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Erdinç Dündara, Bilal Altayb
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Abstract. In this work, we discuss various kinds of I2-uniform convergence for double sequences of
functions and introduce the concepts of I2 and I∗2-uniform convergence, I2-uniformly Cauchy sequences
for double sequences of functions. Then, we show the relation between them.

1. Background and Introduction

The concept of convergence of a sequence of real numbers has been extended to statistical convergence
independently by Fast [11] and Schoenberg [28]. This concept was extended to the double sequences by
Mursaleen and Edely [21]. A lot of development have been made in this area after the works of Šalát
[27] and Fridy [13, 14]. Furthermore, Gökhan et al. [16] introduced the notion of pointwise and uniform
statistical convergent of double sequences of real-valued functions. In general, statistically convergent
sequences satisfy many of the properties of ordinary convergent sequences in metric spaces [11, 13, 14, 25].
Çakan and Altay [4] presented multidimensional analogues of the results presented by Fridy and Orhan
[12].

Throughout the paperN denotes the set of all positive integers and R the set of all real numbers. The
idea of I-convergence was introduced by Kostyrko et al. [18] as a generalization of statistical convergence
which is based on the structure of the ideal I of subset of the set of natural numbers. Nuray and Ruckle
[23] indepedently introduced the same with another name generalized statistical convergence. Das et
al. [5] introduced the concept of I-convergence of double sequences in a metric space and studied some
properties of this convergence. Balcerzak et al. [3] discussed various kinds of statistical convergence
and I-convergence for sequences of functions with values in R or in a metric space. Gezer and Karakuş
[15] investigated I-pointwise and I-uniform convergence and I∗-pointwise and I∗-uniform convergence
of function sequences and examined the relation between them. Dündar and Altay [8] investigated the
relation between I2-convergence and I∗2-convergence of double sequences of functions defined between
linear metric spaces. Some results on I-convergence may be found in [2, 6, 19, 20, 22, 29].

In this work, we discuss various kinds of uniformly ideal convergence for double sequences of functions
with values in R or in a metric space. We introduce the concepts of I2, I∗2-uniform convergence, I2-
uniformly Cauchy sequences for double sequences of functions and show the relation between them.
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2. Definitions and Notations

Now, we recall that the definitions of concepts of ideal convergence, ideal Cauchy sequences and basic
concepts. (See [1, 5, 9, 11, 16, 18, 21, 24, 26]).

A double sequence x = (xmn)m,n∈N of real numbers is said to be convergent to L ∈ R if for any ε > 0 ,
there exists Nε ∈N such that

|xmn − L| < ε,

whenever m,n > Nε. In this case we write

lim
m,n→∞

xmn = L.

A double sequence x = (xmn)m,n∈N of real numbers is said to be bounded if there exists a positive real
number M such that |xmn| < M, for all m,n ∈N. That is

‖x‖∞ = sup
m,n
|xmn| < ∞.

Let K ⊂ N ×N. Let Kmn be the number of ( j, k) ∈ K such that j ≤ m, k ≤ n. If the sequence
{

Kmn
m.n

}
has a

limit in Pringsheim’s sense then we say that K has double natural density and is denoted by

d2(K) = lim
m,n→∞

Kmn

m.n
.

A double sequence x = (xmn)m,n∈N of real numbers is said to be statistically convergent to L ∈ R, if for
any ε > 0 we have d2(A(ε)) = 0, where A(ε) = {(m,n) ∈N ×N : |xmn − L| ≥ ε}.

A double sequence of functions { fmn} is said to be pointwise convergent to f on a set S ⊂ R, if for each
point x ∈ S and for each ε > 0, there exists a positive integer N = N(x, ε) such that

| fmn(x) − f (x)| < ε,

for all m,n > N. In this case we write

lim
m,n→∞

fmn(x) = f (x) or fmn → f

on S.
A double sequence of functions { fmn} is said to be uniformly convergent to f on a set S ⊂ R, if for each

ε > 0, there exists a positive integer N = N(ε) such that m,n > N implies

| fmn(x) − f (x)| < ε, for all x ∈ S.

In this case we write
fmn ⇒ f

on S.
A double sequence of functions { fmn} is said to be pointwise statistically convergent to f on a set S ⊂ R,

if for every ε > 0,

lim
m,n→∞

1
mn

∣∣∣{(i, j), i ≤ m and j ≤ n : | fi j(x) − f (x)| ≥ ε}
∣∣∣ = 0,

for each (fixed) x ∈ S, i.e., for each (fixed) x ∈ S,

| fi j(x) − f (x)| < ε, a.a. (i, j).

In this case we write
st − lim

m,n→∞
fmn(x) = f (x) or fmn →st f
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on S.
A double sequence of functions { fmn} is said to be uniformly statistically convergent to f on a set S ⊂ R,

if for every ε > 0,

lim
m,n→∞

1
mn

∣∣∣{(i, j), i ≤ m and j ≤ n : | fi j(x) − f (x)| ≥ ε}
∣∣∣ = 0, for all x ∈ S

i.e., for all x ∈ S,
| fi j(x) − f (x)| < ε, a.a. (i, j).

In this case we write
st − lim

m,n→∞
fmn(x) = f (x) uniformly on S or fmn ⇒st f

on S.
Let X , ∅. A class I of subsets of X is said to be an ideal in X provided:
i) ∅ ∈ I, ii) A,B ∈ I implies A ∪ B ∈ I, iii) A ∈ I, B ⊂ A implies B ∈ I.
I is called a nontrivial ideal if X < I.
Let X , ∅. A non empty class F of subsets of X is said to be a filter in X provided:
i) ∅ < F , ii) A,B ∈ F implies A ∩ B ∈ F , iii) A ∈ F , A ⊂ B implies B ∈ F .

Lemma 2.1. [18] If I is a nontrivial ideal in X, X , ∅, then the class

F (I) = {M ⊂ X : (∃A ∈ I)(M = X\A)}

is a filter on X, called the filter associated with I.

A nontrivial ideal I in X is called admissible if {x} ∈ I for each x ∈ X.
Throughout the paper we take I2 as a nontrivial admissible ideal inN ×N.
A nontrivial ideal I2 ofN ×N is called strongly admissible if {i} ×N andN × {i} belong to I2 for each

i ∈ N.
It is evident that a strongly admissible ideal is admissible also.
Let I0

2 = {A ⊂N×N :
(
∃m(A) ∈N

)(
i, j ≥ m(A)⇒ (i, j) < A

)
}. Then I0

2 is a nontrivial strongly admissible
ideal and clearly I2 is strongly admissible if and only if I0

2 ⊂ I2.
Let (X, ρ) be a linear metric space and I2 ⊂ 2N×N be a strongly admissible ideal. A double sequence

x = (xmn) of elements of X is said to be I2-convergent to L ∈ X, if for any ε > 0 we have

A(ε) = {(m,n) ∈N ×N : ρ(xmn,L) ≥ ε} ∈ I2.

In this case we say that x is I2-convergent to L ∈ X and we write

I2 − lim
m,n→∞

xmn = L.

If I2 is a strongly admissible ideal onN ×N, then usual convergence implies I2-convergence.
Let (X, ρ) be a linear metric space and I2 ⊂ 2N×N be a strongly admissible ideal. A double sequence

x = (xmn) of elements of X is said to be I∗2-convergent to L ∈ X, if and only if there exists a set M ∈ F (I2)
(i.e.,N ×N\M ∈ I2) such that

lim
m,n→∞

xmn = L,

for (m,n) ∈M and we write

I
∗

2 − lim
m,n→∞

xmn = L.

Let (X, ρ) be a linear metric space andI2 ⊂ 2N×N be a strongly admissible ideal. A double sequence x = (xmn)
of elements of X is said to be I2-Cauchy if for every ε > 0, there exist s = s(ε), t = t(ε) ∈N such that

A(ε) = {(m,n) ∈N ×N : ρ(xmn, xst) ≥ ε} ∈ I2.
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We say that an admissible ideal I2 ⊂ 2N×N satisfies the property (AP2) if for every countable family of
mutually disjoint sets {A1,A2, ...} belonging to I2, there exists a countable family of sets {B1,B2, ...} such that
A j∆B j ∈ I

0
2, i.e., A j∆B j is included in the finite union of rows and columns in N ×N for each j ∈ N and

B =
⋃
∞

j=1 B j ∈ I2 (hence B j ∈ I2 for each j ∈N).
Now we begin with quoting the lemmas due to Dündar and Altay [8, 9] which are needed throughout

the paper.

Lemma 2.2. [9] Let I2 ⊂ 2N×N be a strongly admissible ideal, { fmn} is a double sequence of functions and f is a
function on S ⊂ R. Then

I
∗

2 − lim
m,n→∞

fmn(x) = f (x) implies I2 − lim
m,n→∞

fmn(x) = f (x), (pointwise)

for each x ∈ S.

Lemma 2.3. [9] Let I2 ⊂ 2N×N be a strongly admissible ideal. { fmn} is a double sequence of functions is pointwise
I2-convergent to f on S ⊂ R if and only if it is pointwise I2-Cauchy sequences.

Lemma 2.4. [8] Let I2 ⊂ 2N×N be a strongly admissible ideal having the property (AP2), (X, dx) and (Y, dy) two
linear metric spaces, fmn : X→ Y a double sequence of functions and f : X→ Y. If { fmn} double sequence of functions
is I2-convergent then it is I∗2-convergent.

3. Main Results

First we prove the following theorem with an another way that it is given in [16].

Theorem 3.1. Let f and fmn, m,n = 1, 2, ..., be continuous functions on D = [a, b] ⊂ R. Then fmn ⇒ f on D = [a, b]
if and only if

lim
m,n→∞

cmn = 0,

where cmn = maxx∈D | fmn(x) − f (x)|.

Proof. Suppose that fmn ⇒ f on D = [a, b]. Since f and fmn are continuous functions on D = [a, b] so

| fmn − f |

is continuous on D = [a, b], for each m,n ∈N. Since limm,n→∞ fmn(x) = f (x) uniformly on D = [a, b] then, for
each ε > 0, there is a positive integer k0 = k0(ε) ∈N such that m,n > k0 implies

| fmn(x) − f (x)| <
ε
2
,

for all x ∈ D. Thus, when m,n > k0 we have

cmn = max
x∈D
| fmn(x) − f (x)| ≤

ε
2
< ε.

This implies

lim
m,n→∞

cmn = 0.

Now, suppose that limm,n cmn = 0. Then for each ε > 0, there is a positive integer k0 = k0(ε) ∈N such that

0 ≤ cmn = max
x∈D
| fmn(x) − f (x)| < ε,

for m,n > k0. This implies that
| fmn(x) − f (x)| < ε,

for all x ∈ D and m,n > k0. Hence, we have

lim
m,n→∞

fmn(x) = f (x),

for all x ∈ D.
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Definition 3.2. Let I2 ⊂ 2N×N be a strongly admissible ideal. A double sequence of functions { fmn} is said to be
I2-uniformly convergent to f on a set S ⊂ R, if for every ε > 0

{(m,n) ∈N ×N : | fmn(x) − f (x)| ≥ ε} ∈ I2, for each x ∈ S.

This can be written by the formula

(∀ε > 0) (∃H ∈ I2) (∀(m,n) < H) (∀x ∈ S) | fmn(x) − f (x)| < ε.

This convergence can be showed by

fmn ⇒I2 f .

Theorem 3.3. Let I2 ⊂ 2N×N be a strongly admissible ideal, f and fmn , m,n = 1, 2, ..., be continuous functions on
D = [a, b] ⊂ R. Then

fmn ⇒I2 f

on D = [a, b] if and only if
I2 − lim

m,n
cmn = 0,

where cmn = maxx∈D | fmn(x) − f (x)|.

Proof. Suppose that fmn ⇒I2 f on D = [a, b]. Since f and fmn be continuous functions on D = [a, b], so

| fmn − f |

is continuous on D = [a, b] for each m,n ∈N. By I2-uniform convergence for ε > 0{
(m,n) ∈N ×N : | fmn(x) − f (x)| ≥

ε
2

}
∈ I2, for each x ∈ D.

Hence, for ε > 0 it is clear that

cmn = max
x∈D
| fmn(x) − f (x)| ≥ | fmn(x) − f (x)| ≥

ε
2
, for each x ∈ D.

Thus, we have

I2 − lim
m,n→∞

cmn = 0.

Now, suppose that I2 − limm,n cmn = 0. Then, for ε > 0

A(ε) =
{
(m,n) ∈N ×N : max

x∈D
| fmn(x) − f (x)| ≥ ε

}
∈ I2.

Since, for ε > 0
max
x∈D
| fmn(x) − f (x)| ≥ | fmn(x) − f (x)| ≥ ε

we have {
(m,n) ∈N ×N : | fmn(x) − f (x)| ≥ ε

}
⊂ A(ε), for each x ∈ D.

This proves the theorem.

Definition 3.4. Let I2 ⊂ 2N×N be a strongly admissible ideal. A double sequence of functions { fmn} is said to be
I
∗

2-uniformly convergent to f on a set S ⊂ R, if there exists a set M ∈ F (I2) (i.e., N ×N\M ∈ I2) such that for
every ε > 0

lim
m,n→∞
(m,n)∈M

fmn(x) = f (x), for each x ∈ S

and we write

fmn ⇒I∗2 f .
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Theorem 3.5. Let I2 ⊂ 2N×N be a strongly admissible ideal, { fmn} be a double sequence of continuous functions and
f be a function on S. If

fmn ⇒I∗2 f

then, f is continuous on S.

Proof. Assume fmn ⇒I∗2 f on S. Then for every ε > 0, there exists a set M ∈ F (I2) (i.e., H =N ×N\M ∈ I2)
and k0 = k0(ε), l0 = l0(ε) ∈N such that

| fmn(x) − f (x)| <
ε
3
, (m,n) ∈M

for each x ∈ S and for all m > k0, n > l0. Now, let x0 ∈ S is arbitrary. Since { fk0l0 } is continuous at x0 ∈ S, there
is a δ > 0 such that |x − x0| < δ implies

| fk0l0 (x) − fk0l0 (x0)| <
ε
3
.

Then, for all x ∈ S for which |x − x0| < δ, we have

| f (x) − f (x0)| ≤ | f (x) − fk0l0 (x)| + | fk0l0 (x) − fk0l0 (x0)| + | fk0l0 (x0) − f (x0)|

<
ε
3

+
ε
3

+
ε
3

= ε.

Since x0 ∈ S is arbitrary, f is continuous on S.

Theorem 3.6. Let I2 ⊂ 2N×N be a strongly admissible ideal with the property (AP2), S be a compact subset of R
and { fmn} be a double sequence of continuous functions on S. Assume that { fmn} be monotonic decreasing on S i.e.,

f(m+1),(n+1)(x) ≤ fmn(x), (m,n = 1, 2, ...)

for every x ∈ S, f is continuous and
I2 − lim

m,n→∞
fmn(x) = f (x)

on S. Then

fmn ⇒I2 f

on S.

Proof. Let

1mn = fmn − f (1)

a sequence of functions on S. Since { fmn} is continuous and monotonic decreasing and f is continuous on S,
then {1mn} is continuous and monotonic decreasing on S. Since

I2 − lim
m,n→∞

fmn(x) = f (x),

then by (1)

I2 − lim
m,n→∞

1mn(x) = 0

on S and since I2 satisfy the condition (AP2) then we have

I
∗

2 − lim
m,n→∞

1mn(x) = 0

on S. Hence, for every ε > 0 and each x ∈ S there exists Kx ∈ F (I2) such that

0 ≤ 1mn(x) <
ε
2
,

(
(m,n),

(
m(x) = m(x, ε), n(x) = n(x, ε)

)
∈ Kx

)
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for m ≥ m(x) and n ≥ n(x). Since {1mn} is continuous at x ∈ S, for every ε > 0 there is an open set A(x) which
contains x such that

|1m(x)n(x)(t) − 1m(x)n(x)(x)| <
ε
2
,

for all t ∈ A(x). Then for ε > 0 by monotonicity, we have

0 ≤ 1mn(t) ≤ 1m(x)n(x)(t)
= 1m(x)n(x)(t) − 1m(x)n(x)(x) + 1m(x)n(x)(x)
≤ |1m(x)n(x)(t) − 1m(x)n(x)(x)| + 1m(x)n(x)(x), ((m,n) ∈ Kx)

for every t ∈ A(x) and for all m ≥ m(x), n ≥ n(x) and for each x ∈ S. Since S ⊂
⋃

x∈S A(x) and S is a compact
set, by the Heine-Borel theorem S has a finite open covering such that

S ⊂ A(x1) ∪ A(x2) ∪ A(x3) ∪ ... ∪ A(xi).

Now, let

K = Kx1 ∩ Kx2 ∩ Kx3 ∩ ... ∩ Kxi

and define

M = maks
{
m(x1),m(x2),m(x3), ...,m(xi)

}
,

N = maks
{
n(x1),n(x2),n(x3), ...,n(xi)

}
.

Since for every Kxi belong to F (I2), we have K ∈ F (I2). Then, when all (m,n) ≥ (M,N)

0 ≤ 1mn(t) < ε, (m,n) ∈ K,

for every t ∈ A(x). So
1mn ⇒I∗2 0

on S. Since I2 is a strongly admissible ideal,

1mn ⇒I2 0

on S and by (1) we have

fmn ⇒I2 f

on S.

Theorem 3.7. Let I2 ⊂ 2N×N be a strongly admissible ideal, (X, dx) and (Y, dy) be two metric spaces, fmn : X→ Y,
(m,n ∈N), are equi-continuous and f : X→ Y. Assume that

fmn →I2 f

on X. Then, f is continuous on X. Also, if X is compact then we have

fmn ⇒I2 f

on X.
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Proof. First we will prove that f is continuous on X. Let x0 ∈ X and ε > 0. By the equi-continuity of fmn’s,
there exists δ > 0 such that

dy

(
fmn(x), fmn(x0)

)
<
ε
3
,

for every m,n ∈ N and x ∈ Bδ(x0) (Bδ(x0) stands for an open ball in X with center x0 and radius δ). Let
x ∈ Bδ(x0) be fixed. Since fmn →I2 f , the set{

(m,n) ∈N ×N : dy( fmn(x0), f (x0)) ≥
ε
3

}
∪

{
(m,n) ∈N ×N : dy( fmn(x), f (x)) ≥

ε
3

}
is in I2 and is different fromN ×N. Hence, there exists (m,n) ∈N ×N such that

dy

(
fmn(x0), f (x0)

)
<
ε
3

and dy

(
fmn(x), f (x)

)
<
ε
3
.

Thus, we have

dy

(
f (x0), f (x)

)
≤ dy

(
f (x0), fmn(x0)

)
+ dy

(
fmn(x0), fmn(x)

)
+ dy

(
fmn(x), f (x)

)
<

ε
3

+
ε
3

+
ε
3

= ε

so f is continuous on X.
Now, assume that X is compact. Let ε > 0. Since X is compact, it follows that f is uniformly continuous

and fmn’s are equi-uniformly continuous on X. So, pick δ > 0 such that for any x, x′ ∈ X with

dx(x, x′) < δ,

then, by equi-uniformly and uniformly continuous we have

dy

(
fmn(x), fmn(x′)

)
<
ε
3

ve dy

(
f (x), f (x′)

)
<
ε
3
.

By the compactness of X, we can choose a finite subcover

Bx1 (δ),Bx2 (δ), ...,Bxk (δ)

from the cover {Bx(δ)}x∈X of X. Using fmn →I2 f pick a set M ∈ I2 such that

dy

(
fmn(xi), f (xi)

)
<
ε
3
, i ∈ {1, 2, ..., k},

for all (m,n) <M. Let (m,n) <M and x ∈ X. Thus, x ∈ Bxi (δ) for some i ∈ {1, 2, ..., k}. Hence, we have

dy

(
fmn(x), f (x)

)
≤ dy

(
fmn(x), fmn(xi)

)
+ dy

(
fmn(xi), f (xi)

)
+ dy

(
f (xi), f (x)

)
<

ε
3

+
ε
3

+
ε
3

= ε,

and so
fmn ⇒I2 f

on X.

Definition 3.8. Let I2 ⊂ 2N×N be a strongly admissible ideal and { fmn} be a double sequence of functions on S ⊂ R.
{ fmn} is said to be I2-uniformly Cauchy if for every ε > 0 there exist s = s(ε), t = t(ε) ∈N such that

{(m,n) ∈N ×N : | fmn(x) − fst(x)| ≥ ε} ∈ I2, for each x ∈ S. (2)

Now, we give I2-Cauchy criteria for I2-uniform convergence.

Theorem 3.9. Let I2 ⊂ 2N×N be a strongly admissible ideal with the property (AP2) and let { fmn} be a sequence of
bounded functions on S ⊂ R. Then { fmn} is I2-uniformly convergent if and only if it is I2-uniformly Cauchy on S.
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Proof. Necessity of Theorem is similar to that of Lemma 2.3.
Conversely, assume that { fmn} is I2-uniformly Cauchy on S. Let x ∈ S be fixed. By (2), for every ε > 0

there exist s = s(ε) and t = t(ε) ∈N such that{
(m,n) ∈N ×N : | fmn(x) − fst(x)| < ε

}
< I2.

Hence, { fmn} is I2-Cauchy, so by Lemma 2.3 we have that { fmn} is I2-convergent to f (x). Then, I2 −

limm,n→∞ fmn(x) = f (x) on S. Note that since I2 satisfy the property (AP2), by (2) there is a M < I2 such that

| fmn(x) − fst(x)| < ε,
(
(m,n), (s, t) ∈M

)
(3)

for all m,n, s, t ≥ N and N = N(ε) ∈N and for each x ∈ S. By (3), for s, t→∞we have

| fmn(x) − f (x)| < ε,
(
(m,n) ∈M

)
,

for all m,n > N and for each x ∈ S. This shows that

fmn ⇒I∗2 f

on S. Since I2 ⊂ 2N×N is a strongly admissible ideal we have

fmn ⇒I2 f .
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