̄. Then, there exist
λ ∈ Rk

+, µ ∈ Rm
+ such that (x̄, v̄, λ, µ) satisfies the following conditions:

0 ∈
k∑

i=1

λi∂ fi(x̄) +

m∑
j=1

µ j∂1 j(x̄) (5)

λ f (x̄) = v̄ (6)

f (x̄) ≤ v̄e (7)

µ j1 j(x̄) = 0, j = 1, 2, ...,m (8)

λe = 1. (9)

If we set P(x̄) = {i : fi(x̄) = max
1≤l≤p

fl(x̄)}, then (x̄, λ, µ) ∈ D × Rk
+ × Rm

+ verifies (8) and the conditions

0 ∈
∑

i∈P(x̄)

λi∂ fi(x̄) +
∑
j∈J(x̄)

µ j∂1 j(x̄) (10)

∑
i∈P(x̄)

λi = 1. (11)
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Now, we prove that Kuhn-Tucker conditions are satisfied by solutions of (P) (or (EP)) if these problems also
satisfies some locally Lipschitz generalized (Φ, ρ)-invexity conditions.

Theorem 3.2. Let (x̄, v̄) an optimal solution of (EP). Moreover, we assume that the functions 1 j, j ∈ J(x̄) is locally
Lipschtiz semistrict quasi(Φ, ρ1 j )-invex at x̄ for some ρ1 j ≥ 0. Then there exist λ ∈ Rk

+ and µ ∈ Rm
+ such that (5)-(9)

are verified by ((x̄, v̄), λ, µ).

Proof. The Fritz John necessary conditions claim the existence of non-negative multipliers w ∈ R, α ∈ Rk, β ∈
Rm such that

w − αe = 0, 0 ∈
k∑

i=1

αi∂ fi(x̄) +

m∑
j=1

β j∂1 j(x̄), (12)

f (x̄) ≤ v̄e, α f (x̄) − αv̄e = 0, β j1 j(x̄) = 0, j = 1, 2, · · · ,m, (13)

w +

k∑
i=1

αi +

m∑
j=1

β j > 0. (14)

we have to prove that w +

k∑
i=1

αi > 0.

Otherwise, if w = 0 and α = 0, it follows from (14) that β0 =

m∑
j=1

β j > 0. Setting β
′

j =
β j

β0
, j = 1, 2, ...,m,

equation (5) becomes
∑
j∈J(x̄)

β
′

jζ j = 0; ζ j ∈ ∂1 j(x̄), j ∈ J(x̄). If then follows from the property of Φ that

0 ≤ Φ(x, x̄, (
∑
j∈J(x̄)

β
′

jζ j,
∑
j∈J(x̄)

β
′

jρ1 j )) ≤
∑
j∈J(x̄)

β
′

jΦ(x, x̄; (ζ j, ρ1 j )) for every x ∈ D.

Let x∗ ∈ D satisfies Slater’s conditions 1 j(x∗) < 0,∀ j ∈ J(x̄).Then because each 1 j is locally Lipschitz semistrict
quasi(φ, ρ − 1 j)-invex, we have∑

j∈J(x̄)

β
′

jφ(x∗, x̄, (ζ j, ρ1 j )) < 0, ζ j ∈ ∂1 j(x̄),

so that we have reached a contradiction.

Now, observe that the above inequality together (12) say that λe = 1 where λi =
αi

w
. Finally, set

µ j =
β j

w
, j = 1, 2, ...,m and the proof is complete.

The next two results concern the sufficiency of Kuhn-Tucker conditions when locally Lipschitz general-
ized (φ, ρ)-invexity is assumed.

Theorem 3.3. Let (x̄, v̄, λ, µ) ∈ D × R × Rk
+ × Rm

+ satisfying relations (5)-(9). Moreover, we assume that
k∑

i=1

λi fi

is locally Lipschitz pseudo(Φ, ρ f )-invex at x̄, 1 j, j ∈ J(x̄) is locally Lipschitz quasi(Φ, ρ1 j )-invex at x̄ on D and
ρ f +

∑
j∈J(x̄)

µ jρ1 j ≥ 0. Then x̄ is an optimal solution for (P) with the corresponding value equal to v̄.

Proof. By (7), (x̄, v̄) is a feasible solution of (EP) . Let (x∗, v) be an arbitrary feasible solution of (EP). Two
situations are considered (i) λ = 0 (ii) λ , 0. From (5) it is clear that there exists ξi ∈ ∂ fi(x̄), ζ j ∈ ∂1 j(x̄), j ∈ J(x̄),
such that
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k∑
i=1
λiξi +

∑
j∈J(x̄)

µ jζ j = 0.

In case (i) we have

Φ(x, x̄, (
k∑

i=1

λiξi, ρ f )) ≥ 0. (15)

If case (ii) holds, let w = 1 +
∑
j∈J(x̄)

µ j, so that we have

1
w

Φ(x, x̄, (
k∑

i=1

λiξi, ρ f )) +
∑
j∈J(x̄)

µ j

w
Φ(x, x̄, (ζ j, ρ1 j )) ≥ Φ(x, x̄, (

1
w

k∑
i=1

λiξi

+
∑
j∈J(x̄)

µ j

w
ζ j,
ρ f

w
+
∑
j∈J(x̄)

µ jρ j

w
)) ≥ 0.

Since, 1 j are locally Lipschitz quasi(Φ, ρ)-invex at x̄ and 1 j(x) ≤ 1 j(x̄) for each j ∈ J(x̄), we have∑
j∈J(x̄)

µ j

w
Φ(x, x̄, (∇1 j(x̄), ρ1 j) ≤ 0.

we arrive again to (15).
Now by (15), locally Lipschitz pseudo(Φ, ρ f )-invexity implies the inequality

k∑
i=1

λi fix −
k∑

i=1

λi fi(x̄) ≥ 0.

But fi(x) ≤ v,
k∑

i=1

λi fi(x̄) = v̄ and λe = 1. Therefore, the inequality above implies the inequality v − v̄ ≥ 0.

Theorem 3.4. Let (x̄, λ, µ) satisfying (3), (10) and (11). Moreover, we assume that fi is locally Lipschitz semistrict
quasi (Φ, ρ fi )- invex at x̄ for each i ∈ P(x̄), 1 j is locally Lipschitz quasi (Φ, ρ1 j )-invex at x̄ for each j ∈ J(x̄), and∑
i∈P(x̄)

λiρ fi +
∑
j∈J(x̄)

µ jρ1 j ≥ 0. Then x̄ is an optimal solution of (P).

Proof. By Theorem 3.1, x̄ is a feasible solution of (P). Put v̄ = max
1≤i≤k

fi(x̄). Thus, fi(x̄) = v̄ for every i ∈ P(x̄).

Suppose that x̄ is not optimal. Then there exists x ∈ D such that v = max
1≤i≤k

fi(x) < v̄. From (10) , it is clear that

there exist ξi ∈ ∂ fi(x̄), i ∈ P(x̄) and ζ j ∈ ∂1 j(x̄), j ∈ J(x̄) such that∑
i∈P(x̄)

αiξi +
∑
j∈J(x̄)

β jζ j = 0,

where αi =
λi

λ0
, i ∈ P(x̄), β j =

µ j

λ0
, j ∈ J(x̄), λ0 = 1 +

∑
j∈J(x̄)

µ j. Also
∑

i∈P(x̄)

αiρ fi +
∑
j∈J(x̄)

β jρ1 j ≥ 0, then

Φ(x, x̄, (
∑

i∈P(x̄)

αiξi +
∑
j∈J(x̄)

β jζ j,
∑

i∈P(x̄)

αiρ fi +
∑
j∈J(x̄)

β jρ1 j )) ≥ 0.

Moreover,∑
i∈P(x̄)

αi,Φ(x, x̄, (ξi, ρ fi )) +
∑
j∈J(x̄)

β jΦ(x, x̄, (ζ j, ρ1 j )) ≥ 0.
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Hence ∑
i∈P(x̄)

αi,Φ(x, x̄, (ξi, ρ fi )) ≥ 0. (16)

For i ∈ P(x̄) we have fi(x)− fi(x̄) ≤ v− v̄ < 0, so that Φ(x, x̄, (ξi, ρ fi )) < 0. Since α ∈ Rk
+ and

R∑
i=1

αi > 0,we have∑
i∈P(x̄)

αi,Φ(x, x̄, (ξi, ρ fi )) < 0,

which contradicts inequality (16).

4. Mond-Weir Type Duality

Making use of the first-order necessary conditions of Section 3, in the section, we present the follow-
ing Mond weir dual and establish appropriate duality theorems under locally Lipschitz (Φ, ρ)- invexity
assumptions

(MD) max f (y) = ( f1(y), f2(y), . . . fk(y))

subject to

0 ∈
k∑

i=1

λi∂ fi(y) +

m∑
j=1

µ j∂1 j(y) (17)

µ j1 j(y) ≥ 0, j ∈M (18)

λ ≥ 0, λe = 1, µ ≥ 0.

The equivalence of (P) and (EP) allow us to refer to (MD) as to the dual of (P). Let U be the set of all feasible
solution of (MD).

Theorem 4.1. Let x be a feasible solution of (P) and (y, λ, µ) a feasible solution of (MD). Further, assume that fi is
locally Lipschtiz(Φ, ρ fi )- invex at y for each i ∈ {1, 2, ..., k} and 1 j is locally Lipschtiz (Φ, ρ1 j )− invex at y for each

j ∈ {1, 2, ...,m}. If
k∑

i=1

λiρ fi +

m∑
j=1

µ jρ1 j ≥ 0, then

k∑
i=1

λi fi(y) ≤ max
1≤i≤k

fi(x).

Proof. Since x ∈ S and (y, µ, λ) ∈ U, we have

µ j1 j(x) ≤ 0 ≤ µ j1 j(y)

or
µ j1 j(x) − µ j1 j(y) ≤ 0 (19)

By (17), it is clear that there exist ξi ∈ ∂ fi(y), ζ j ∈ ∂1 j(y) such that

k∑
i=1

λiξi +

m∑
j=1

µ jζ j = 0. (20)
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The locally Lipschtiz invexity of fi and 1 j imply

λi fi(x) − λi fi(y) ≥ λiΦ(x, y, (ξi, ρ fi )), ξi ∈ ∂ fi(y)

and

µ j1 j(x) − µ j1 j(y) ≥ µ jΦ(x, y, (ζ j, ρ1 j )), ζ j ∈ ∂1 j(y).

Setting

αi =
λi

w
, β j =

µ j

w
and w = 1 +

m∑
j=1

µ j, (21)

we have
αi fi(x) − αi fi(y) ≥ αiΦ(x, y, (ξi, ρ fi )), ξi ∈ ∂ fi(y) (22)

and
β j1 j(x) − β j1 j(y) ≥ β jΦ(x, y, (ζ j, ρ1 j )), ζ j ∈ ∂1 j(y) (23)

β j1 j(x) − β j1 j(y) ≤ 0. (24)

Adding (22) and (23), and using (24), we get

k∑
i=1

αi( fi(x) − fi(y)) ≥
k∑

i=1

αiΦ(x, y, (ξi, ρ fi )) +

m∑
j=1

β jΦ(x, y, (ζ j, ρ1 j )), (25)

for any ξi ∈ ∂ fi(y) and ζ j ∈ ∂1 j(y). By definition that Φ(x, y; .) is convex on Rn+1. Therefore

k∑
i=1

αiΦ(x, y, (ξi, ρ fi )) +

m∑
j=1

β jΦ(x, y, (e jρ1 j ))

≥ Φ(x, y(
k∑

i=1

αiξi +

k∑
j=1

β jζ j,
k∑

i=1

αiρ fi +

m∑
j=1

β jρ1 j ). (26)

From the feasibility of dual problem and (21), it follows that

k∑
i=1

αiξi +

m∑
j=1

β jζ j = 0. (27)

Combining (25),(26) and (27) we get

k∑
i=1

αi fi(x) −
k∑

i=1

αi fi(y) ≥ Φ(x, y, (0,
k∑

i=1

αiρ fi +

m∑
j=1

β jρ1 j )). (28)

By Definition 2.1, it follows that Φ(x, y, (0, y)) ≥ 0. Since
k∑

i=1

αiρ fi +

m∑
j=1

β jρ1 j ≥ 0, therefore

Φ(x, y, (0,
R∑

i=1

αiρ fi +

m∑
j=1

β jρ1 j)) ≥ 0. (29)
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By (28) and (29),
k∑

i=1

αi fi(x) −
k∑

i=1

αi fi(y) ≥ 0.

Or
k∑

i=1

αi fi(x) ≥
k∑

i=1

αi fi(y).

Hence (21) imply that
k∑

i=1

λi fi(y) ≤
k∑

i=1

λi fi(x) ≤ max
1≤i≤k

fi(x).

Remark 4.1. Under locally Lipschitz invexity assumptions if (x, v) is feasible solution of (EP) , then
k∑

i=1

λi fi(y) +

m∑
j=1

µ j1 j(y) ≤ v.

Theorem 4.2. Let x̄ be an optimal solution of (P). Assume that Slater’s constraints qualification holds at x̄. Then
there exists λ ∈ Rk

+, µ ∈ Rm
+ such that (x̄ = ȳ, λ, µ) is feasible for (MD) and the objective functions of (P) and (MD)

are equal at these points. If, also the hypotheses of the weak duality theorem hold, then (x̄, λ, µ) is an optimal solution
for (WD).

Proof. By Theorem 3.1 and (11), there exist λ ∈ Rk
+ and µ ∈ Rm

+ such that (x̄, λ, µ) is a Kuhn-Tucker point of

(P). Then (x̄, λ, µ) is a feasible solution of (WD) and since
m∑

j=1

µ j1 j(x̄) = 0, we have

k∑
i=1

λi fi(x̄) +

m∑
j=1

µ j1 j(x̄) =
∑

i∈P(x̄)

λi fi(x̄) = max
1≤i≤k

fi(x̄).

Then by the optimality of (x̄, λ, µ) follows by Theorem 4.1.

5. Conclusion

We have proved the several sufficient optimality conditions and duality results for a nons-
mooth minimax programming problem under Lipschitz generalized (Φ, ρ)-invex functions. The results can
be further generalize for a class of following nonsmooth fractional minimax programming

(FP) min
x∈X

max
1≤i≤k

fi(x)
hi(x)

subject to
1 j(x) ≤ 0, j = 1, 2, · · · ,m,

where fi : X → R, hi : X → R, i = 1, 2, . . . ,R and 1 j : X → R, j = 1, 2, . . . ,m are locally Lipschtiz functions,
and X is a nonempty subset of Rn. We assume that fi(x) ≥ 0 and hi(x) > 0, i = 1, 2, . . . , k.
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