Filomat 30:5 (2016), 1135–1142 DOI 10.2298/FIL1605135C

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The Linear Arboricity of Planar Graphs without 5-Cycles with Two Chords

Xiang-Lian Chen^a, Jian-Liang Wu^b

^aDepartment of Mathematics, Changji College, Changji, 831100, China. ^bSchool of Mathematics, Shandong University, Jinan, 250100, China.

Abstract. The linear arboricity la(G) of a graph *G* is the minimum number of linear forests which partition the edges of *G*. In this paper, it is proved that for a planar graph *G*, $la(G)=\lceil(\Delta(G)/2)\rceil$ if $\Delta(G) \ge 7$ and *G* has no 5-cycles with two chords.

1. Introduction

In this paper, all graphs are finite, simple and undirected. For a real number x, $\lceil x \rceil$ is the least integer not less than x and $\lfloor x \rfloor$ is the largest integer not larger than x. Let G be a graph. We use V(G) and E(G) to denote the vertex set and edge set, respectively. If $uv \in E(G)$, then u is said to be a *neighbor* of v, and $N_G(v)$ is the set of neighbors of v. The *degree* d(v) of a vertex v is $|N_G(v)|$, $\delta(G)$ is the minimum degree of G and $\Delta(G)$ is the maximum degree of G. A k-, k^+ - or k^- -vertex is a vertex of degree k, at least k, or at most k, respectively. A k-cycle is a cycle of length k. Two cycles are said to be *adjacent* (or *intersecting*) if they have at least one common edge (or vertex, respectively). Given a cycle C of length $k(k \ge 4)$ in G, an edge $xy \in E(G) \setminus E(C)$ is called a *chord* of C if $x, y \in V(C)$. Such a cycle C is also called a chordal-k-cycle.

If *G* is a planar graph, then we always assume that *G* has been embedded in the plane. Let *G* be a planar graph and *F*(*G*) be the face set of *G*. For $f \in F(G)$, the *degree* of *f*, denoted by d(f), is the number of edges incident with it, where each cut-edge is counted twice. *A* k-, k⁺- or k⁻-face is a face of degree k, at least k, or at most k, respectively. Let $n_i(v)$ denote the number of *i*-vertices of *G* adjacent to the vertex v, $f_i(v)$ the number of *i*-faces of *G* incident with v. All undefined notations and definitions follow that of Bondy and Murty [3].

A *linear forest* is a graph in which each component is a path. A map φ form E(G) to $\{1, 2, \dots, t\}$ is called a *t-linear coloring* if the induced subgraph of edges having the same color α is a linear forest for $1 \le \alpha \le t$. The linear arboricity la(G) of a graph G defined by Harary [10] is the minimum number t for which G has a *t*-linear coloring. Akiyama et al.[1] conjectured that $la(G) = \lceil \frac{\Delta(G)+1}{2} \rceil$ for any simple regular graph G. The conjecture is equivalent to the following conjecture.

Conjecture A. For any graph G, $\lceil \frac{\Delta(G)}{2} \rceil \le la(G) \le \lceil \frac{\Delta(G)+1}{2} \rceil$.

²⁰¹⁰ Mathematics Subject Classification. Primary 05C15

Keywords. planar graph; linear arboricity; cycle; chord

Received: 19 March 2014; Accepted: 03 January 2015

Communicated by Francesco Belardo

Research supported by the National Natural Science Foundation of China(No.11271006) and the National Natural Science Foundation of Xinjiang (No. 201442137-3)

Email addresses: xjxianglian@163.com (Xiang-Lian Chen), jlwu@sdu.edu.cn (Jian-Liang Wu)

The linear arboricity has been determined for complete bipartite graphs [1], complete regular multipartite graphs [20], Halin graphs [16], series-parallel graphs [18] and regular graphs with $\Delta = 3, 4$ [2] and 5,6,8[9]. For planar graphs, more results are obtained. Conjecture A has already been proved to be true for all planar graphs (see [17] and [21]). Wu [17] proved that for a planar graph *G* with girth *g* and maximum degree Δ , $la(G) = \lceil \frac{\Delta(G)}{2} \rceil$ if $\Delta(G) \ge 13$, or $\Delta(G) \ge 7$ and $g \ge 4$, or $\Delta(G) \ge 5$ and $g \ge 5$, $\Delta(G) \ge 3$ and $g \ge 6$. Recently, M. Cygan et al. [8] proved that if *G* is a planar graph with $\Delta \ge 9$, then $la(G) = \lceil \frac{\Delta}{2} \rceil$, and then they posed the following conjecture.

Conjecture B. For any planar graph G of maximum degree $\Delta \ge 5$, $la(G) = \lceil \frac{\Delta}{2} \rceil$.

There are more partial results to support the conjecture. The linear arboricity of a planar graph *G* is $\lceil \frac{\Delta}{2} \rceil$ if it satisfies one of the following conditions: (1) $\Delta(G) \ge 7$ and *G* contains no chordal *i*-cycles for some $i \in \{4, 5, 6, 7\}$ ([5, 6, 13]); (2) $\Delta \ge 7$ and for each vertex $v \in V(G)$, there exist two integers i_v , $j_v \in \{3, 4, 5, 6, 7, 8\}$ such that any two i_v , j_v -cycles incident with v are not adjacent ([7, 15]); (3) $\Delta \ge 5$ and *G* contains no 4-cycles ([22]); (4) $\Delta \ge 5$ and *G* has no intersecting 4-cycles and intersecting 5-cycles ([4]); (5) $\Delta \ge 5$ and *G* has no 5-, 6-cycles with chords ([5]); (6) $\Delta \ge 5$ and any 4-cycle is not adjacent to an *i*-cycle for any $i \in \{3, 4, 5\}$ or *G* has no intersecting 4-cycles and intersecting *i*-cycles for either i = 3 or i = 6 ([11]); (7) $\Delta \ge 5$ and any two 4-cycles are not adjacent, and any 3-cycle is not adjacent to a 5-cycle ([14]).

In the paper, we will prove that if *G* is a planar graph with $\Delta(G) \ge 7$ and any 5-cycle contains at most one chord, then $la(G) = \lceil \frac{\Delta(G)}{2} \rceil$. It generalizes some above results.

2. Main Result and its Proof

First, we give some more definitions. Given a *t*-linear coloring φ and $v \in V(G)$, we denote by $C_{\varphi}^{i}(v)$ the set of colors appear *i* times at *v*, where i = 0, 1, 2. Then $|C_{\varphi}^{0}(v)| + |C_{\varphi}^{1}(v)| + |C_{\varphi}^{2}(v)| = t$ and $d(v) = |C_{\varphi}^{1}(v)| + 2|C_{\varphi}^{2}(v)|$. For two adjacent edges *uv* and *uw*, we denote by $uv \rightleftharpoons uw$ to exchange the colors of *uv* and *uw*, by $uv \rightarrow c$ to color *uv* with a color *c*. If $i \in C_{\varphi}^{1}(v)$, we denote by (v, i) the edge colored with *i*. For two vertices *u* and *v*, we use $(u, i) \sim (v, i)$ to denote that there is a monochromatic path of color *i* between *u* and *v*. For a vertex *v* and an edge *xy* of *G*, $xy \sim (v, i)$ denote that there exists a monochromatic path of color *i* between *x* and *v* passing *y*. For two different edges x_1y_1 and x_2y_2 of *G*, we use $x_1y_1 \sim x_2y_2$ to denote more accurately that there is a monochromatic path from x_1 to y_2 passing through the edges x_1y_1 and x_2y_2 in *G* (that is, y_1 and x_2 are internal vertices in the path). We use \nsim to denote that such monochromatic path does not exist.

Now we begin to give the main result of the paper and its proof.

Theorem 2.1. Let G be a planar graph with $\Delta(G) \ge 7$. If any 5-cycle contains at most one chord, then $la(G) = \lceil \frac{\Delta(G)}{2} \rceil$.

Proof. Since all planar graphs *G* with $\Delta(G) \ge 9$ have been proved in [8] to be $\lceil \frac{\Delta(G)}{2} \rceil$ -linear colorable, it suffices to prove the following result.

(A) Any planar graph G of maximum degree at most 8 has an 4-linear coloring using colors 1, 2, 3, 4 if G contains no 5-cycles with two chords.

Let G = (V, E) be a minimal counterexample to (A). First, we show some known claims for G.

Claim 2.2. Let $uv \in E(G)$ and G - uv has an 4-linear coloring φ . Let $C_{\varphi}(u, v) = C_{\varphi}^2(u) \cup C_{\varphi}^2(v) \cup (C_{\varphi}^1(u) \cap C_{\varphi}^1(v))$. Then

- (1) $|C_{\varphi}(u, v)| = 4;$
- (2) If there is a color i such that $i \in C^1_{\omega}(u) \cap C^1_{\omega}(v)$ then $(u, i) \sim (v, i)$.

Proof. (1) Suppose that $|C_{\varphi}(u, v)| < 4$, We may extend φ to an 4-linear coloring of *G* by setting $\varphi(uv) \in \{1, 2, 3, 4\} \setminus C_{\varphi}(u, v)$, a contradiction.

(2) If $(u, i) \neq (v, i)$, we may extend φ to an 4-linear coloring of *G* by setting $\varphi(u, v) = i$, a contradiction.

By Claim 2.2, we have

- (a) $\delta(G) \ge 2$,
- (b) for any edge $uv \in E(G)$, $d_G(u) + d_G(v) \ge 10$,
- (c) any two 4⁻-vertices are not adjacent,
- (c) any 3-face is incident with three 5⁺-vertices, or at least two 6⁺-vertices, and
- (d) any 7⁻-vertex has no neighbors of degree 2.

Claim 2.3. [13] *If a* 7-vertex *u* is adjacent to a 3-vertex *v* such that *uv* is incident with a 3-cycle, then all neighbors of *u* except *v* are 4⁺-vertices.

Claim 2.4. [22] Every vertex is adjacent to at most two 2-vertices. Moreover, suppose that a vertex v is adjacent to two 2-vertices x, y. Let x', y' be the other neighbors of x, y, respectively. Then $x'v, y'v \notin E(G)$.

Claim 2.5. [5, 11] *If a vertex u is adjacent to two* 2*-vertices v, w and incident with a* 3*-face uxyu, then* $d(x) \ge 4$ *and* $d(y) \ge 4$.

Claim 2.6. [5, 13] *If a vertex u is adjacent to a* 2*-vertex v and incident with two adjacent* 3*-cycles uwxu,uwyu, then* $d(w) \ge 4$ and $\max\{d(y), d(x)\} \ge 4$.

Claim 2.7. [8] If there are two adjacent 3-face uvwu and uvxu such that d(w) = 2, then $d(x) \ge 4$.

By Claim 2.7, we have the following corollary.

Corollary 2.8. If a 3-face uxvu is adjacent to a 4-face uxvyu such that d(x) = 2, then $d(y) \ge 4$.

Claim 2.9. [13] If *G* has a 3-face uvwu such that d(u) + d(v) = 10, then d(w) = 8.

Claim 2.10. *G* has no configurations depicted in Figure 1.

Proof. Suppose that *G* has a configuration as depicted in Figure 1(a). By the minimality of *G*, G' = G - uy has a 4-linear coloring φ . Without loss of generality, assume $\varphi(vy) = 1$. Then $1 \in C^1_{\varphi}(u)$ and $(u, 1) \sim vy$ by Claim 2.2. If $\varphi(xu) \neq 1$, then $\varphi(xv) \neq 1$, and then $xu \to 1$ and $uy \to \varphi(xu)$. Otherwise, we must have $\varphi(xv) = \varphi(xu) = 1$, and $\varphi(uw) \neq 1$, $\varphi(uz) \neq 1$, $\varphi(vw) \neq 1$. If $1 \in C^0_{\varphi}(w) \cup C^1_{\varphi}(w)$, then $wu \to 1$ and $uy \to \varphi(wu)$. Otherwise $1 \in C^2_{\varphi}(w)$, that is, $\varphi(wz) = 1$. We recolor wz and xu with $\varphi(uz)$, and then $uz \to 1$, $vy \rightleftharpoons vw$, and $uy \to 1$. Hence we can obtain a 4-linear coloring of *G*, a contradiction.

Suppose that *G* has a configuration as depicted in Figure 1(b). By the minimality of *G*, G' = G - uy has a 4-linear coloring φ . Without loss of generality, assume $\varphi(vy) = 1$. By the same argument as above, we have $\varphi(xv) = \varphi(xu) = 1$ and $1 \in C^2_{\varphi}(w)$. Suppose that $\varphi(wt) = \varphi(ws) = 1$. If $\varphi(ut) = \varphi(zw)$ and $ut \sim zw$, then $us \rightleftharpoons ws$, $uy \to \varphi(us)$. Otherwise, $ut \rightleftharpoons wt$, $uy \to \varphi(ut)$. Suppose that $\varphi(wt) = 1$ and $\varphi(ws) \neq 1$ (It is similar to settle the case $\varphi(wt) \neq 1$ and $\varphi(ws) = 1$). Then $\varphi(wz) = 1$. First, $wu \to 1$, $wt \to \varphi(ut)$. Then, if

 $\varphi(ut) = \varphi(sw)$ and $ut \sim sw$, then $us \rightleftharpoons ws$. Finally, $ux \rightarrow \varphi(wu)$ and $uy \rightarrow \varphi(ut)$. Hence, we can obtain a 4-linear coloring of *G*, a contradiction.

Suppose that *G* has a configuration as depicted in Figure 1(c). By the minimality of *G*, there exists a 4-linear coloring ϕ of $G - vv_3$ with colors 1, 2, 3, 4. We also show how to extend ϕ to *G* and obtain a contradiction with the minimality. The only non-colored edge is vv_3 . Let $C^1_{\phi}(v) = \{a\}$.

Case 1. $\phi(v_2v_3) = \phi(v_3x)$. Without loss of generality, assume that $\phi(v_2v_3) = 1$.

Then a = 1 for otherwise we can color vv_3 with a directly. If $(v, 1) \neq v_2v_3$, then $\phi(vv_2) \neq 1$, $v_2v \rightleftharpoons v_2v_3$ and $vv_3 \rightarrow \phi(vv_2)$, a contradiction. So

$$(v, 1) \sim v_2 v_3.$$
 (*)

Subcase 1.1. $\phi(vv_1) = 1$.

Then $vv_1 \sim v_2v_3$ by (*). If $\phi(v_1y) = 1$, then $v_2v \rightleftharpoons v_2v_3$, $vv_1 \rightarrow \phi(vv_2)$ and $vv_3 \rightarrow 1$. Otherwise, $\phi(v_1v_2) = 1$. If $\phi(v_1v_2) = 1$ and $vv_2 \sim yv_1$, then $v_2v \rightleftharpoons v_2v_3$, $vv_1 \rightarrow \phi(vv_2)$ and $vv_3 \rightarrow 1$. Otherwise, $v_2v_1 \rightleftharpoons v_2v$ and $vv_3 \rightarrow \phi(vv_2)$.

Subcase 1.2. $\phi(vv_2) = 1$.

Then $\phi(v_1y) = 1$ and $v_1y \sim v_2v$ for otherwise we can recolor v_1v with 1 and color vv_3 with $\phi(vv_1)$. If $1 \in C^0_{\phi}(v_4) \cup C^1_{\phi}(v_4)$, then $vv_4 \to 1$ and $vv_3 \to \phi(vv_4)$. Otherwise, $\phi(v_4v_4) = \phi(v_4x) = 1$. Thus $vv_5 \rightleftharpoons v_5v_4$ and $vv_3 \to \phi(vv_5)$.

Subcase 1.3. $1 \notin \{\phi(vv_1), \phi(vv_2)\}.$

If $\phi(v_1v_2) = 1$, then $(v, 1) \sim v_1v_2$ by (*) and then $v_2v_1 \rightleftharpoons v_2v$ and $vv_3 \rightarrow \phi(vv_2)$. Otherwise $\phi(v_1v_2) = b \neq 1$. By the same argument, we have $1 \in C^2_{\phi}(v_4)$, $\phi(v_1y) = 1$ and $(v, 1) \sim v_1y$. It follows that $\phi(v_4v_5) = 1$ and $\phi(vv_5) \neq 1$. First, $vv_5 \rightleftharpoons v_5v_4$ and $vv_3 \rightarrow \phi(vv_5)$. Then if $\phi(vv_5) = \phi(xv_4)$ and $vv_5 \sim xv_4$, then $xv_4 \rightleftharpoons xv_3$.

Case 2. $\phi(v_2v_3) \neq \phi(v_3x)$. Without loss of generality, assume that $\varphi(v_2v_3) = 1$ and $\varphi(v_3x) = 2$.

Then $a \in \{1, 2\}$ and $(v, a) \sim (v_3, a)$, for otherwise we directly color vv_3 with a.

Subcase 2.1. *a* = 1.

Then $(v, 1) \sim v_2 v_3$.

Subcase 2.1.1. $\phi(vv_1) = 1$, that is, $(v, 1) \sim vv_1$.

Subcase 2.1.1.1. $1 \in C^0_{\phi}(v_4) \cup C^1_{\phi}(v_4)$.

If $\phi(vv_4) = 2$ and $v_4v \sim xv_3$, then $\phi(xv_4) \neq 2$ and then $vv_4 \rightarrow 1$, $vv_3 \rightarrow \phi(vv_4)$ and $xv_3 \rightleftharpoons xv_4$. Otherwise, $vv_4 \rightarrow 1$ and $vv_3 \rightarrow \phi(vv_4)$.

Subcase 2.1.1.2. $1 \in C^2_{\phi}(v_4)$. Then $\phi(xv_4) = \phi(v_4v_5) = 1$.

Suppose that $\phi(vv_2) = c \neq 2$. If $\phi(v_1y) = c$ and $v_2v \sim yv_1$, then $\phi(v_1v_2) = 1$ and we do $vv_2 \sim v_1v_2$ and $vv_3 \rightarrow c$. Otherwise, $vv_2 \sim vv_1$, $v_2v_3 \rightarrow c$ and $vv_3 \rightarrow 1$.

Suppose that $\phi(vv_2) = \phi(v_1v_2) = 2$. If $v_2v \neq xv_3$, then $v_2v \rightleftharpoons v_2v_3$, $vv_1 \rightarrow 2$ and $vv_3 \rightarrow 1$. Otherwise, $\phi(vv_4) \notin \{1, 2\}$ and then $v_2v \rightleftharpoons v_2v_3$, $vv_1 \rightarrow \phi(vv_4)$, $vv_4 \rightarrow 2$ and $vv_3 \rightarrow 1$.

Suppose that $\phi(vv_2) = 2$ and $\phi(v_1v_2) = c \neq 2$. If c > 2, then $\phi(v_1y) = 1$, and $vv_2 \rightleftharpoons vv_1, v_1v_2 \rightarrow 2, vv_3 \rightarrow c$ and $vv_3 \rightarrow 1$. Otherwise, $\phi(v_1v_2) = 1$. If $\phi(vv_5) = 2$ and $vv_2 \sim xv_3$, then $v_5v_4 \rightleftharpoons v_5v$, $vv_3 \rightarrow \phi(vv_4)$ and $vv_4 \rightarrow 2$. Otherwise, $v_5v_4 \rightleftharpoons v_5v$ and $vv_3 \rightarrow \phi(vv_5)$.

Subcase 2.1.2. $\phi(vv_2) = 1$.

Then $\phi(v_1v_2) \neq 1$. If $\phi(vv_1) \neq 2$, or $\phi(vv_1) = 2$ but $vv_1 \neq xv_3$, then $vv_1 \rightarrow 1$ and $vv_3 \rightarrow \phi(vv_1)$. Otherwise, if $1 \in C^2_{\phi}(v_4)$, then $vv_1 \rightarrow 1$, $vv_4 \rightarrow 2$ and $vv_3 \rightarrow \phi(vv_4)$. Otherwise, $vv_4 \rightarrow 1$ and $vv_3 \rightarrow vv_4$. **Subcase 2.1.3.** $1 \notin \{\phi(vv_1), \phi(vv_2)\}$.

Suppose that $\phi(v_1v_2) \neq 1$. If $\phi(vv_1) = 2$ and $v_1v \sim xv_3$, then $\phi(v_1v_2) > 2$ and $v_1v_2 \rightleftharpoons v_2v_3$, $vv_3 \rightarrow 1$. Otherwise, $vv_1 \rightarrow 1$ and $vv_3 \rightarrow \phi(vv_1)$.

Suppose that $\phi(v_1v_2) = 1$. Since $(v, 1) \sim v_2v_3$, $\phi(v_1y) = 1$. If $\phi(vv_2) \neq 2$, then $vv_2 \sim v_1v_2$ and $vv_3 \rightarrow \phi(vv_2)$. If $\phi(vv_2) = 2$ and $\phi(vv_1) \neq 2$, then $vv_2 \sim v_1v_2$, $vv_1 \rightarrow \phi(vv_2)$ and $vv_3 \rightarrow \phi(vv_1)$. Suppose that $\phi(vv_1) = \phi(vv_2) = 2$. We also have $vv_2 \sim xv_3$ for otherwise $vv_2 \sim v_1v_2$ and $vv_3 \rightarrow \phi(vv_2)$. Thus, if $1 \in C^0_{\phi}(v_4) \cup C^1_{\phi}(v_4)$, then $vv_4 \rightarrow 1$ and $vv_3 \rightarrow \phi(vv_4)$. Otherwise, if $\phi(vv_4) = \phi(v_4v_5) = 1$, then $\phi(v_4x) > 2$ and $vv_2 \sim v_1v_2$, $vv_3 \rightarrow \phi(vv_2)$ and $xv_3 \rightleftharpoons xv_4$. If $\phi(vv_4) = \phi(xv_4) = 1$, then $vv_2 \sim v_2v_3$, $vv_3 \rightarrow \phi(vv_2)$ and $xv_3 \rightleftharpoons xv_4$. If $\phi(v_5v_4) = \phi(xv_4) = 1$, then $vv_2 \sim v_1v_2$, $vv_3 \rightarrow \phi(vv_4)$ and $vv_4 \rightarrow 2$. **Subcase 2.2.** a = 2. Then $(v, 2) \sim xv_3$. Suppose that $2 \in C^0_{\phi}(v_1) \cup C^1_{\phi}(v_1)$. Then $\phi(vv_1) \neq 2$ and we can recolor vv_1 with 2. If $\phi(vv_1) = 1$, then we come back to Subcase 2.1. Otherwise, $vv_3 \rightarrow \phi(vv_1)$. Suppose that $1 \in C^0_{\phi}(v_4) \cup C^1_{\phi}(v_4)$. Then $\phi(vv_4) \neq 2$ and we can recolor vv_4 with 2. If $\phi(vv_4) = 1$, then we go back to Subcase 2.1. Otherwise, $vv_3 \rightarrow \phi(vv_4)$. So in the following, we assume that $2 \in C^2_{\phi}(v_1) \cap C^2_{\phi}(v_4)$.

Subcase 2.2.1. $\phi(vv_4) = \phi(xv_4) = 2$.

Then $\phi(v_2v_1) = \phi(v_1y) = 2$. It follows that $v_2v_1 \sim v_2v_3$, $vv_1 \rightarrow 2$ and $vv_3 \rightarrow \phi(vv_1)$.

Subcase 2.2.2. $\phi(vv_4) = \phi(v_4v_5) = 2$.

Then $\phi(v_2v_1) = \phi(v_1y) = 2$. Suppose that $\phi(vv_5) = 1$. If $\phi(xv_4) = 1$ and $vv_5 \sim xv_4$, then $vv_5 \rightleftharpoons v_4v_5$, $xv_4 \rightleftharpoons xv_3, vv_4 \rightarrow 1$ and $vv_2 \rightarrow 2$. Otherwise, $vv_5 \rightleftharpoons v_4v_5$ and we go back to Subcase 2.1.

Suppose that $\phi(vv_5) = c > 2$. If $\phi(xv_4) = c$ and $vv_5 \sim xv_4$, then $vv_5 \rightleftharpoons v_4v_5$, $xv_4 \rightleftharpoons xv_3$, $vv_4 \rightarrow c$ and $vv_2 \rightarrow 2$. Otherwise, $vv_5 \rightleftharpoons v_4v_5$ and $vv_3 \rightarrow c$.

Subcase 2.2.3. $\phi(v_5v_4) = \phi(xv_4) = 2$.

Subcase 2.2.3.1. $\phi(vv_1) = \phi(v_1v_2) = 2$.

Suppose that $\phi(vv_2) = 1$. If $\phi(v_1y) = 1$ and $v_2v \sim yv_1$, then $v_2v_1 \sim v_2v$, $vv_4 \rightarrow 1$ and $vv_3 \rightarrow \phi(vv_4)$. Otherwise, $v_2v_1 \sim v_2v$ and $vv_3 \rightarrow 1$.

Suppose that $\phi(vv_2) = c > 2$. If $\phi(v_1y) = c$, then $v_2v_1 \rightarrow 1$, $vv_2 \rightarrow 2$, $v_2v_3 \rightarrow c$ and $vv_3 \rightarrow c$. Otherwise, $v_2v_1 \sim v_2v$ and $vv_3 \rightarrow c$.

Subcase 2.2.3.2. $\phi(vv_1) = \phi(v_1y) = 2$.

First, $vv_5 \rightleftharpoons v_4v_5$, $vv_1 \rightarrow \phi(vv_5)$ and $vv_3 \rightarrow 2$. Then, if $\phi(v_1v_2) = \phi(vv_5) \neq 1$, then $v_1v_2 \rightleftharpoons v_2v_3$. **Subcase 2.2.3.3.** $\phi(v_1v_2) = \phi(yv_1) = 2$.

Suppose that $v_1v_2 \nleftrightarrow xv_3$. If $\phi(vv_1) = 1$ and $v_1v \sim v_2v_3$, then $v_2v_1 \rightleftharpoons v_2v_3$ and $vv_1 \rightleftharpoons vv_4$. Otherwise, $v_2v_1 \rightleftharpoons v_2v_3$. Thus, we go back to Subcase 2.1.

Suppose that $v_1v_2 \sim xv_3$, that is, there is a monochromatic path $v \cdots yv_1v_2 \cdots v_5v_4x v_3$. It follows that $2 \notin \{\phi(vv_1), \phi(vv_2), \phi(vv_4), \phi(vv_5)\}$. If $\phi(vv_1) = \phi(vv_2) = 1$, then $v_2v_1 \rightleftharpoons v_2v$, $vv_4 \to 1$ and $vv_3 \to \phi(vv_4)$. Otherwise, $v_2v_1 \rightleftharpoons v_2v$ and $vv_3 \to \phi(vv_2)$. \Box

Claim 2.11. If a planar graph G contains no 5-cycles with two chords and $\delta(G) > 2$, then the following results hold. (a) Every 4⁺-vertex v is incident with at most $\lfloor \frac{2d(v)}{3} \rfloor$ 3-faces;

(b) If a vertex v is incident with three continuous faces f_1, f_2 and f_3 such that $d(f_1) = 3$, $d(f_2) = 4$ and f_1, f_2 have a common 2-vertex, then $d(f_3) \ge 4$;

(c) If a vertex v is incident with four continuous faces f_1, f_2, f_3 and f_4 such that $d(f_1) = d(f_3) = 3$, $d(f_2) = 4$ and a 2-vertex is incident with f_2 and f_3 , then $d(f_4) \ge 4$;

(d) If a face is adjacent to two nonadjacent 3-face, then the face must be a 4^+ -face.

The proof of the claim is obvious, we omit here. By the Euler's formula |V| - |E| + |F| = 2, we have

$$\sum_{v \in V} (2d(v) - 6) + \sum_{f \in F} (d(f) - 6) = -6(|V| - |E| + |F|) = -12 < 0.$$
⁽¹⁾

We define *ch* to be the initial charge. Let ch(v) = 2d(v) - 6 for each $v \in V(G)$ and ch(f) = d(f) - 6 for each $f \in F(G)$. In the following, we will reassign a new charge denoted by ch'(x) to each $x \in V(G) \cup F(G)$ according to the discharging rules. Since our rules only move charges around, and do not affect the sum, we have

$$\sum_{x \in V(G) \cup F(G)} ch'(x) = \sum_{x \in V(G) \cup F(G)} ch(x) = -12 < 0.$$
⁽²⁾

In the following, we will show that $ch'(x) \ge 0$ for $x \in V(G) \cup F(G)$, a contradiction to (2), completing the proof.

For a face $f = (v_1, v_2, \dots, v_t)$ of G, we use $(d(v_1), d(v_2), \dots, d(v_t)) \rightarrow (c_1, c_2, \dots, c_t)$ to denote that vertex v_i sends f the amount of charge c_i for any $i \in \{1, 2, \dots, t\}$. Now, let us introduce the needed discharging rules as follows.

R1. Every 8⁺-vertex sends 1 to each of its adjacent 2-vertices.

R2. Let f be a 3-face. Then

$$(3,7^+,7^+) \to (0,\frac{3}{2},\frac{3}{2}),$$

$$(4,6^+,7^+) \to (\frac{1}{2},\frac{5}{4},\frac{5}{4}),$$

$$(5^+,5^+,5^+) \to (1,1,1).$$

R3. Let f be a 4-face. Then

$$(3^{-}, 7^{+}, 3^{-}, 7^{+}) \to (0, 1, 0, 1),$$

$$(3^{-}, 7^{+}, 4^{+}, 7^{+}) \to (0, \frac{3}{4}, \frac{1}{2}, \frac{3}{4}),$$

$$(4^{+}, 4^{+}, 4^{+}, 4^{+}) \to (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}).$$

R4. Let f be a 5-face. Then

$$(3^{-}, 7^{+}, 7^{+}, 3^{-}, 7^{+}) \to (0, \frac{1}{3}, \frac{1}{3}, 0, \frac{1}{3}),$$

$$(3^{-}, 7^{+}, 4^{+}, 4^{+}, 7^{+}) \to (0, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}),$$

$$(4^{+}, 4^{+}, 4^{+}, 4^{+}, 4^{+}) \to (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}).$$

Now we begin to check $ch'(x) \ge 0$ for all $x \in V(G) \cup F(G)$. Let $f \in F$. If $d(f) \ge 6$, then $ch'(f) = d(f) - 6 \ge 0$. If d(f) = 5, then $ch'(f) = ch(f) + \max\{\frac{1}{3} \times 3, \frac{1}{4} \times 4, \frac{1}{4} \times 5\} = 0$ by R4. If d(f) = 4, then $ch'(f) = ch(f) + \max\{1 \times 2, \frac{1}{2} + \frac{3}{4} \times 2, \frac{1}{2} \times 4\} = 0$. If d(f) = 3, then $ch'(f) = ch(f) + \max\{\frac{3}{2} \times 2, \frac{1}{2} + \frac{5}{4} \times 2, 1 \times 3\} = 0$.

Let $v \in V$. If d(v) = 2, then ch'(v) = ch(v) + 2 = 0 by R1. If d(v) = 3, then ch'(v) = ch(v) = 0 by R2-R4. If d(v) = 4, then it sends every incident face at most $\frac{1}{2}$. So $ch'(v) = ch(v) - \frac{1}{2} \times f_3(v) - \frac{1}{2} \times (4 - f_3(v)) = 0$ by R2-R4. If d(v) = 5, then $f_3(v) \le 3$ by Claim 2.11. So $ch'(v) \ge ch(v) - 1 \times f_3(v) - \frac{1}{2} \times (5 - f_3(v)) = \frac{3-f_3(v)}{2} \ge 0$. If d(v) = 6, then $f_3(v) \le 4$ and $ch'(v) \ge ch(v) - \frac{5}{4} \times f_3(v) - \frac{1}{2} \times (6 - f_3(v)) = \frac{12-3f_3(v)}{4} \ge 0$. Suppose d(v) = 7. By Claim 2.11, $f_3(v) \le 4$. If v has a 3-neighbor u such that uv is incident with a 3-cycle (note that uv may be incident with two 3-faces), then all neighbors of v except u are 4⁺-vertices, and it follows that $ch'(v) \ge ch(v) - (\frac{3}{2} \times 2 + \frac{5}{4} \times (f_3(v) - 2) + \frac{3}{4} \times (7 - f_3(v))) = \frac{9-2f_3(v)}{4} > 0$. Otherwise, $ch'(v) = ch(v) - \frac{5}{4} \times f_3(v) - 1 \times (7 - f_3(v)) = \frac{4-f_3(v)}{4} \ge 0$. Suppose d(v) = 8. Then $f_3(v) \le 5$. Let $v_1, v_2, ..., v_8$ be neighbors of v in a clockwise order, and denote by

Suppose d(v) = 8. Then $f_3(v) \le 5$. Let $v_1, v_2, ..., v_8$ be neighbors of v in a clockwise order, and denote by $f_1, f_2, ..., f_8$ be faces incident with v such that v_i is incident with $f_i, f_{i+1}, i = 1, 2, ..., 7$ and v_8 is incident with f_8 and f_1 . By Claim 2.4, we consider the following three cases. **Case 1.** $n_2(v) = 2$.

Without loss of generality, assume that v_1 and v_i are 2-vertices ($2 \le i \le 5$). By Claim 2.4, f_1 , f_2 , f_i , f_{i+1} are 4⁺-faces. Note that if some f_j is a 3-face, then all vertices incident with f_j are 4⁺-vertices by Claim 2.5, and it follows that v sends at most $\frac{5}{4}$ to f_j . If f_j is a 3-face and f_{j+1} is a 4-face, then f_{j+1} is incident with at least three 4⁺-vertices, and it follows that it receives at most $\frac{3}{4}$ from v. **Subcase 1.1.** i = 2.

Then $f_3(v) \le 4$ since *G* contains no 5-cycles with two chords. If $f_3(v) < 4$, then $ch'(v) \ge ch(v) - 2 - \frac{5}{4} \times f_3(v) - \frac{3}{4} \times f_3(v) - 1 \times (8 - 2f_3(v)) = 0$ by R2-R4. Otherwise, we must have that f_4 , f_5 , f_7 , f_8 are 3-faces and f_6 is a 4⁺-face. If $d(f_2) = 4$, then $f_3($ or f_1) is 5⁺-face or $f_4($ or f_8) is a $(5^+, 5^+, 5^+)$ -face by Claim 2.10, respectively, and it follows that $ch'(v) \ge ch(v) - 2 - \max\{1 \times 2 + \frac{5}{4} \times 2 + 1 + \frac{3}{4} \times 3, \frac{5}{4} \times 3 + 1 + \frac{3}{4} \times 2 + \frac{1}{3}, \frac{5}{4} \times 4 + 1 + \frac{3}{4} + \frac{1}{3} \times 2\} = \frac{1}{4} > 0$. Otherwise, $d(f_2) \ge 5$, and we have $ch'(v) \ge ch(v) - 2 - \frac{5}{4} \times 4 - \frac{3}{4} \times 3 - \frac{1}{3} > 0$. Subcase 1.2. i = 3.

Then $f_3(v) \le 3$. So $ch'(v) \ge ch(v) - 2 - \frac{5}{4} \times f_3(v) - \frac{3}{4} \times f_3(v) - 1 \times (8 - 2f_3(v)) = 0$ by R2, R3 and R4. **Subcase 1.3.** i = 4.

Then $f_3(v) \le 3$. So $ch'(v) \ge ch(v) - 2 - \frac{5}{4} \times f_3(v) - \frac{3}{4} \times f_3(v) - 1 \times (8 - 2f_3(v)) \ge 0$ by R2, R3 and R4. **Subcase 1.4**. i = 5.

Then $f_3(v) \le 4$. So $ch'(v) \ge ch(v) - 2 - \frac{5}{4} \times f_3(v) - \frac{3}{4} \times f_3(v) - 1 \times (8 - 2f_3(v)) \ge 0$ by R2, R3 and R4. **Case 2.** $n_2(v) = 1$. Without loss of generality, assume that v_8 is the 2-vertex.

Suppose that there is an integer $i(2 \le i \le 6)$ such that f_i and f_{i+1} are 3-faces, then f_i or f_{i+1} is incident with three 4⁺-vertices by Claim 2.6, and f_i or f_j receive at most $\frac{5}{4}$ from v, and accordingly, f_{i-1} or f_{j+1} is a 4⁺-face incident with at least three 4⁺-vertices and receive at most $\frac{3}{4}$ from v.

Subcase 2.1. f_1 and f_8 are 4⁺-faces.

By the hypothesis of the theorem, $f_3(v) \le 4$. If $f_3(v) \le 2$, then $ch'(v) \ge ch(v) - 1 - \frac{3}{2} \times 2 - 1 \times 6 = 0$. Suppose that $f_3(v) = 3$. Let f_i, f_j, f_k be three 3-faces, where 1 < i < j < k < 8. If i + 1 < j < k - 1, then there are at least three 4⁺-faces each of which is incident with at least three 4⁺-vertices, and it follows that $ch'(v) \ge ch(v) - 1 - \frac{3}{2} \times 3 - \frac{3}{4} \times 3 - 1 \times 2 > 0$. Otherwise, there is a 3-face received $\frac{5}{4}$ from v and a 4⁺-face received $\frac{3}{4}$ from v, so $ch'(v) \ge ch(v) - 1 - \frac{3}{2} \times 2 - \frac{5}{4} - \frac{3}{4} - 1 \times 4 = 0$.

Suppose that $f_3(v) = 4$. Let f_i, f_j, f_k, f_l be four 3-faces, where $2 \le i < j < k < l \le 7$. If i + 1 = j and k + 1 = l, then $ch'(v) \ge ch(v) - 1 - (\frac{3}{2} + \frac{5}{4}) \times 2 - \max\{1 \times 3 + \frac{1}{2}, \frac{3}{4} \times 2 + 1 \times 2\} = 0$. Otherwise, there is a pair of adjacent 3-faces in $\{f_i, f_j, f_k, f_l\}$ and there are at least three 4^+ -faces incident with at least three 4^+ -vertices, and it follows that $ch'(v) \ge ch(v) - 1 - \frac{3}{2} \times 3 - \frac{5}{4} - \frac{3}{4} \times 3 - 1 = 0$.

Subcase 2.2. f_1 or f_8 is a 3-face. Without loss of generality, assume that $d(f_1) = 3$.

Then $d(f_8) \ge 4$ and $f_3(v) \le 5$.

Subcase 2.2.1. $f_3(v) \le 2$.

Then $ch'(v) \ge ch(v) - 1 - \frac{3}{2} \times 2 - 1 \times 6 = 0$. Subcase 2.2.2. $f_3(v) = 3$.

Let f_1 , f_i , f_j be three 3-faces, where 1 < i < j < 8. If i = 2, that is, f_1 and f_2 are two adjacent 3-faces, then $d(v_2) \ge 4$ by Claim 2.7, and it follows that v sends at most $\frac{5}{4}$ to f_2 , at most $\frac{3}{4}$ to f_3 , and we have $ch'(v) \ge ch(v) - 1 - \frac{3}{2} \times 2 - \frac{5}{4} - \frac{3}{4} - 1 \times 4 = 0$. Otherwise $ch'(v) \ge ch(v) - 1 - \max\{\frac{3}{2} \times 3 + \frac{3}{4} \times 3 + 2 \times 1, \frac{3}{2} \times 2 + \frac{5}{4} + \frac{3}{4} \times 2 + 1 \times 2\} > 0$. **Subcase 2.2.3**. $f_3(v) = 4$.

Let f_1 , f_i , f_j , f_k be three 3-faces, where 1 < i < j < k < 8. Suppose that i = 2, that is, f_1 and f_2 are two adjacent 3-faces. Then $d(v_2) \ge 4$ by Claim 2.7, and it follows that v sends at most $\frac{5}{4}$ to f_2 , at most $\frac{3}{4}$ to f_3 . If f_j , f_k are not adjacent, then $ch'(v) \ge ch(v) - 1 - \frac{3}{2} \times 3 - \frac{5}{4} - \frac{3}{4} - \max\{\frac{1}{2} + 1 \times 2, \frac{3}{4} \times 2 + 1\} = 0$. Otherwise $ch'(v) \ge ch(v) - 1 - \frac{3}{2} \times 2 - \frac{5}{4} \times 2 - \max\{\frac{3}{4} \times 2 + 2 \times 1, \frac{3}{4} \times 3 + 1\} = 0$.

Suppose that i > 2. If i = 3, j = 5, k = 7, then $ch'(v) \ge ch(v) - 1 - \frac{3}{2} \times 4 - \max\{\frac{3}{4} \times 4, \frac{3}{4} \times 2 + \frac{1}{2} + 1, \frac{1}{2} + 1 \times 2\} = 0$. Otherwise, there are two adjacent 3-faces in $\{f_i, f_j, f_k\}$, and $ch'(v) \ge ch(v) - 1 - \frac{3}{2} \times 3 - \frac{5}{4} - \max\{\frac{3}{4} \times 3 + 1, \frac{3}{4} + \frac{1}{2} + 1 \times 2\} = 0$.

Subcase 2.2.4. $f_3(v) = 5$.

Then we must have $d(f_7) = 3$ and $d(f_8) \ge 5$. Suppose that $d(f_2) \ge 4$. Then f_3 , f_4 , f_6 , f_7 are 3-faces. By Claim 2.6, max $\{d(v_2), d(v_4)\} \ge 4$ and max $\{d(v_5), d(v_7)\} \ge 4$. So $ch'(v) \ge ch(v) - 1 - \frac{3}{2} \times 3 - \frac{5}{4} \times 2 - \frac{1}{3} - \max\{\frac{3}{4} \times 2, \frac{1}{2} + 1\} > 0$.

Suppose that $d(f_2) = 3$, that is, f_1 and f_2 are two adjacent 3-faces. Then $d(v_2) \ge 4$ by Claim 2.7, and $d(f_3) \ge 4$. We also have $ch'(v) \ge ch(v) - 1 - \frac{3}{2} \times 3 - \frac{5}{4} \times 2 - \frac{1}{3} - \max\{\frac{3}{4} \times 2, \frac{1}{2} + 1\} > 0$. **Case 3.** $n_2(v) = 0$.

Then $f_3(v) \le 5$. If $f_3(v) \le 4$, then $ch'(v) \ge ch(v) - \frac{3}{2} \times 4 - 1 \times 4 = 0$. Otherwise, assume that f_1, f_2, f_4, f_5, f_7 are 3-faces. If there is a 5⁺-face in $\{f_3, f_6, f_8\}$, then $ch'(v) \ge ch(v) - \frac{3}{2} \times 5 - \frac{1}{3} - 1 \times 2 > 0$. Otherwise, $d(f_3) = d(f_6) = d(f_8) = 4$. By Claim 2.10, there are at least two 4-faces in $\{f_3, f_6, f_8\}$ each of which is incident with at least three 4⁺-vertices. So $ch'(v) \ge ch(v) - \frac{3}{2} \times 4 - \frac{5}{4} - \frac{3}{4} \times 2 - 1 > 0$.

Hence the proof is completed. \Box

References

[1] J. Akiyama, G. Exoo, F. Harary, Covering and packing in graphs III: cyclic and acyclic invariants, Math. Slovaca 30(1980) 405–417.

- [2] J. Akiyama, G. Exoo, F. Harary, Covering and packing in graphs IV: linear arboricity, Networks 11(1981) 69-72.
- [3] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, MacMillan, New York, 1976.
- [4] H. Y. Chen, J. M. Qi, The linear arboricity of planar graphs with maximum degree at least 5, Inform. Process. Letter 112(2012) 767–771.
- [5] H. Y. Chen, X. Tan, J. L. Wu, G. J. Li, The linear arboricity of planar graphs with 5-,6-cycles with Chords, Graphs Combin. 29(2013) 373–385.
- [6] H. Y. Chen, X. Tan, J. L. Wu, The linear arboricity of planar graphs without 5-Cycles with chords, Bulletin of the Malaysian Mathematical Sciences Society 36(2013) 285–290.
- [7] H. Y. Chen, X. Tan, J. L. Wu, The linear arboricity of planar graphs with maximum degree at least 7, Utilitas Mathematica 90(2013) 199–218.
- [8] M. Cygan, J. F. Hou, L. Kowalik, B. Luzar, J. L. Wu, A planar linear arboricity conjecture, J. Graph Theory 69(2012) 403-425.
- [9] H. Enomoto, B. Péroche, The linear arboricity of some regular graphs, J. Graph Theory 8(1984) 309–324.
- [10] F. Harary, Covering and packing in graphs I, Ann. N.Y. Acad. Sci. 175(1970) 198–205.
- [11] X. Tan, H. Y. Chen, J. L. Wu, The Linear Arboricity of Planar Graphs without 5-cycles and 6-cycles, ARS Combinatoria 97(2010) 367–375.
- [12] X. Tan, H. Y. Chen, J. L. Wu, The linear arboricity of planar graphs with maximum degree at least five, Bull. Malays. Math. Sci. Soc. 34(2011) 541–552.
- [13] H. J. Wang, B. Liu, J. L. Wu, The linear arboricity of planar graphs without chordal short cycles, Utilitas Mathematica 87(2012) 255–263.
- [14] H. J. Wang, B. Liu, J. L. Wu, The linear arboricity of planar graphs without adjacent 4-cycles, Utilitas Mathematica 91(2013) 143–153.
- [15] H. J. Wang, L. D. Wu, W. L. Wu, J. L. Wu, Minimum number of disjoint linear forests covering a planar graph, J. Comb. Optim. 28(2014) 274–287.
- [16] J. L. Wu, Some path decompositions of Halin graphs, J. Shandong Mining Institute 17(1998) 92–96.
- [17] J. L. Wu, On the linear arboricity of planar graphs, J. Graph Theory 31(1999) 129–134.
- [18] J. L. Wu, The linear arboricity of series-parallel graphs, Graphs Combin. 16(2000) 367–372.
- [19] J. L. Wu, J. F. Hou, G. Z. Liu, The linear arboricity of planar graphs with no short cycles, Theor. Comput. Sci. 381(2007) 230–233.
- [20] J. L. Wu, G. Z. Liu, Y. L. Wu, The linear arboricity of composition of two graphs, Journal of System Science and Complexity, 15(2002) 372–375.
- [21] J. L. Wu, Y. W. Wu, The linear arboricity of planar graphs of maximum degree seven are four, J. Graph Theory 58(2008) 210–220.
- [22] J. L. Wu, J. F. Hou, X. Y. Sun, A note on the linear arboricity of planar graphs without 4-cycles, ISORA' Lect. Notes Oper. Res. 10(2009) 174–178.