Filomat 30:5 (2016), 1273–1281 DOI 10.2298/FIL1605273D

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

*I*₂–Uniform Convergence of Double Sequences of Functions

Erdinç Dündar^a, Bilal Altay^b

^a Afyon Kocatepe Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Afyonkarahisar-03200/Türkiye ^b İnönü Üniversitesi, Eğitim Fakültesi, Malatya-44280/Türkiye

Abstract. In this work, we discuss various kinds of I_2 -uniform convergence for double sequences of functions and introduce the concepts of I_2 and I_2^* -uniform convergence, I_2 -uniformly Cauchy sequences for double sequences of functions. Then, we show the relation between them.

1. Background and Introduction

The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [11] and Schoenberg [28]. This concept was extended to the double sequences by Mursaleen and Edely [21]. A lot of development have been made in this area after the works of Šalát [27] and Fridy [13, 14]. Furthermore, Gökhan et al. [16] introduced the notion of pointwise and uniform statistical convergent of double sequences of real-valued functions. In general, statistically convergent sequences satisfy many of the properties of ordinary convergent sequences in metric spaces [11, 13, 14, 25]. Çakan and Altay [4] presented multidimensional analogues of the results presented by Fridy and Orhan [12].

Throughout the paper \mathbb{N} denotes the set of all positive integers and \mathbb{R} the set of all real numbers. The idea of *I*-convergence was introduced by Kostyrko et al. [18] as a generalization of statistical convergence which is based on the structure of the ideal *I* of subset of the set of natural numbers. Nuray and Ruckle [23] indepedently introduced the same with another name generalized statistical convergence. Das et al. [5] introduced the concept of *I*-convergence of double sequences in a metric space and studied some properties of this convergence. Balcerzak et al. [3] discussed various kinds of statistical convergence and *I*-convergence for sequences of functions with values in \mathbb{R} or in a metric space. Gezer and Karakuş [15] investigated *I*-pointwise and *I*-uniform convergence and *I**-pointwise and *I**-uniform convergence of function sequences and examined the relation between them. Dündar and Altay [8] investigated the relation between *I*₂-convergence and *I**-convergence of double sequences of functions defined between linear metric spaces. Some results on *I*-convergence may be found in [2, 6, 19, 20, 22, 29].

In this work, we discuss various kinds of uniformly ideal convergence for double sequences of functions with values in \mathbb{R} or in a metric space. We introduce the concepts of I_2 , I_2^* -uniform convergence, I_2 -uniformly Cauchy sequences for double sequences of functions and show the relation between them.

²⁰¹⁰ Mathematics Subject Classification. Primary 40A30; Secondary 40A35

Keywords. Ideal, Uniform Convergence, I-Convergence, Double Sequences of Functions.

Received: 04 April 2014; Accepted: 27 April 2014

Communicated by Eberhard Malkowsky

Email addresses: erdincdundar79@gmail.com, edundar@aku.edu.tr (Erdinç Dündar), bilal.altay@inonu.edu.tr (Bilal Altay)

2. Definitions and Notations

Now, we recall that the definitions of concepts of ideal convergence, ideal Cauchy sequences and basic concepts. (See [1, 5, 9, 11, 16, 18, 21, 24, 26]).

A double sequence $x = (x_{mn})_{m,n \in \mathbb{N}}$ of real numbers is said to be convergent to $L \in \mathbb{R}$ if for any $\varepsilon > 0$, there exists $N_{\varepsilon} \in \mathbb{N}$ such that

$$|x_{mn} - L| < \varepsilon,$$

whenever $m, n > N_{\varepsilon}$. In this case we write

 $\lim_{m,n\to\infty}x_{mn}=L.$

A double sequence $x = (x_{mn})_{m,n \in \mathbb{N}}$ of real numbers is said to be bounded if there exists a positive real number *M* such that $|x_{mn}| < M$, for all $m, n \in \mathbb{N}$. That is

$$||x||_{\infty} = \sup_{m,n} |x_{mn}| < \infty.$$

Let $K \subset \mathbb{N} \times \mathbb{N}$. Let K_{mn} be the number of $(j,k) \in K$ such that $j \leq m, k \leq n$. If the sequence $\left\{\frac{K_{mn}}{m,n}\right\}$ has a limit in Pringsheim's sense then we say that K has double natural density and is denoted by

$$d_2(K) = \lim_{m,n\to\infty}\frac{K_{mn}}{m.n}.$$

A double sequence $x = (x_{mn})_{m,n \in \mathbb{N}}$ of real numbers is said to be statistically convergent to $L \in \mathbb{R}$, if for any $\varepsilon > 0$ we have $d_2(A(\varepsilon)) = 0$, where $A(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : |x_{mn} - L| \ge \varepsilon\}$.

A double sequence of functions $\{f_{mn}\}$ is said to be pointwise convergent to f on a set $S \subset \mathbb{R}$, if for each point $x \in S$ and for each $\varepsilon > 0$, there exists a positive integer $N = N(x, \varepsilon)$ such that

$$|f_{mn}(x) - f(x)| < \varepsilon,$$

for all m, n > N. In this case we write

$$\lim_{m,n\to\infty} f_{mn}(x) = f(x) \text{ or } f_{mn} \to f$$

on *S*.

A double sequence of functions $\{f_{mn}\}$ is said to be uniformly convergent to f on a set $S \subset \mathbb{R}$, if for each $\varepsilon > 0$, there exists a positive integer $N = N(\varepsilon)$ such that m, n > N implies

$$|f_{mn}(x) - f(x)| < \varepsilon$$
, for all $x \in S$.

In this case we write

 $f_{mn} \rightrightarrows f$

on S.

A double sequence of functions $\{f_{mn}\}$ is said to be pointwise statistically convergent to f on a set $S \subset \mathbb{R}$, if for every $\varepsilon > 0$,

$$\lim_{m,n\to\infty}\frac{1}{mn}\Big|\{(i,j),i\leq m \text{ and } j\leq n:|f_{ij}(x)-f(x)|\geq \varepsilon\}\Big|=0,$$

for each (fixed) $x \in S$, i.e., for each (fixed) $x \in S$,

$$|f_{ij}(x) - f(x)| < \varepsilon, \ a.a. \ (i, j).$$

In this case we write

$$st - \lim_{m,n\to\infty} f_{mn}(x) = f(x) \text{ or } f_{mn} \to_{st} f$$

on *S*.

A double sequence of functions $\{f_{mn}\}$ is said to be uniformly statistically convergent to f on a set $S \subset \mathbb{R}$, if for every $\varepsilon > 0$,

$$\lim_{n,n\to\infty}\frac{1}{mn}\big|\{(i,j),i\leq m \text{ and } j\leq n: |f_{ij}(x)-f(x)|\geq \varepsilon\}\big|=0, \text{ for all } x\in S$$

i.e., for all $x \in S$,

$$|f_{ij}(x) - f(x)| < \varepsilon$$
, a.a. (i, j) .

In this case we write

$$st - \lim_{m \to \infty} f_{mn}(x) = f(x)$$
 uniformly on S or $f_{mn} \rightrightarrows_{st} f$

on S.

Let $X \neq \emptyset$. A class I of subsets of X is said to be an ideal in X provided: i) $\emptyset \in I$, ii) $A, B \in I$ implies $A \cup B \in I$, iii) $A \in I, B \subset A$ implies $B \in I$. I is called a nontrivial ideal if $X \notin I$. Let $X \neq \emptyset$. A non empty class \mathcal{F} of subsets of X is said to be a filter in X provided: i) $\emptyset \notin \mathcal{F}$, ii) $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$, iii) $A \in \mathcal{F}, A \subset B$ implies $B \in \mathcal{F}$.

Lemma 2.1. [18] If I is a nontrivial ideal in $X, X \neq \emptyset$, then the class

$$\mathcal{F}(I) = \{ M \subset X : (\exists A \in I) (M = X \setminus A) \}$$

is a filter on X, called the filter associated with *I*.

A nontrivial ideal I in X is called admissible if $\{x\} \in I$ for each $x \in X$.

Throughout the paper we take I_2 as a nontrivial admissible ideal in $\mathbb{N} \times \mathbb{N}$.

A nontrivial ideal \overline{I}_2 of $\mathbb{N} \times \mathbb{N}$ is called strongly admissible if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times \{i\}$ belong to I_2 for each $i \in \mathbb{N}$.

It is evident that a strongly admissible ideal is admissible also.

Let $I_2^0 = \{A \subset \mathbb{N} \times \mathbb{N} : (\exists m(A) \in \mathbb{N}) (i, j \ge m(A) \Rightarrow (i, j) \notin A)\}$. Then I_2^0 is a nontrivial strongly admissible ideal and clearly I_2 is strongly admissible if and only if $I_2^0 \subset I_2$.

Let (X, ρ) be a linear metric space and $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{mn})$ of elements of X is said to be I_2 -convergent to $L \in X$, if for any $\varepsilon > 0$ we have

$$A(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : \rho(x_{mn}, L) \ge \varepsilon\} \in \mathcal{I}_2.$$

In this case we say that *x* is I_2 -convergent to $L \in X$ and we write

$$I_2 - \lim_{m \to \infty} x_{mn} = L$$

If I_2 is a strongly admissible ideal on $\mathbb{N} \times \mathbb{N}$, then usual convergence implies I_2 -convergence.

Let (X, ρ) be a linear metric space and $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{mn})$ of elements of X is said to be I_2^* -convergent to $L \in X$, if and only if there exists a set $M \in \mathcal{F}(I_2)$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M \in I_2$) such that

$$\lim_{m,n\to\infty}x_{mn}=L$$

for $(m, n) \in M$ and we write

$$I_2^* - \lim_{m,n\to\infty} x_{mn} = L.$$

Let (X, ρ) be a linear metric space and $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{mn})$ of elements of X is said to be I_2 -Cauchy if for every $\varepsilon > 0$, there exist $s = s(\varepsilon)$, $t = t(\varepsilon) \in \mathbb{N}$ such that

$$A(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : \rho(x_{mn}, x_{st}) \ge \varepsilon\} \in I_2.$$

We say that an admissible ideal $I_2 \subset 2^{\mathbb{N}\times\mathbb{N}}$ satisfies the property (AP2) if for every countable family of mutually disjoint sets $\{A_1, A_2, ...\}$ belonging to I_2 , there exists a countable family of sets $\{B_1, B_2, ...\}$ such that $A_j \Delta B_j \in I_2^0$, i.e., $A_j \Delta B_j$ is included in the finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each $j \in \mathbb{N}$ and $B = \bigcup_{i=1}^{\infty} B_j \in I_2$ (hence $B_j \in I_2$ for each $j \in \mathbb{N}$).

Now we begin with quoting the lemmas due to Dündar and Altay [8, 9] which are needed throughout the paper.

Lemma 2.2. [9] Let $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal, $\{f_{nm}\}$ is a double sequence of functions and f is a function on $S \subset \mathbb{R}$. Then

$$I_2^* - \lim_{m,n\to\infty} f_{mn}(x) = f(x) \text{ implies } I_2 - \lim_{m,n\to\infty} f_{mn}(x) = f(x), \text{ (pointwise)}$$

for each $x \in S$.

Lemma 2.3. [9] Let $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. $\{f_{mn}\}$ is a double sequence of functions is pointwise I_2 -convergent to f on $S \subset \mathbb{R}$ if and only if it is pointwise I_2 -Cauchy sequences.

Lemma 2.4. [8] Let $I_2 \subset 2^{\mathbb{N}\times\mathbb{N}}$ be a strongly admissible ideal having the property (AP2), (X, d_x) and (Y, d_y) two linear metric spaces, $f_{mn} : X \to Y$ a double sequence of functions and $f : X \to Y$. If $\{f_{mn}\}$ double sequence of functions is I_2 -convergent then it is I_2^* -convergent.

3. Main Results

First we prove the following theorem with an another way that it is given in [16].

Theorem 3.1. Let f and f_{mn} , m, n = 1, 2, ..., be continuous functions on $D = [a, b] \subset \mathbb{R}$. Then $f_{mn} \rightrightarrows f$ on D = [a, b] if and only if

$$\lim_{m,n\to\infty}c_{mn}=0,$$

where $c_{mn} = max_{x \in D} |f_{mn}(x) - f(x)|$.

Proof. Suppose that $f_{mn} \rightrightarrows f$ on D = [a, b]. Since f and f_{mn} are continuous functions on D = [a, b] so

$$|f_{mn} - f|$$

is continuous on D = [a, b], for each $m, n \in \mathbb{N}$. Since $\lim_{m,n\to\infty} f_{mn}(x) = f(x)$ uniformly on D = [a, b] then, for each $\varepsilon > 0$, there is a positive integer $k_0 = k_0(\varepsilon) \in \mathbb{N}$ such that $m, n > k_0$ implies

$$|f_{mn}(x)-f(x)|<\frac{\varepsilon}{2},$$

for all $x \in D$. Thus, when $m, n > k_0$ we have

$$c_{mn} = \max_{x \in D} |f_{mn}(x) - f(x)| \le \frac{\varepsilon}{2} < \varepsilon.$$

This implies

 $\lim_{m,n\to\infty}c_{mn}=0.$

Now, suppose that $\lim_{m,n} c_{mn} = 0$. Then for each $\varepsilon > 0$, there is a positive integer $k_0 = k_0(\varepsilon) \in \mathbb{N}$ such that

$$0 \le c_{mn} = \max_{x \in D} |f_{mn}(x) - f(x)| < \varepsilon,$$

for $m, n > k_0$. This implies that

$$|f_{mn}(x) - f(x)| < \varepsilon$$

for all $x \in D$ and $m, n > k_0$. Hence, we have

$$\lim_{m,n\to\infty}f_{mn}(x)=f(x),$$

for all $x \in D$. \square

Definition 3.2. Let $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence of functions $\{f_{mn}\}$ is said to be I_2 -uniformly convergent to f on a set $S \subset \mathbb{R}$, if for every $\varepsilon > 0$

$$\{(m, n) \in \mathbb{N} \times \mathbb{N} : |f_{mn}(x) - f(x)| \ge \varepsilon\} \in \mathcal{I}_2, \text{ for each } x \in S.$$

This can be written by the formula

$$(\forall \varepsilon > 0) \ (\exists H \in I_2) \ (\forall (m, n) \notin H) \ (\forall x \in S) \ |f_{mn}(x) - f(x)| < \varepsilon.$$

This convergence can be showed by

$$f_{mn} \rightrightarrows_{I_2} f.$$

Theorem 3.3. Let $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal, f and f_{mn} , m, n = 1, 2, ..., be continuous functions on $D = [a, b] \subset \mathbb{R}$. Then $f_{mn} \Rightarrow_{I_2} f$

on D = [a, b] if and only if

$$I_2-\lim_{m,n}c_{mn}=0,$$

where $c_{mn} = max_{x \in D} |f_{mn}(x) - f(x)|$.

Proof. Suppose that $f_{mn} \rightrightarrows_{I_2} f$ on D = [a, b]. Since f and f_{mn} be continuous functions on D = [a, b], so

$$|f_{mn} - f|$$

is continuous on D = [a, b] for each $m, n \in \mathbb{N}$. By \mathcal{I}_2 -uniform convergence for $\varepsilon > 0$

$$\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : |f_{mn}(x) - f(x)| \ge \frac{\varepsilon}{2} \right\} \in \mathcal{I}_2, \text{ for each } x \in D.$$

Hence, for $\varepsilon > 0$ it is clear that

$$c_{mn} = \max_{x \in D} |f_{mn}(x) - f(x)| \ge |f_{mn}(x) - f(x)| \ge \frac{\varepsilon}{2}, \text{ for each } x \in D.$$

Thus, we have

$$\mathcal{I}_2 - \lim_{m,n\to\infty} c_{mn} = 0.$$

Now, suppose that $I_2 - \lim_{m,n} c_{mn} = 0$. Then, for $\varepsilon > 0$

$$A(\varepsilon) = \left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \max_{x \in D} |f_{mn}(x) - f(x)| \ge \varepsilon \right\} \in I_2.$$

Since, for $\varepsilon > 0$

$$\max_{x \in D} |f_{mn}(x) - f(x)| \ge |f_{mn}(x) - f(x)| \ge \varepsilon$$

we have

$$\{(m, n) \in \mathbb{N} \times \mathbb{N} : |f_{mn}(x) - f(x)| \ge \varepsilon\} \subset A(\varepsilon), \text{ for each } x \in D$$

This proves the theorem. \Box

Definition 3.4. Let $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence of functions $\{f_{mn}\}$ is said to be I_2^* -uniformly convergent to f on a set $S \subset \mathbb{R}$, if there exists a set $M \in \mathcal{F}(I_2)$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M \in I_2$) such that for every $\varepsilon > 0$

 $\lim_{\substack{m,n\to\infty\\(m,n)\in M}} f_{mn}(x) = f(x), \text{ for each } x \in S$

and we write

$$f_{mn} \rightrightarrows_{I_2^*} f$$

Theorem 3.5. Let $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal, $\{f_{mn}\}$ be a double sequence of continuous functions and *f* be a function on *S*. If

$$f_{mn} \rightrightarrows_{I_2^*} f$$

then, f is continuous on S.

Proof. Assume $f_{mn} \rightrightarrows_{I_2^*} f$ on S. Then for every $\varepsilon > 0$, there exists a set $M \in \mathcal{F}(I_2)$ (i.e., $H = \mathbb{N} \times \mathbb{N} \setminus M \in I_2$) and $k_0 = k_0(\varepsilon), l_0 = l_0(\varepsilon) \in \mathbb{N}$ such that

$$|f_{mn}(x) - f(x)| < \frac{\varepsilon}{3}, \ (m, n) \in M$$

for each $x \in S$ and for all $m > k_0$, $n > l_0$. Now, let $x_0 \in S$ is arbitrary. Since $\{f_{k_0 l_0}\}$ is continuous at $x_0 \in S$, there is a $\delta > 0$ such that $|x - x_0| < \delta$ implies

$$|f_{k_0 l_0}(x) - f_{k_0 l_0}(x_0)| < \frac{\varepsilon}{3}.$$

Then, for all $x \in S$ for which $|x - x_0| < \delta$, we have

$$\begin{aligned} |f(x) - f(x_0)| &\leq |f(x) - f_{k_0 l_0}(x)| + |f_{k_0 l_0}(x) - f_{k_0 l_0}(x_0)| + |f_{k_0 l_0}(x_0) - f(x_0)| \\ &< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon. \end{aligned}$$

Since $x_0 \in S$ is arbitrary, *f* is continuous on *S*. \Box

Theorem 3.6. Let $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal with the property (AP2), S be a compact subset of \mathbb{R} and $\{f_{mn}\}$ be a double sequence of continuous functions on S. Assume that $\{f_{mn}\}$ be monotonic decreasing on S i.e.,

$$f_{(m+1),(n+1)}(x) \le f_{mn}(x), \ (m, n = 1, 2, ...)$$

for every $x \in S$, f is continuous and

$$\mathcal{I}_2 - \lim_{m,n\to\infty} f_{mn}(x) = f(x)$$

on S. Then

$$f_{mn} \rightrightarrows_{I_2} f$$

on S.

Proof. Let

$$g_{mn} = f_{mn} - f$$

a sequence of functions on *S*. Since $\{f_{mn}\}$ is continuous and monotonic decreasing and *f* is continuous on *S*, then $\{g_{mn}\}$ is continuous and monotonic decreasing on *S*. Since

$$I_2 - \lim_{m,n\to\infty} f_{mn}(x) = f(x),$$

then by (1)

$$\mathcal{I}_2 - \lim_{m \to \infty} g_{mn}(x) = 0$$

on S and since I_2 satisfy the condition (AP2) then we have

$$T_2^* - \lim_{m \to \infty} g_{mn}(x) = 0$$

on *S*. Hence, for every $\varepsilon > 0$ and each $x \in S$ there exists $K_x \in \mathcal{F}(I_2)$ such that

$$0 \leq g_{mn}(x) < \frac{\varepsilon}{2}, \ \left((m,n), \left(m(x) = m(x,\varepsilon), \ n(x) = n(x,\varepsilon)\right) \in K_x\right)$$

(1)

for $m \ge m(x)$ and $n \ge n(x)$. Since $\{g_{mn}\}$ is continuous at $x \in S$, for every $\varepsilon > 0$ there is an open set A(x) which contains x such that

$$|g_{m(x)n(x)}(t) - g_{m(x)n(x)}(x)| < \frac{\varepsilon}{2}$$

for all $t \in A(x)$. Then for $\varepsilon > 0$ by monotonicity, we have

$$0 \le g_{mn}(t) \le g_{m(x)n(x)}(t)$$

= $g_{m(x)n(x)}(t) - g_{m(x)n(x)}(x) + g_{m(x)n(x)}(x)$
 $\le |g_{m(x)n(x)}(t) - g_{m(x)n(x)}(x)| + g_{m(x)n(x)}(x), ((m, n) \in K_x)$

for every $t \in A(x)$ and for all $m \ge m(x)$, $n \ge n(x)$ and for each $x \in S$. Since $S \subset \bigcup_{x \in S} A(x)$ and S is a compact set, by the Heine-Borel theorem S has a finite open covering such that

$$S \subset A(x_1) \cup A(x_2) \cup A(x_3) \cup \ldots \cup A(x_i).$$

Now, let

 $K = K_{x_1} \cap K_{x_2} \cap K_{x_3} \cap \dots \cap K_{x_i}$

and define

$$M = \max\{m(x_1), m(x_2), m(x_3), ..., m(x_i)\},\$$

$$N = \max\{n(x_1), n(x_2), n(x_3), ..., n(x_i)\}.$$

Since for every K_{x_i} belong to $\mathcal{F}(I_2)$, we have $K \in \mathcal{F}(I_2)$. Then, when all $(m, n) \ge (M, N)$

$$0 \leq g_{mn}(t) < \varepsilon, \ (m,n) \in K,$$

for every $t \in A(x)$. So

$$g_{mn} \rightrightarrows_{I_2^*} 0$$

on S. Since I_2 is a strongly admissible ideal,

$$g_{mn} \rightrightarrows_{I_2} 0$$

on S and by (1) we have

$$f_{mn} \rightrightarrows_{I_2} f$$

on S. \Box

Theorem 3.7. Let $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal, (X, d_x) and (Y, d_y) be two metric spaces, $f_{mn} : X \to Y$, $(m, n \in \mathbb{N})$, are equi-continuous and $f : X \to Y$. Assume that

$$f_{mn} \rightarrow_{I_2} f$$

on X. Then, f is continuous on X. Also, if X is compact then we have

$$f_{mn} \rightrightarrows_{I_2} f$$

on X.

Proof. First we will prove that f is continuous on X. Let $x_0 \in X$ and $\varepsilon > 0$. By the equi-continuity of f_{mn} 's, there exists $\delta > 0$ such that

$$d_y(f_{mn}(x), f_{mn}(x_0)) < \frac{c}{3}$$

for every $m, n \in \mathbb{N}$ and $x \in B_{\delta}(x_0)$ ($B_{\delta}(x_0)$ stands for an open ball in X with center x_0 and radius δ). Let $x \in B_{\delta}(x_0)$ be fixed. Since $f_{mn} \to_{I_2} f$, the set

$$\left\{(m,n)\in\mathbb{N}\times\mathbb{N}:d_y(f_{mn}(x_0),f(x_0))\geq\frac{\varepsilon}{3}\right\}\cup\left\{(m,n)\in\mathbb{N}\times\mathbb{N}:d_y(f_{mn}(x),f(x))\geq\frac{\varepsilon}{3}\right\}$$

is in I_2 and is different from $\mathbb{N} \times \mathbb{N}$. Hence, there exists $(m, n) \in \mathbb{N} \times \mathbb{N}$ such that

$$d_y(f_{mn}(x_0), f(x_0)) < \frac{\varepsilon}{3} \text{ and } d_y(f_{mn}(x), f(x)) < \frac{\varepsilon}{3}.$$

Thus, we have

$$d_y(f(x_0), f(x)) \leq d_y(f(x_0), f_{mn}(x_0)) + d_y(f_{mn}(x_0), f_{mn}(x)) + d_y(f_{mn}(x), f(x))$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

so *f* is continuous on *X*.

Now, assume that X is compact. Let $\varepsilon > 0$. Since X is compact, it follows that f is uniformly continuous and f_{mn} 's are equi-uniformly continuous on X. So, pick $\delta > 0$ such that for any $x, x' \in X$ with

$$d_x(x,x') < \delta,$$

then, by equi-uniformly and uniformly continuous we have

 $d_y(f_{mn}(x), f_{mn}(x')) < \frac{\varepsilon}{3} \operatorname{ve} d_y(f(x), f(x')) < \frac{\varepsilon}{3}.$

By the compactness of *X*, we can choose a finite subcover

$$B_{x_1}(\delta), B_{x_2}(\delta), \dots, B_{x_k}(\delta)$$

from the cover $\{B_x(\delta)\}_{x \in X}$ of *X*. Using $f_{mn} \rightarrow_{I_2} f$ pick a set $M \in I_2$ such that

 $d_y(f_{mn}(x_i), f(x_i)) < \frac{\varepsilon}{3}, \ i \in \{1, 2, ..., k\},\$

for all $(m, n) \notin M$. Let $(m, n) \notin M$ and $x \in X$. Thus, $x \in B_{x_i}(\delta)$ for some $i \in \{1, 2, ..., k\}$. Hence, we have

$$d_y(f_{mn}(x), f(x)) \leq d_y(f_{mn}(x), f_{mn}(x_i)) + d_y(f_{mn}(x_i), f(x_i)) + d_y(f(x_i), f(x))$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon,$$

and so

$$f_{mn} \rightrightarrows_{I_2} f$$

on X. \Box

Definition 3.8. Let $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal and $\{f_{mn}\}$ be a double sequence of functions on $S \subset \mathbb{R}$. $\{f_{mn}\}$ is said to be I_2 -uniformly Cauchy if for every $\varepsilon > 0$ there exist $s = s(\varepsilon)$, $t = t(\varepsilon) \in \mathbb{N}$ such that

$$\{(m,n) \in \mathbb{N} \times \mathbb{N} : |f_{mn}(x) - f_{st}(x)| \ge \varepsilon\} \in I_2, \text{ for each } x \in S.$$

$$\tag{2}$$

Now, we give I_2 -Cauchy criteria for I_2 -uniform convergence.

Theorem 3.9. Let $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal with the property (AP2) and let $\{f_{mn}\}$ be a sequence of bounded functions on $S \subset \mathbb{R}$. Then $\{f_{mn}\}$ is I_2 -uniformly convergent if and only if it is I_2 -uniformly Cauchy on S.

1280

Proof. Necessity of Theorem is similar to that of Lemma 2.3.

Conversely, assume that $\{f_{mn}\}$ is I_2 -uniformly Cauchy on S. Let $x \in S$ be fixed. By (2), for every $\varepsilon > 0$ there exist $s = s(\varepsilon)$ and $t = t(\varepsilon) \in \mathbb{N}$ such that

 $\{(m,n)\in\mathbb{N}\times\mathbb{N}:|f_{mn}(x)-f_{st}(x)|<\varepsilon\}\notin I_2.$

Hence, $\{f_{mn}\}$ is I_2 -Cauchy, so by Lemma 2.3 we have that $\{f_{mn}\}$ is I_2 -convergent to f(x). Then, I_2 – $\lim_{m,n\to\infty} f_{mn}(x) = f(x)$ on *S*. Note that since I_2 satisfy the property (AP2), by (2) there is a $M \notin I_2$ such that

$$|f_{mn}(x) - f_{st}(x)| < \varepsilon, \ \left((m, n), (s, t) \in M\right) \tag{3}$$

for all $m, n, s, t \ge N$ and $N = N(\varepsilon) \in \mathbb{N}$ and for each $x \in S$. By (3), for $s, t \to \infty$ we have

 $|f_{mn}(x) - f(x)| < \varepsilon, \ ((m, n) \in M),$

for all m, n > N and for each $x \in S$. This shows that

$$f_{mn} \rightrightarrows_{I_2^*} f$$

on *S*. Since $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ is a strongly admissible ideal we have

$$f_{mn} \rightrightarrows_{I}, f.$$

References

- [1] B. Altay, F. Başar, Some new spaces of double sequences, J. Math. Anal. Appl. 309 (1)(2005) 70-90.
- [2] V. Baláz, J. Červeňanský, P. Kostyrko, T. Šalát, I-convergence and I-continuity of real functions, Acta Mathematica, Faculty of Natural Sciences, Constantine the Philosopher University, Nitra, 5 (2004) 43-50.
- [3] M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328 (2007) 715-729.
- [4] C. Çakan, B. Altay, Statistically boundedness and statistical core of double sequences, J. Math. Anal. Appl. 317 (2006) 690-697.
- [5] P. Das, P. Kostyrko, W. Wilczyński, P. Malik, I and I*-convergence of double sequences, Math. Slovaca, 58 (2008), No. 5, 605–620. [6] P. Das, P. Malik, On extremal *I*-limit points of double sequences, Tatra Mt. Math. Publ. 40 (2008) 91–102.
- [7] K. Demirci, I-limit superior and limit inferior, Math. Commun. 6 (2001) 165–172.
- [8] E. Dündar, B. Altay, On some properties of I2-convergence and I2-Cauchy of double sequences, Gen. Math. Notes, 7 (1)(2011) 1 - 12.
- [9] E. Dündar, B. Altay, I2-convergence of double sequences of functions, Electronic Journal of Mathematical Analysis and Applications, Vol. 3(1) Jan. 2015, pp. 111-121.
- [10] E. Dündar, B. Altay, I₂-convergence and I₂-Cauchy of double sequences, Acta Math. Sci. Ser. B Engl. Ed, 34B (2)(2014) 343–353. [11] H. Fast, Sur la convergenc statistique, Colloq. Math. 2 (1951) 241-244.
- [12] J. A. Fridy, C. Orhan, Statistical limit superior and inferior, Proc. Amer. Math. Soc. 125 (1997) 3625–3631.
- [13] J. A. Fridy, On statistical convergence, Analysis, 5 (1985) 301–313.
- [14] J. A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (1993) 1187–1192.
- [15] F. Gezer, S. Karakuş, I and I^* convergent function sequences, Math. Commun. 10 (2005) 71–80.
- [16] A. Gökhan, M. Güngör and M. Et, Statistical convergence of double sequences of real-valued functions, Int. Math. Forum, 2 (8)(2007) 365-374.
- [17] M. Gürdal, A. Şahiner, Extremal I₂-limit points of double sequences, Appl. Math. E-Notes, 2 (2008) 131–137.
- [18] P. Kostyrko, T. Salat and W. Wilczyński, I-convergence, Real Anal. Exchange, 26 (2)(2000) 669-686.
- [19] P. Kostyrko, M. Macaj, T. Salat and M. Sleziak, *I*-convergence and extremal *I*-limit points, Math. Slovaca, 55 (2005) 443–464.
- [20] V. Kumar, On I and I*-convergence of double sequences, Math. Commun. 12 (2007) 171-181.
- [21] M. Mursaleen, O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003) 223-231.
- [22] A. Nabiev, S. Pehlivan and M. Gürdal, On I-Cauchy sequence, Taiwanese J. Math. 11 (2)(2007) 569–576.
- [23] F. Nuray, W. H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000) 513–527.
- [24] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900) 289–321.
- [25] D. Rath, B. C. Tripaty, On statistically convergence and statistically Cauchy sequences, Indian J. Pure Appl. Math. 25 (4)(1994) 381-386.
- [26] T. Šalát, B. C. Tripathy and M. Ziman, On I-convergence field, Ital. J. Pure Appl. Math. 17 (2005) 45-54.
- [27] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980) 139–150.
- [28] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959) 361–375.
- [29] B. Tripathy, B. C. Tripathy, On *I*-convergent double sequences, Soochow J. Math. 31 (2005) 549–560.