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Abstract. We consider a discrete Sturm–Liouville problem with Dirichlet boundary conditions. We show
that the specification of the eigenvalues and weight numbers uniquely determines the potential. Moreover,
we also show that if the potential is symmetric, then it is uniquely determined by the specification of the
eigenvalues. These are discrete versions of well-known results for corresponding differential equations.

1. Introduction

Consider the eigenvalue problem consisting of the Sturm–Liouville differential equation

−y′′(x) + q(x)y(x) = λy(x), x ∈ R (1)

and Dirichlet boundary conditions

y(0) = y(1) = 0, (2)

where the square integrable function q : R → R is referred to as the potential. In the theory of inverse
problems, it is assumed that certain spectral data are known, and the problem is to find the potential. This
theory is well developed in the continuous case, and we refer to [3, 4, 6, 8, 10–12] for further reading. It is
well known [9, Chapter 0] that the problem (1)–(2) has infinitely many simple real eigenvalues λ1 < λ2 < . . .
with corresponding orthogonal eigenfunctions. Defining the weight numbers by the integral over [0, 1] of
the square of normalized eigenfunctions, we have the following well-known result.

Theorem 1.1 (See [4, Theorem 1.4.2]). If two eigenvalue problems of the form (1)–(2) have the same eigenvalues
and the same weight numbers, then their potentials are the same almost everywhere on [0, 1].

Moreover, if the spectrum is symmetric, i.e., q(x) = q(1 − x) for all x ∈ [0, 1], then we have the following
improvement of Theorem 1.1.

Theorem 1.2 (See [4, Theorem 1.4.3]). If two eigenvalue problems of the form (1)–(2) have symmetric potentials
and the same eigenvalues, then their potentials are the same almost everywhere on [0, 1].
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In this paper, we let N ∈ N and consider the discrete eigenvalue problem consisting of the Sturm–
Liouville difference equation

−∆2yk + qkyk+1 = λyk+1, k ∈ Z (3)

and Dirichlet boundary conditions

y0 = yN+1 = 0, (4)

where the sequence q = {qk}k∈Z is referred to as the potential. As usual, ∆ is the forward difference operator
(see, e.g., [1, 7]) defined by

∆yk = yk+1 − yk so that ∆2yk = yk+2 − 2yk+1 + yk.

It is well known [2, Section 4.5] that the problem (3)–(4) has N simple real eigenvalues λ1 < λ2 < . . . < λN
with corresponding orthogonal eigenfunctions. Defining the weight numbers as the sum over [0,N]∩Z of
the squares of normalized eigenfunctions, we will prove the following analogue of Theorem 1.1.

Theorem 1.3. If two eigenvalue problems of the form (3)–(4) have the same eigenvalues and the same weight numbers,
then their potentials are exactly the same on [0,N − 1] ∩Z.

Moreover, if the spectrum is symmetric, i.e., qk = qN−1−k for all k ∈ [0,N − 1] ∩ Z, then we have the
following improvement of Theorem 1.3.

Theorem 1.4. If two eigenvalue problems of the form (3)–(4) have symmetric potentials and the same eigenvalues,
then their potentials are exactly the same on [0,N − 1] ∩Z.

The set up of this paper is summarized as follows. Section 2 contains some preliminary results about
the discrete eigenvalue problem (3)–(4) and the proof of the uniqueness result, Theorem 1.3. We also refer
to [13] for the more general case of Jacobi operators. We note that our proof, unlike the proof of the
corresponding continuous result, Theorem 1.1, follows neither the methods of Marčenkov [12] (who uses
Parseval’s equality) nor Levinson [10] (who uses the contour integral method) but is based on a matrix
method that is taylored specifically to the discrete case. In Section 3, we discuss the case of symmetric
potentials and prove Theorem 1.4. We provide a simple proof based on Theorem 1.3. Theorem 1.4 is not
new, it has been proved directly with different methods in [5, Theorem 1]. In Section 4, we present an
example. Finally, we offer some remarks and directions for future research in Section 5.

2. The Uniqueness Result

We introduce the notation used in this article. Let ϕ(λ) and ψ(λ) be the (clearly unique) solutions of (3)
satisfying

ϕ0(λ) = 0, ∆ϕ0(λ) = 1 and ψN+1(λ) = 0, ∆ψN+1(λ) = 1

and define the characteristic function Ω : R→ R by

Ω(λ) := ψk(λ)∆ϕk(λ) − ϕk(λ)∆ψk(λ) = −ϕN+1(λ) = ψ0(λ)

(and we note that this expression does not depend on k ∈ Z as its forward difference can easily be seen,
using the discrete product rule, to be equal to zero). It is clear that the zeros of the characteristic functions
are the eigenvalues of the problem (3)–(4), and it can easily be seen from (3) that Ω is a polynomial of degree
N with leading coefficient (−1)N−1 so that Ω can be written as

Ω(λ) = (−1)N−1
N∏

j=1

(λ − λ j), (5)
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where λ1 < λ2 < . . . < λN are the (real and simple) zeros of Ω and hence the eigenvalues of (3)–(4).
We now consider the equation (3) with qk ≡ 0, i.e.,

−∆2yk = λyk+1, k ∈ Z, (6)

and denote by S(λ) the (again unique) solution of (6) satisfying the initial conditions S0(λ) = 0 and ∆S0(λ) = 1.
We show the following crucial auxiliary result.

Lemma 2.1. Define a function K :N2
0 → R by

K(i, j) := 0 for all 0 ≤ j < i,
K(i, i) := 1 for all i ∈N0,

K(i, 0) := 0 for all i ∈N,

and for i ∈N, 1 ≤ j ≤ i, recursively by

K(i + 1, j) := K(i, j − 1) + K(i, j + 1) + qi−1K(i, j) − K(i − 1, j). (7)

Then

ϕi(λ) =

i∑
k=0

K(i, k)Sk(λ) (8)

for all λ ∈ R and all i ∈N0.

Proof. We prove (8) by induction. First, note that

ϕ0(λ) = 0 = K(0, 0)S0(λ)

and
ϕ1(λ) = 1 = K(1, 0)S0(λ) + K(1, 1)S1(λ)

show that (8) holds for i = 0 and i = 1. Now we assume that (8) holds for all i ∈ [0,m]∩Zwith some m ∈N.
Then

ϕm+1(λ) = (2 − λ + qm−1)ϕm(λ) − ϕm−1(λ)

= (2 − λ + qm−1)
m∑

k=0

K(m, k)Sk(λ) −
m−1∑
k=0

K(m − 1, k)Sk(λ)

=

m∑
k=1

K(m, k)(2 − λ)Sk(λ) +

m∑
k=1

qm−1K(m, k)Sk(λ) −
m−1∑
k=1

K(m − 1, k)Sk(λ)

=

m∑
k=1

K(m, k)(Sk+1(λ) + Sk−1(λ)) +

m∑
k=1

qm−1K(m, k)Sk(λ) −
m−1∑
k=1

K(m − 1, k)Sk(λ)

=

m+1∑
k=2

K(m, k − 1)Sk(λ) +

m−1∑
k=0

K(m, k + 1)Sk(λ) +

m∑
k=1

qm−1K(m, k)Sk(λ) −
m−1∑
k=1

K(m − 1, k)Sk(λ)

=

m+1∑
k=1

K(m, k − 1)Sk(λ) +

m∑
k=1

K(m, k + 1)Sk(λ) +

m∑
k=1

qm−1K(m, k)Sk(λ) −
m∑

k=1

K(m − 1, k)Sk(λ)

=

m+1∑
k=0

K(m + 1, k)Sk(λ).

Thus (8) holds for i = m + 1. This completes the proof.
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Corollary 2.2. Define the N×N-matrices Φ and S by defining its entry in the ith row and jth column, 1 ≤ i, j ≤ N,
by

Φi j = ϕi(λ j) and Si j = Si(λ j).

Then there exists a lower triangular matrixK with entries 1 on the diagonal and independent of λ such that

Φ = KS.

Proof. By Lemma 2.1, we have

ϕi(λ j) =

i∑
k=1

K(i, k)Sk(λ j) and K(i, i) = 1

for all i, j ∈ {1, . . . ,N}. Hence, by definingK by defining its entry in the ith row and jth column, 1 ≤ i, j ≤ N,
by

Ki j = K(i, j),

we arrive at Φ = KS.

Remark 2.3. Let us define the weight numbers

α j :=
N∑

i=1

(ϕi(λ j))2 for j ∈ {1, . . . ,N}. (9)

Note that ΦTΦ is a diagonal matrix with diagonal entries α j.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Together with (3)–(4), we consider the same problem with q replaced by q̃. The eigen-
values, weight numbers etc. of that eigenvalue problem are denoted by λ̃, α̃ j and so on. By Corollary 2.2,
we have

Φ = KS and Φ̃ = K̃S. (10)

From the assumption, we have

S
T
K

T
KS = ΦTΦ = Φ̃TΦ̃ = ST

K̃
T
K̃S. (11)

Due to Remark 2.3, each occurring matrix in (11) is invertible. Thus we may multiply (11) from the left with
(ST)−1 and from the right with S−1 to arrive at

K
T
K = K̃T

K̃ . (12)

By Corollary 2.2, both K and K̃ are lower triangular matrices with 1 on the diagonal, and hence it is easy
to show that (12) implies

K = K̃ . (13)

Using (13) in (10), we find Φ = KS = K̃S = Φ̃ i.e.,

ϕi(λ j) = ϕ̃i(λ j) for all i, j ∈ {1, . . . ,N}.

Inserting ϕi(λ1) = ϕ̃i(λ1) for all i ∈ {0, . . .N + 1} in (3) and using that ϕi(λ1) , 0 for all i ∈ {1, . . . ,N} (it is
known [1, 2, 7] that the jth eigenfunction has exactly j − 1 generalized zeros in the open interval (0,N + 1);
in particular, the first eigenfunction has no generalized zero in the open interval (0,N + 1) and hence no
zero in there), the claim follows.
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3. Symmetric Potentials

Since both ϕ(λ j) and ψ(λ j) are eigenfunctions corresponding to the eigenvalue λ j, j ∈ {1, . . . ,N}, there
exist numbers β j ∈ R such that

ψi(λ j) = β jϕi(λ j) (14)

for all i ∈N0 and j ∈ {1, . . . ,N}. We now show the following crucial auxiliary result.

Lemma 3.1. The numbers β j from (14) and the weight numbers α j from (9) satisfy the relation

β jα j = −Ω̇(λ j), j ∈ {1, . . . ,N}. (15)

Proof. Using the discrete product rule and (3), we find for any i ∈N0 and λ, µ ∈ R that

∆
[
ψk(µ)∆ϕk(λ) − ϕk(λ)∆ψk(µ)

]
= ψk+1(µ)∆2ϕk(λ) + (∆ψk(µ))(∆ϕk(λ)) − ϕk+1(λ)∆2ψk(µ) − (∆ϕk(λ))(∆ψk(µ))
= ψk+1(µ)(qk − λ)ϕk+1(λ) − ϕk+1(λ)(qk − µ)ψk+1(µ)
= (µ − λ)ϕk+1(λ)ψk+1(µ).

Summing this equation from k = 0 until k = N, we obtain

N∑
k=0

ϕk+1(λ)ψk+1(µ) =
Ω(λ) −Ω(µ)

µ − λ

from which we deduce
N∑

k=0

ϕk+1(λ)ψk+1(λ) = −Ω̇(λ)

since ψ, being a polynomial, is continuous in λ. Using this for λ = λ j and in view of (9) and (14), the proof
is complete.

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Using the same notation as in the proof of Theorem 1.3, we show that α j = α̃ j for all
j ∈ {1, . . . ,N}, and then the statement follows from Theorem 1.3. Let j ∈ {1, . . . ,N} and note that

ϕ0(λ j) = ϕN+1(λ j) = 0

and
∆2ϕk(λ j) = (qk − λ j)ϕk+1(λ j)

holds for all k ∈ Z. Let us introduce a new sequence ω by

ωk := ϕN+1−k(λ j), k ∈ Z.

Then we have
ω0 = ωN+1 = 0

and for k ∈ Z,

(qk − λ j)ωk+1 = (qk − λ j)ϕN+1−(k+1)(λ j)

= (qN−k−1 − λ j)ϕ(N−k−1)+1(λ j) = ∆2ϕN−k−1(λ j)
= ϕ(N−k−1)+2(λ j) − 2ϕ(N−k−1)+1(λ j) + ϕN−k−1(λ j)
= ϕN+1−(k+2)(λ j) − 2ϕN+1−(k+1)(λ j) + ϕN+1−k(λ j)

= ωk+2 − 2ωk+1 + ωk = ∆2ωk.
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Hence ω is also an eigenfunction corresponding to the eigenvalue λ j. In fact, since

ωN = ϕ1(λ j) = 1 = −(−1) = −ψN(λ j),

we have ω = −ψ(λ j) and thus
ϕN+1−k(λ j) = ωk = −ψk(λ j) = −β jϕk(λ j)

(observe (14)) and therefore
ϕk(λ j) = −β jϕN+1−k(λ j) = β2

jϕk(λ j)

so that β j ∈ {−1, 1}. Using this in Lemmma 3.1, we find

0 < α j = β2
jα j = −β jΩ̇(λ j),

and since (5) implies Ω(λ) < 0 for all λ < λ1 and hence Ω̇(λ1) > 0 and thus (−1) j−1Ω̇(λ j) > 0, we conclude
that

β j = (−1) j and α j = (−1) j−1Ω̇(λ j).

The same holds for α̃ j, so indeed we have α j = α̃ j.

4. An Example

Now we look at a simple example with N = 2. We have

ϕ2(λ) = 2 − λ + q0, ϕ3(λ) = (2 − λ + q1)(2 − λ + q0) − 1

and ψ2(λ) = −1,
ψ1(λ) = −(2 − λ + q1), ψ0(λ) = −(2 − λ + q0)(2 − λ + q1) + 1.

Then

Ω(λ) = −(2 − λ + q0)(2 − λ + q1) + 1
= −λ2 + (4 + q0 + q1)λ + 3 + 2q0 + 2q1 + q0q1

= −(λ − λ1)(λ − λ2),

where the two eigenvalues are

λ1 =
4 + q0 + q1 − q

2
and λ2 =

4 + q0 + q1 + q
2

with
q =

√
4 + (q0 − q1)2.

Thus we have

ϕ0(λ1) = 0, ϕ1(λ1) = 1, ϕ2(λ1) =
q0 − q1 + q

2
, ϕ3(λ1) = 0,

ϕ0(λ2) = 0, ϕ1(λ2) = 1, ϕ2(λ2) =
q0 − q1 − q

2
, ϕ3(λ2) = 0,

ψ0(λ1) = 0, ψ1(λ1) =
q0 − q1 − q

2
, ψ2(λ1) = −1, ψ3(λ1) = 0,

ψ0(λ2) = 0, ψ1(λ2) =
q0 − q1 + q

2
, ψ2(λ2) = −1, ψ3(λ2) = 0.

Note that ϕ(λ1) andψ(λ1) have no generalized zero in (0, 3), while ϕ(λ2) andψ(λ2) each has one generalized
zero in (0, 3). Next, we have

α1 =
q2 + q(q0 − q1)

2
, α2 =

q2
− q(q0 − q1)

2
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and
β1 =

q0 − q1 − q
2

, β2 =
q0 − q1 + q

2
.

The matrices occurring in Section 2 take the form

Φ =

(
1 1

q0−q1+q
2

q0−q1−q
2

)
, ΦTΦ =

(
α1 0
0 α2

)
,

K =

(
1 0
q0 1

)
, KT

K =

(
1 + q2

0 q0
q0 1

)
,

and since
S0(λ) = 0, S1(λ) = 1, S2(λ) = 2 − λ, S3(λ) = 3 − 4λ + λ2,

we obtain

S =

(
1 1

−q0−q1+q
2

−q0−q1−q
2

)
and KS =

(
1 1

q0−q1+q
2

q0−q1−q
2

)
= Φ.

5. Remarks

1. Although this was not needed in order to obtain the results of this paper, it will be of importance to
discuss the transformation operator K in great detail. In fact, the recursion (7) may be stated as a partial
difference equation in the form

∆2
1K(i, j + 1) − ∆2

2K(i + 1, j) = q(i)K(i + 1, j + 1),

where
∆1K(i, j) = K(i + 1, j) − K(i, j) and ∆2K(i, j) = K(i, j + 1) − K(i, j).

It is easy to establish the following identities for i ∈N0:

K(i + 1, i) =

i−1∑
k=0

qk =: Qi,

K(i + 2, i) =

i∑
k=1

qkQk =: Q̃i,

K(i + 3, i) = Qi+1 − q0 +

i+1∑
k=2

qkQ̃k−1.

2. Corresponding results of this paper may also be given when the Dirichlet boundary conditions (4)
are replaced by

∆y0 − hy0 = ∆yN+1 + HyN+1 = 0,

where h,H ∈ R are parameters, and then the objective is to use the spectral data to not only determine
the potential but also the coefficients h and H of the boundary conditions.

3. It will be interesting to obtain corresponding results for problems governed by dynamic equations
on time scales (see [2]) which include the continuous and discrete cases within one theory, extending
it also to other cases “in between” such as, for example, q-difference equations. In this setting, one
would consider the Sturm–Liouville dynamic equation (see [2])

−y∆∆(t) + q(t)y(σ(t)) = λy(σ(t)), t ∈ T.
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