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Abstract. In this work, the notion of an L-R crossed product is introduced as a unified approach for L-R
smash product and crossed product. Then the duality theorem for L-R crossed product is given. As the
applications of the main result, some classical results in some materials can be obtained.

1. Introduction

Classical duality theorems origin in operator algebras, in works of Takesaki and colaborators for describ-
ing the duality between actions and coactions of locally compact groups on Von Neumann algebras ([1]).
In [2], Cohen and Montgomery considered this duality for actions and coactions of groups on algebras and
proved that, given a finite group G acting as linear automorphisms on A, there exists an isomorphism be-
tween the smash product A∗G]k[G]∗ of the skew group ring A∗G and the dual group ring k[G]∗ = Hom(kG, k)
and the full matrix ring Mn(A) over A. This kind of result is important, since coactions of group algebras
correspond to group gradings on algebras. The extension of this duality theorem to the context of Hopf
algebras was made in the work of Blattner and Montgomery (see [3]). As the generalization of Blattner-
Mongomery’s result, Koppinen prove the duality theorem for Hopf crossed product which generalized
most of duality theorems in [5]. From the perspective of duality, Wang considered the duality theorems of
both Hopf comodule coalgebras and crossed coproducts in [6, 7]. Recently, a great deal of work has been
done on the duality theorem in [9–11] and [12].

Based on the theory of deformation, the L-R smash product was introduced and studied in [13, 14]. It is
defined as follows: if H is a cocommutative bialgebra and A is an H-bimodule algebra, then the L-R smash
product A]H is an associative algebra defined on A ⊗H by the multiplication rule

(a]h)(b]1) = (a · 11)(h1 · b)]h212

for any a, b ∈ A and 1, h ∈ H. If we replace the above multiplication by

(a]h)(b]1) = (a · 12)(h1 · b)]h211,

then this multiplication is associative in [15] without the assumption that H is cocommutative. In [16], the
authors introduced and studied the more general version of L-R smash products.
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Research supported by the National Natural Science Foundation of China (No.11261063 and 11471186) and the Foundation for

Excelent Youth Science and Technology Innovation Talents of Xin Jiang Uygur Autonomous Region(No.2013721043)
Email addresses: cqg211@163.com (Quan-guo Chen), dgwang@mail.qfnu.edu.cn, dingguo95@126.com (Ding-guo Wang)



Q.-G. Chen, D.-G. Wang / Filomat 30:5 (2016), 1305–1313 1306

Following the current trends of further research on this topic and at the angle of unity, the paper will
present a general version of duality theorem for L-R crossed product which covers most of the classical
product algebras such as smash products, crossed products and L-R smash products etc. It is the motivation
of this paper.

The paper is organized as follows.
In Section 2, we recall some useful concepts. In Section 3, the conditions on cocycles are established

in order to construct L-R crossed products. Then the duality theorem for L-R crossed product is given in
Section 4. In Section 5, we apply our main result to some classical cases.

2. Preliminaries

Throughout the paper, we always work over a fixed field k and follow the Montgomery’s book([17]) for
terminologies on coalgebras, comodules and bialgebras. Given a vector space M, ι : M → M denotes the
identity map.

Recall that a left (right) measure of H on an algebra A is a linear map H ⊗ A→ A(A ⊗H → A) given by
h ⊗ a 7→ h · a(a ⊗ h) = a · h) such that, for any h ∈ H, a, b ∈ A,

h · (ab) = (h1 · a)(h2 · b)(resp.(ab) · h = (a · h1)(b · h2)),

h · 1A = εH(h)1A, 1H · a = a (resp. 1A · h = εH(h)1A, a · 1H = a).

Given a left (right) measure of H on A, if the measure is module action, then we can get the left (right)-
module algebra. If an algebra A is both a left H-module algebra and a right H-module algebra with the
compatible module actions , then A is called an H-bimodule algebra.

3. L-R Crossed Products

In this section, we shall introduce the notion of a L-R crossed product.
Assume that H measures on A from the left. Let A be a right H-module algebra with the compatibility

with the left measure, and σ : H ⊗H→ A a linear map. Define a multiplication on vector space A ⊗H by

(a ⊗ h)(b ⊗ 1) = (a · 13)(h1 · b)σ(h2, 11) ⊗ h312

for any a, b ∈ A and h, l ∈ H.

Definition 3.1. Let H be a Hopf algebra, A a right H-module algebra and σ : H ⊗H→ A a linear map. We say that
H is σ-cocommutative, if the following relation holds,

σ(l, 1) · h1 ⊗ h2 = σ(l, 1) · h2 ⊗ h1

for all l, 1, h ∈ H.

Remark 3.2. If σ is trivial, i.e., σ(h, 1) = εH(h)εH(1)1A. Then H is σ-cocommutative.

The following theorem gives the necessary and sufficient conditions under which A ⊗ H is associative
and A ⊗H is unital with 1A ⊗ 1H as the identity element.

Theorem 3.3. Assume that H measures on A from the left. Let A be a right H-module algebra with the compatibility
with the left measure, and σ : H ⊗H→ A a linear map such that H is σ-cocommutative. Then

(i) 1A ⊗ 1H is the unit of A ⊗H if and only if, for all a ∈ A,

σ(h, 1H) = εH(h)1A = σ(1H, h), (3.1)

(ii) A ⊗H is associative if and only if the following conditions hold:

(h1 · σ(l1,m1))σ(h2, l2m2) = (σ(h1, l1) ·m1)σ(h2l2,m2), (3.2)

(h1 · (l1 · a))σ(h2, l2) = σ(h1, l1)(h2l2 · a) (3.3)

for any h, l,m ∈ H and a ∈ A.
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Proof. The proof of (i) is straightforward, so we omit it. Now, we shall check (ii). Suppose A ⊗ H is
associative, we have

(1A ⊗ h)[(1A ⊗ l)(a ⊗m)]
= (1A ⊗ h)[(l1 · a)σ(l2,m1) ⊗ l3m2]
= (h1 · ((l1 · a)σ(l2,m1)))σ(h2, l3m2) ⊗ h3l4m3

and

[(1A ⊗ h)(1A ⊗ l)](a ⊗m)
= (σ(h1, l1) ⊗ h2l2)(a ⊗m)
= (σ(h1, l1) ·m3)(h2l2 · a)σ(h3l3,m1) ⊗ h4l4m2.

So it follows that

(h1 · ((l1 · a)σ(l2,m1)))σ(h2, l3m2) ⊗ h3l4m3

= (σ(h1, l1) ·m3)(h2l2 · a)σ(h3l3,m1) ⊗ h4l4m2.

Applying ι ⊗ εH to both side of the above equality, we have

(h1 · ((l1 · a)σ(l2,m1)))σ(h2, l3m2) = (σ(h1, l1) ·m2)(h2l2 · a)σ(h3l3,m1). (3.4)

If we take a = 1A in (3.4) and use that H is σ-cocommutative, we get

(h1 · σ(l1,m1))σ(h2, l2m2) = (σ(h1, l1) ·m1)σ(h2l2,m2). (3.5)

If we take m = 1H in (3.4), it follows that

(h1 · (l1 · a))σ(h2, l2) = σ(h1, l1)(h2l2 · a). (3.6)

Conversely, assume that (3.2) and (3.3) hold. First, we need the following equality

(h1 · (l1 · a))(σ(h2, l2) ·m) = (σ(h1, l1) ·m)(h2l2 · a)). (3.7)

As a matter of fact, for all h, l,m ∈ H and a ∈ A, we have

(h1 · (l1 · a))(σ(h2, l2) ·m) = ((h1 · (l1 · a · s(m1)))σ(h2, l2)) ·m2
(3.3)
= (σ(h1, l1)(h2l2 · (a · s(m1)))) ·m2

= (σ(h1, l1) ·m2)(h2l2 · (a · s(m1)m3))
= (σ(h1, l1) ·m3)(h2l2 · (a · s(m1)m2))
= (σ(h1, l1) ·m)(h2l2 · a).

Then, for all a, b, c ∈ A and h, l,m ∈ H, we have

(a ⊗ h)[(b ⊗ l)(c ⊗m)]
= (a ⊗ h)[(b ·m3)(l1 · c)σ(l2,m1) ⊗ l3m2]
= (a · l5m4)(h1 · ((b ·m5)(l1 · c)σ(l2,m1)))σ(h2, l3m2) ⊗ h3l4m3

= (a · l5m4)(h1 · (b ·m5))(h2 · (l1 · c))(h3 · σ(l2,m1))σ(h4, l3m2) ⊗ h5l4m3

= (a · l5m4)(h1 · (b ·m5))(h2 · (l1 · c))(σ(h3, l2) ·m2)σ(h4l3,m1) ⊗ h5l4m3
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(3.7)
= (a · l5m4)((h1 · b) ·m5)(σ(h2, l1) · m2︸︷︷︸)(h3l2 · c)σ(h4l3,m1) ⊗ h5l4 m3︸︷︷︸

= (a · l5 m4︸︷︷︸)((h1 · b) ·m5)(σ(h2, l1) · m3︸︷︷︸)(h3l2 · c)σ(h4l3,m1) ⊗ h5l4m2

= (a · l5m3)((h1 · b) · m5︸︷︷︸)(σ(h2, l1) · m4︸︷︷︸)(h3l2 · c)σ(h4l3,m1) ⊗ h5l4m2

= (a · l5m3)((h1 · b) ·m4)(σ(h2, l1) ·m5)(h3l2 · c)σ(h4l3,m1) ⊗ h5l4m2

= (((a · l5)(h1 · b)σ(h2, l1)) ·m3)(h3l2 · c)σ(h4l3,m1) ⊗ h5l4m2

= ((a · l3)(h1 · b)σ(h2, l1) ⊗ h3l2)(c ⊗m)
= [(a ⊗ h)(b ⊗ l)](c ⊗m).

This ends the proof.

We call the k-algebra A ⊗H an L-R crossed product, denoted by A]σH.

Example 3.4. Consider the group algebra kZ with the obvious Hopf algebra structure and let 1 be a generator of Z
in multiplication notation. Fix an element 0 , q ∈ k, and define a linear map σ : kZ ⊗ kZ→ kZ, 1i

⊗ 1 j
7→ qi j1 and

two actions on kZ:
1t I 1l = qtl1l, 1t J 1l = q−tl1t.

Since
(1t I 1l) J 1k = qtl1l J 1k = qtl−kl1l

and
1t I (1l J 1k) = q−lk1t I 1l = qtl−lk1l,

it follows that (kZ,I,J) is kZ-bimodule. It is not hard to show that (kZ,I) is a left kZ-module algebra and (kZ,J) is
a right kZ-module algebra. Straightforward computation can show that σ is a cocycle and conditions (3.2) and (3.3)
hold. Thus we have the L-R crossed product kZ]σkZ with the multiplication via

(1m]1l)(1n]1t) = qnl+lt−mt1m+n
⊗ 1l+t.

Example 3.5. Consider the polynomial algebra k[X] with the coalgebra structure and the antipode given by

∆(Xn) =

n∑
k=0

Ck
nXk
⊗ Xn−k, ε(Xn) = 0, S(Xn) = (−1)nXn, ∀n > 0.

Fix an element 0 , q ∈ k, and define a linear map σ : k[X] ⊗ k[X]→ k[X] via

σ(Xi,X j) =

{
0, if i , j;
i!qi1, if i = j.

Two actions of k[X] on k[X] are given by

Xi I X j =

{
0, if i > j;

j!
( j−i)! q

iX j−i, if i ≤ j, X j J Xi =

{
0, if i > j;
(−1)i j!

( j−i)! q
iX j−i, if i ≤ j.

It is not hard to show that (k[X],I,J) is k[X]-bimodule, (k[X],I) is a left k[X]-module algebra and (k[X],J) is a
right k[X]-module algebra. Since

σ(Xi, 1) =

{
0, if i , 0;
1, if i = 0,

it follows that σ(Xi, 1) = ε(Xi)1. Similarly, we can check that σ(1,Xi) = ε(Xi)1. Straightforward computation can
show that the conditions (3.2) and (3.3) hold. Thus, we have another L-R crossed product k[X]]σk[X].
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4. The Duality Theorem for L-R-Crossed product

Let A be a right H-module algebra. Assume that there exists a left measure of H on A such that H is
σ-cocommutative. If H is a finite dimensional Hopf algebra, the dual vector space H∗ has a natural structure
of a Hopf algebra.

Now, we will construct the duality theorem for an L-R crossed product. First, we need some lemmas.

Lemma 4.1. Let H be a finite dimensional Hopf algebra. Then A]σH is a left H∗-module algebra via

f · (a]σh) = a]σh1 f (h2)

for any a ∈ A, h ∈ H and f ∈ H∗.

Lemma 4.2. The map
ϕ : (A]σH)]H∗ → End(A]σH)A

(here ] means smash product and End(A]σH)A means the right A-module endomorphisms) defined by

ϕ((a]σh)] f )(b]σ1) = (a]σh)(b]σ11) f (12)

for any a, b ∈ A, h, 1 ∈ H and f ∈ H∗, is a homomorphism of algebras, where A]σH is a right A-module via

(a]σh) · b = (a]σh)(b]σ1H).

Proof. First, we will show that ϕ commutes with the right action of A on A]σH. Indeed, for any a, b, d ∈ A,
h, 1 ∈ H and f ∈ H∗, we compute

ϕ((a]σh)] f )((b]σ1) · d)
= ϕ((a]σh)] f )(b(11 · d)]σ12)
= (a · 14)(h1 · (b(11 · d)))σ(h2, 12)]σh313 f (15)
= (a · 14)(h1 · b)(h2 · (11 · d))σ(h3, 12)]σh413 f (15)
(3.3)
= (a · 14)(h1 · b)σ(h2, 11)(h312 · d)]σh413 f (15)

= ((a · 13)(h1 · b)σ(h2, 11)]σh312 f (14)) · d
= (ϕ((a]σh)] f )(b]σ1)) · d.

Next, for all a, b, x ∈ A, h, l, y ∈ H and f , 1 ∈ H∗, we have

ϕ((a]σh)] f ) ◦ ϕ((b]σl)]1)(x]σy)
= ϕ((a]σh)] f )((b · y3)(l1 · x)σ(l2, y1)]σl3y2)1(y4)
= (a]σh)(b · y4)(l1 · x)σ(l2, y1)]σl3y21(y5) f (l4y3)
= (a · l5y4)(h1 · ((b · y6)(l1 · x)σ(l2, y1)))σ(h2, l3y2)]σh3l4y31(y7) f (l6y5)
= (a · l5y4)(h1 · (b · y6))(h2 · (l1 · x)) (h3 · σ(l2, y1))σ(h4, l3y2)︸                       ︷︷                       ︸ ]σh5l4y31(y7) f (l6y5)

(3.2)
= (a · l5y4)(h1 · (b · y6)) (h2 · (l1 · x))(σ(h3, l2) · y2)︸                         ︷︷                         ︸ σ(h4l3, y1)]σh5l4y31(y7) f (l6y5)

(3.3)
= (a · l5y4)(h1 · (b · y6))(σ(h2, l1) · y2)(h3l2 · x)σ(h4l3, y1)]σh5l4y31(y7) f (l6y5)

= (a · l5y4)(h1 · (b · y5))(σ(h2, l1) · y2)(h3l2 · x)σ(h4l3, y1)]σh5l4y31(y7) f (l6y6)
= (a · l5y4)(h1 · (b · y5))(σ(h2, l1) · y3)(h3l2 · x)σ(h4l3, y1)]σh5l4y21(y7) f (l6y6)
= (a · l5y3)(h1 · (b · y5))(σ(h2, l1) · y4)(h3l2 · x)σ(h4l3, y1)]σh5l4y21(y7) f (l6y6)
= (a · l5y3)((h1 · b) · y4))(σ(h2, l1) · y5)(h3l2 · x)σ(h4l3, y1)]σh5l4y21(y7) f (l6y6)
= (((a · l5)(h1 · b)(σ(h2, l1))) · y3)(h3l2 · x)σ(h4l3, y1)]σh5l4y21(y5) f (l6y4)
= ϕ(((a]σh)] f )(b]σl)]1)(x]σy).
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This ends the proof.

Lemma 4.3. Let H be a finite dimensional Hopf algebra and A]σH be the L-R crossed product with convolution
inverse σ. Then

(σ−1(h1, l1) ·m)(h2 · (l2 · a)) = (h1l1 · a)(σ−1(h2, l2) ·m), (4.1)

σ−1(l, 1) · h1 ⊗ h2 = σ−1(l, 1) · h2 ⊗ h1,

σ(h1l1,m1)σ−1(h2, l2m2) = (σ−1(h1, l1) ·m1)(h2 · σ(l2,m2)). (4.2)

Proof. Here we only check that (4.2) holds. Multiplying convolutively on the right of (3.2) by σ−1, we have

(h1 · σ(l1,m1))σ(h2, l2m2)σ−1(h3, l3m3) = (σ(h1, l1) ·m1)σ(h2l2,m2)σ−1(h3, l3m3).

This gives

h · σ(l,m) = (σ(h1, l1) ·m1)σ(h2l2,m2)σ−1(h3, l3m3). (4.3)

Since

(σ−1(h1, l1) ·m1)(h2 · σ(l2,m2))
(4.3)
= (σ−1(h1, l1) ·m1)(σ(h2, l2) ·m2)σ(h3l3,m3)σ−1(h4, l4m4)

= σ(h1l1,m1)σ−1(h2, l2m2),

it follows that (4.2) holds.

Let {ei} be a basis of H and {e∗i } be the dual basis of H∗, i.e., such that e∗i (e j) = δi j for all i, j. Then we have
the following identities: ∑

i

e∗i (h)ei = h,
∑

i

e∗i f (ei) = f

for all h ∈ H and f ∈ H∗.

Lemma 4.4. Let H be a finite dimensional Hopf algebra and A]σH be the L-R crossed product with convolution
inverse σ. Define a linear map

ψ : End(A]σH)A → (A]σH)]H∗

by
ψ : T 7→

∑
i

(T(σ−1(ei4,S−1(ei3)) · ei2]σei5)(1A]σS−1(ei1)))]e∗i .

Then the maps ϕ and ψ are inverse of each other.

Proof. We need to check that
ϕ ◦ ψ = ι, ψ ◦ ϕ = ι.

For all a ∈ A, h ∈ H and f ∈ H∗, we have

ψ ◦ ϕ((a]σh)] f )

=
∑

i

[(a]σh)(σ−1(ei4,S−1(ei3)) · ei2]σei5)(1A]σS−1(ei1))]]e∗i f (ei6)

=
∑

i

[(a]σh)((σ−1(ei6,S−1(ei5)) · ei4S−1(ei1))σ(ei7,S−1(ei3)))]σei8S−1(ei2)]]e∗i f (ei9)

=
∑

i

[(a · ei12S−1(ei2))(h1 · (σ−1(ei8,S−1(ei7)) · ei6︸                   ︷︷                   ︸S−1(ei1)σ(ei9,S−1(ei5)︸  ︷︷  ︸)))

σ(h2, ei10S−1(ei4))]σh3ei11S−1(ei3)]]e∗i f (ei13)
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=
∑

i

[(a · ei12S−1(ei2))(h1 · ((σ−1(ei8,S−1(ei7)) · ei5︸                   ︷︷                   ︸S−1(ei1)σ(ei9,S−1(ei6))))

σ(h2, ei10 S−1(ei4)︸  ︷︷  ︸)]σh3ei11S−1(ei3)]]e∗i f (ei13)

=
∑

i

[(a · ei12S−1(ei2))(h1 · (σ−1 (ei8,S−1(ei7)) · ei4︸              ︷︷              ︸S−1(ei1)σ(ei9,S−1(ei6)))

σ(h2, ei10S−1(ei5))]σh3ei11 S−1(ei3)]︸   ︷︷   ︸ ]e∗i f (ei13)

=
∑

i

[(a · ei12S−1(ei2︸         ︷︷         ︸))(h1 · (σ−1 (ei8,S−1(ei7)) · ei3︸              ︷︷              ︸S−1(ei1)σ(ei9,S−1(ei6))))

σ(h2, ei10S−1(ei5))]σh3ei11S−1(ei4)]]e∗i f (ei13)

=
∑

i

[(a · ei12S−1(ei3))(h1 · (σ−1(ei8,S−1(ei7)) · ei2S−1(ei1)︸     ︷︷     ︸ σ(ei9,S−1(ei6))))

σ(h2, ei10S−1(ei5))]σh3ei11S−1(ei4)]]e∗i f (ei13)

=
∑

i

[(a · ei10S−1(ei1))(h1 · (σ−1(ei6,S−1(ei5))σ(ei7,S−1(ei4)︸                               ︷︷                               ︸)))

σ(h2, ei8S−1(ei3))]σh3ei9S−1(ei2)]]e∗i f (ei11)

=
∑

i

[(a · ei10S−1(ei1))(h1 · (σ−1(ei6,S−1(ei5))σ(ei7,S−1(ei4))))

σ(h2, ei8S−1(ei3))]σh3ei9S−1(ei2)]]e∗i f (ei11)

=
∑

i

((a · ei6S−1(ei1))σ(h1, ei4S−1(ei3)︸     ︷︷     ︸)]σh2ei5S−1(ei2))]e∗i f (ei7)

=
∑

i

((a · ei4S−1(ei1)︸     ︷︷     ︸)]σh ei3S−1(ei2︸    ︷︷    ︸))]e∗i f (ei5)

=
∑

i

(a]σh)]e∗i f (ei) = (a]σh)] f .

So we get ψ ◦ ϕ = ι. As to ϕ ◦ ψ = ι, we proceed the proof as follows:

ϕ ◦ ψ(T)(a]σh)

=
∑

i

ϕ((T(σ−1(ei4,S−1(ei3) · ei2]σei5))(1A]σS−1(ei1)))]e∗i )(a]σh)

=
∑

i

T(σ−1(ei4,S−1(ei3)) · ei2]σei5)(1A]σS−1(ei1))(a]σh1)e∗i (h2)

= T(σ−1(h8,S−1(h7)) · h6]σh9)((S−1(h5) · a)σ(S−1(h4), h1)]σ S−1(h3)h2︸    ︷︷    ︸)

= T(σ−1(h6,S−1(h5)) · h4]σh7)((S−1(h3) · a)σ(S−1(h2), h1)]σ1H)
= T((σ−1(h6,S−1(h5)) · h4]σh7)((S−1(h3) · a)σ(S−1(h2), h1)]σ1H))
= T((σ−1 (h6,S−1(h5)) · h4︸             ︷︷             ︸)(h7 · (S−1(h3)︸ ︷︷ ︸ ·a))(h8 · σ(S−1(h2), h1))]σh8))

= T((σ−1(h6,S−1(h5)) · h3)(h7 · (S−1(h4) · a))(h8 · σ(S−1(h2), h1))]σh8))
(4.1)
= T((h6S−1(h5)︸    ︷︷    ︸ ·a)(σ−1(h7 · S−1(h4)) · h3))(h8 · σ(S−1(h2), h1))]σh9))

= T(a(σ−1(h5 · S−1(h4)) · h3))(h6 · σ(S−1(h2), h1))]σh7))
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= T(a(σ−1(h5 · S−1(h4)) · h2))(h6 · σ(S−1(h3), h1))]σh7))
(4.2)
= T(aσ(h5S−1(h4)︸    ︷︷    ︸, h1)σ−1(h6S−1(h3)︸    ︷︷    ︸, h2)]σ h7︸︷︷︸)

= T(a]σh).

This proof is completed.

From the lemmas above, we can get the following main result in this section.

Theorem 4.5. Let H be a finite dimensional Hopf algebra and A]σH be the L-R crossed product with convolution
inverse σ such that H is σ-cocommutative. Then there is a canonical isomorphism between the algebras (A]σH)]H∗

and End(A]σH)A.

5. Applications

In this section, we shall give some applications of Theorem 4.5, some classical results in several materials
can be obtained.

5.1. Crossed Products
If the right H-module action of A is trivial, that is, a · h = aεH(t) for any a ∈ A and h ∈ H, then A is an

H-bimodule and (3.2) holds, and A]σH recovers to the usual crossed product in sense of [4]. From Theorem
4.5, we have

Corollary 5.1. ([5]) Let H be a finite dimensional Hopf algebra and A]σH be the usual crossed product with
convolution inverse σ. Then there is a canonical isomorphism between the algebras (A]σH)]H∗ and End(A]σH)A.

5.2. L-R Smash Products
If σ is trivial, that is, σ(h, 1) = εH(h)εH(1)1A, then A]σH reduces to the usual L-R smash product. From

Theorem 4.5, we have

Corollary 5.2. ([12]) Let H be a finite dimensional Hopf algebra and A]H be the usual L-R smash product. Then
there is a canonical isomorphism between the algebras (A]H)]H∗ and End(A]H)A.

Furthermore, if the right H-module action of A is trivial, then L-R smash product A]H is exactly the
usual smash product. From Corollary 5.2, we have

Corollary 5.3. ([3]) Let H be a finite dimensional Hopf algebra and A]H be the usual smash product. Then there is
a canonical isomorphism between the algebras (A]H)]H∗ and End(A]H).
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