

The Linear Arboricity of Planar Graphs without 5-Cycles with Two Chords

Xiang-Lian Chen ${ }^{\text {a }}$, Jian-Liang Wu ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Changji College, Changji, 831100, China.
${ }^{b}$ School of Mathematics, Shandong University, Jinan, 250100, China.

Abstract

The linear arboricity $l a(G)$ of a graph G is the minimum number of linear forests which partition the edges of G. In this paper, it is proved that for a planar graph $G, l a(G)=\lceil(\Delta(G) / 2)\rceil$ if $\Delta(G) \geq 7$ and G has no 5-cycles with two chords.

1. Introduction

In this paper, all graphs are finite, simple and undirected. For a real number $x,\lceil x\rceil$ is the least integer not less than x and $\lfloor x\rfloor$ is the largest integer not larger than x. Let G be a graph. We use $V(G)$ and $E(G)$ to denote the vertex set and edge set, respectively. If $u v \in E(G)$, then u is said to be a neighbor of v, and $N_{G}(v)$ is the set of neighbors of v. The degree $d(v)$ of a vertex v is $\left|N_{G}(v)\right|, \delta(G)$ is the minimum degree of G and $\Delta(G)$ is the maximum degree of G. A $k-, k^{+}$- or k^{-}-vertex is a vertex of degree k, at least k, or at most k, respectively. A k-cycle is a cycle of length k. Two cycles are said to be adjacent (or intersecting) if they have at least one common edge (or vertex, respectively). Given a cycle C of length $k(k \geq 4)$ in G, an edge $x y \in E(G) \backslash E(C)$ is called a chord of C if $x, y \in V(C)$. Such a cycle C is also called a chordal- k-cycle.

If G is a planar graph, then we always assume that G has been embedded in the plane. Let G be a planar graph and $F(G)$ be the face set of G. For $f \in F(G)$, the degree of f, denoted by $d(f)$, is the number of edges incident with it, where each cut-edge is counted twice. $A k-, k^{+}$- or k^{-}-face is a face of degree k, at least k, or at most k, respectively. Let $n_{i}(v)$ denote the number of i-vertices of G adjacent to the vertex $v, f_{i}(v)$ the number of i-faces of G incident with v. All undefined notations and definitions follow that of Bondy and Murty [3].

A linear forest is a graph in which each component is a path. A map φ form $E(G)$ to $\{1,2, \cdots, t\}$ is called a t-linear coloring if the induced subgraph of edges having the same color α is a linear forest for $1 \leq \alpha \leq t$. The linear arboricity $l a(G)$ of a graph G defined by Harary [10] is the minimum number t for which G has a t-linear coloring. Akiyama et al.[1] conjectured that $l a(G)=\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$ for any simple regular graph G. The conjecture is equivalent to the following conjecture.

Conjecture A. For any graph $G,\left\lceil\frac{\Delta(G)}{2}\right\rceil \leq l a(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$.

[^0]The linear arboricity has been determined for complete bipartite graphs [1], complete regular multipartite graphs [20], Halin graphs [16], series-parallel graphs [18] and regular graphs with $\Delta=3,4[2$] and $5,6,8[9]$. For planar graphs, more results are obtained. Conjecture A has already been proved to be true for all planar graphs (see [17] and [21]). Wu [17] proved that for a planar graph G with girth g and maximum degree $\Delta, l a(G)=\left\lceil\frac{\Delta(G)}{2}\right\rceil$ if $\Delta(G) \geq 13$, or $\Delta(G) \geq 7$ and $g \geq 4$, or $\Delta(G) \geq 5$ and $g \geq 5, \Delta(G) \geq 3$ and $g \geq 6$. Recently, M. Cygan et al. [8] proved that if G is a planar graph with $\Delta \geq 9$, then $l a(G)=\left\lceil\frac{\Delta}{2}\right\rceil$, and then they posed the following conjecture.

Conjecture B. For any planar graph G of maximum degree $\Delta \geq 5, l a(G)=\left\lceil\frac{\Delta}{2}\right\rceil$.
There are more partial results to support the conjecture. The linear arboricity of a planar graph G is $\left\lceil\frac{\Delta}{2}\right\rceil$ if it satisfies one of the following conditions: (1) $\Delta(G) \geq 7$ and G contains no chordal i-cycles for some $i \in\{4,5,6,7\}([5,6,13]) ;(2) \Delta \geq 7$ and for each vertex $v \in V(G)$, there exist two integers $i_{v}, j_{v} \in\{3,4,5,6,7,8\}$ such that any two i_{v}, j_{v}-cycles incident with v are not adjacent $([7,15]) ;(3) \Delta \geq 5$ and G contains no 4 -cycles ([22]); (4) $\Delta \geq 5$ and G has no intersecting 4-cycles and intersecting 5-cycles ([4]); (5) $\Delta \geq 5$ and G has no 5 -, 6 -cycles with chords ([5]); (6) $\Delta \geq 5$ and any 4 -cycle is not adjacent to an i-cycle for any $i \in\{3,4,5\}$ or G has no intersecting 4 -cycles and intersecting i-cycles for either $i=3$ or $i=6$ ([11]); (7) $\Delta \geq 5$ and any two 4 -cycles are not adjacent, and any 3-cycle is not adjacent to a 5-cycle ([14]).

In the paper, we will prove that if G is a planar graph with $\Delta(G) \geq 7$ and any 5-cycle contains at most one chord, then $l a(G)=\left\lceil\frac{\Delta(G)}{2}\right\rceil$. It generalizes some above results.

2. Main Result and its Proof

First, we give some more definitions. Given a t-linear coloring φ and $v \in V(G)$, we denote by $C_{\varphi}^{i}(v)$ the set of colors appear i times at v, where $i=0,1,2$. Then $\left|C_{\varphi}^{0}(v)\right|+\left|C_{\varphi}^{1}(v)\right|+\left|C_{\varphi}^{2}(v)\right|=t$ and $d(v)=\left|C_{\varphi}^{1}(v)\right|+2\left|C_{\varphi}^{2}(v)\right|$. For two adjacent edges $u v$ and $u w$, we denote by $u v \rightleftharpoons u w$ to exchange the colors of $u v$ and $u w$, by $u v \rightarrow c$ to color $u v$ with a color c. If $i \in C_{\varphi}^{1}(v)$, we denote by (v, i) the edge colored with i. For two vertices u and v, we use $(u, i) \sim(v, i)$ to denote that there is a monochromatic path of color i between u and v. For a vertex v and an edge $x y$ of $G, x y \sim(v, i)$ denote that there exists a monochromatic path of color i between x and v passing y. For two different edges $x_{1} y_{1}$ and $x_{2} y_{2}$ of G, we use $x_{1} y_{1} \sim x_{2} y_{2}$ to denote more accurately that there is a monochromatic path from x_{1} to y_{2} passing through the edges $x_{1} y_{1}$ and $x_{2} y_{2}$ in G (that is, y_{1} and x_{2} are internal vertices in the path). We use \propto to denote that such monochromatic path does not exist.

Now we begin to give the main result of the paper and its proof.
Theorem 2.1. Let G be a planar graph with $\Delta(G) \geq 7$. If any 5 -cycle contains at most one chord, then la $(G)=\left\lceil\frac{\Delta(G)}{2}\right\rceil$.
Proof. Since all planar graphs G with $\Delta(G) \geq 9$ have been proved in [8] to be $\left\lceil\frac{\Delta(G)}{2}\right\rceil$-linear colorable, it suffices to prove the following result.
(A) Any planar graph G of maximum degree at most 8 has an 4 -linear coloring using colors 1,2,3,4 if G contains no 5-cycles with two chords.

Let $G=(V, E)$ be a minimal counterexample to (A). First, we show some known claims for G.
Claim 2.2. Let $u v \in E(G)$ and $G-u v$ has an 4-linear coloring φ. Let $C_{\varphi}(u, v)=C_{\varphi}^{2}(u) \cup C_{\varphi}^{2}(v) \cup\left(C_{\varphi}^{1}(u) \cap C_{\varphi}^{1}(v)\right)$. Then
(1) $\left|C_{\varphi}(u, v)\right|=4$;
(2) If there is a color i such that $i \in C_{\varphi}^{1}(u) \cap C_{\varphi}^{1}(v)$ then $(u, i) \sim(v, i)$.

Proof. (1) Suppose that $\left|C_{\varphi}(u, v)\right|<4$, We may extend φ to an 4-linear coloring of G by setting $\varphi(u v) \in$ $\{1,2,3,4\} \backslash C_{\varphi}(u, v)$, a contradiction.
(2) If $(u, i) \propto(v, i)$, we may extend φ to an 4 -linear coloring of G by setting $\varphi(u, v)=i$, a contradiction.

By Claim 2.2, we have
(a) $\delta(G) \geq 2$,
(b) for any edge $u v \in E(G), d_{G}(u)+d_{G}(v) \geq 10$,
(c) any two 4^{-}-vertices are not adjacent,
(c) any 3-face is incident with three 5^{+}-vertices, or at least two 6^{+}-vertices, and
(d) any 7^{-}-vertex has no neighbors of degree 2.

Claim 2.3. [13] If a 7-vertex u is adjacent to a 3-vertex v such that $u v$ is incident with a 3-cycle, then all neighbors of u except v are 4^{+}-vertices.

Claim 2.4. [22] Every vertex is adjacent to at most two 2-vertices. Moreover, suppose that a vertex v is adjacent to two 2-vertices x, y. Let x^{\prime}, y^{\prime} be the other neighbors of x, y, respectively. Then $x^{\prime} v, y^{\prime} v \notin E(G)$.

Claim 2.5. [5, 11] If a vertex u is adjacent to two 2-vertices v, w and incident with a 3-face $u x y u$, then $d(x) \geq 4$ and $d(y) \geq 4$.

Claim 2.6. [5, 13] If a vertex u is adjacent to a 2-vertex v and incident with two adjacent 3-cycles uwxu,uwyu, then $d(w) \geq 4$ and $\max \{d(y), d(x)\} \geq 4$.

Claim 2.7. [8] If there are two adjacent 3-face uvwu and uvxu such that $d(w)=2$, then $d(x) \geq 4$.
By Claim 2.7, we have the following corollary.
Corollary 2.8. If a 3-face uxvu is adjacent to a 4 -face uxvyu such that $d(x)=2$, then $d(y) \geq 4$.
Claim 2.9. [13] If G has a 3-face uvwu such that $d(u)+d(v)=10$, then $d(w)=8$.
Claim 2.10. G has no configurations depicted in Figure 1.

Figure 1.

Proof. Suppose that G has a configuration as depicted in Figure 1(a). By the minimality of $G, G^{\prime}=G-u y$ has a 4-linear coloring φ. Without loss of generality, assume $\varphi(v y)=1$. Then $1 \in C_{\varphi}^{1}(u)$ and $(u, 1) \sim v y$ by Claim 2.2. If $\varphi(x u) \neq 1$, then $\varphi(x v) \neq 1$, and then $x u \rightarrow 1$ and $u y \rightarrow \varphi(x u)$. Otherwise, we must have $\varphi(x v)=\varphi(x u)=1$, and $\varphi(u w) \neq 1, \varphi(u z) \neq 1, \varphi(v w) \neq 1$. If $1 \in C_{\varphi}^{0}(w) \cup C_{\varphi}^{1}(w)$, then $w u \rightarrow 1$ and $u y \rightarrow \varphi(w u)$. Otherwise $1 \in C_{\varphi}^{2}(w)$, that is, $\varphi(w z)=1$. We recolor $w z$ and $x u$ with $\varphi(u z)$, and then $u z \rightarrow 1, v y \rightleftharpoons v w$, and $u y \rightarrow 1$. Hence we can obtain a 4 -linear coloring of G, a contradiction.

Suppose that G has a configuration as depicted in Figure 1(b). By the minimality of $G, G^{\prime}=G-u y$ has a 4-linear coloring φ. Without loss of generality, assume $\varphi(v y)=1$. By the same argument as above, we have $\varphi(x v)=\varphi(x u)=1$ and $1 \in C_{\varphi}^{2}(w)$. Suppose that $\varphi(w t)=\varphi(w s)=1$. If $\varphi(u t)=\varphi(z w)$ and $u t \sim z w$, then $u s \rightleftharpoons w s, u y \rightarrow \varphi(u s)$. Otherwise, $u t \rightleftharpoons w t, u y \rightarrow \varphi(u t)$. Suppose that $\varphi(w t)=1$ and $\varphi(w s) \neq 1$ (It is similar to settle the case $\varphi(w t) \neq 1$ and $\varphi(w s)=1)$. Then $\varphi(w z)=1$. First, $w u \rightarrow 1, u t \rightarrow 1, w t \rightarrow \varphi(u t)$. Then, if
$\varphi(u t)=\varphi(s w)$ and $u t \sim s w$, then $u s \rightleftharpoons w s$. Finally, $u x \rightarrow \varphi(w u)$ and $u y \rightarrow \varphi(u t)$. Hence, we can obtain a 4-linear coloring of G, a contradiction.

Suppose that G has a configuration as depicted in Figure 1(c). By the minimality of G, there exists a 4 -linear coloring ϕ of $G-v v_{3}$ with colors $1,2,3,4$. We also show how to extend ϕ to G and obtain a contradiction with the minimality. The only non-colored edge is $v v_{3}$. Let $C_{\phi}^{1}(v)=\{a\}$.
Case 1. $\phi\left(v_{2} v_{3}\right)=\phi\left(v_{3} x\right)$. Without loss of generality, assume that $\phi\left(v_{2} v_{3}\right)=1$.
Then $a=1$ for otherwise we can color $v v_{3}$ with a directly. If $(v, 1) \nsim v_{2} v_{3}$, then $\phi\left(v v_{2}\right) \neq 1, v_{2} v \rightleftharpoons v_{2} v_{3}$ and $v v_{3} \rightarrow \phi\left(v v_{2}\right)$, a contradiction. So

$$
\begin{equation*}
(v, 1) \sim v_{2} v_{3} \tag{*}
\end{equation*}
$$

Subcase 1.1. $\phi\left(v v_{1}\right)=1$.
Then $v v_{1} \sim v_{2} v_{3}$ by $\left(^{*}\right)$. If $\phi\left(v_{1} y\right)=1$, then $v_{2} v \rightleftharpoons v_{2} v_{3}, v v_{1} \rightarrow \phi\left(v v_{2}\right)$ and $v v_{3} \rightarrow 1$. Otherwise, $\phi\left(v_{1} v_{2}\right)=1$. If $\phi\left(v_{1} v_{2}\right)=1$ and $v v_{2} \sim y v_{1}$, then $v_{2} v \rightleftharpoons v_{2} v_{3}, v v_{1} \rightarrow \phi\left(v v_{2}\right)$ and $v v_{3} \rightarrow 1$. Otherwise, $v_{2} v_{1} \rightleftharpoons v_{2} v$ and $v v_{3} \rightarrow \phi\left(v v_{2}\right)$.
Subcase 1.2. $\phi\left(v v_{2}\right)=1$.
Then $\phi\left(v_{1} y\right)=1$ and $v_{1} y \sim v_{2} v$ for otherwise we can recolor $v_{1} v$ with 1 and color $v v_{3}$ with $\phi\left(v v_{1}\right)$. If $1 \in C_{\phi}^{0}\left(v_{4}\right) \cup C_{\phi}^{1}\left(v_{4}\right)$, then $v v_{4} \rightarrow 1$ and $v v_{3} \rightarrow \phi\left(v v_{4}\right)$. Otherwise, $\phi\left(v_{4} v_{4}\right)=\phi\left(v_{4} x\right)=1$. Thus $v v_{5} \rightleftharpoons v_{5} v_{4}$ and $v_{3} \rightarrow \phi\left(v v_{5}\right)$.
Subcase 1.3. $1 \notin\left\{\phi\left(v v_{1}\right), \phi\left(v v_{2}\right)\right\}$.
If $\phi\left(v_{1} v_{2}\right)=1$, then $(v, 1) \sim v_{1} v_{2}$ by $(*)$ and then $v_{2} v_{1} \rightleftharpoons v_{2} v$ and $v v_{3} \rightarrow \phi\left(v v_{2}\right)$. Otherwise $\phi\left(v_{1} v_{2}\right)=b \neq 1$. By the same argument, we have $1 \in C_{\phi}^{2}\left(v_{4}\right), \phi\left(v_{1} y\right)=1$ and $(v, 1) \sim v_{1} y$. It follows that $\phi\left(v_{4} v_{5}\right)=1$ and $\phi\left(v v_{5}\right) \neq 1$. First, $v v_{5} \rightleftharpoons v v_{5} v_{4}$ and $v v_{3} \rightarrow \phi\left(v v_{5}\right)$. Then if $\phi\left(v v_{5}\right)=\phi\left(x v_{4}\right)$ and $v v_{5} \sim x v_{4}$, then $x v_{4} \rightleftharpoons x v_{3}$.
Case 2. $\phi\left(v_{2} v_{3}\right) \neq \phi\left(v_{3} x\right)$. Without loss of generality, assume that $\varphi\left(v_{2} v_{3}\right)=1$ and $\varphi\left(v_{3} x\right)=2$.
Then $a \in\{1,2\}$ and $(v, a) \sim\left(v_{3}, a\right)$, for otherwise we directly color $v v_{3}$ with a.
Subcase 2.1. $a=1$.
Then $(v, 1) \sim v_{2} v_{3}$.
Subcase 2.1.1. $\phi\left(v v_{1}\right)=1$, that is, $(v, 1) \sim v v_{1}$.
Subcase 2.1.1.1. $1 \in C_{\phi}^{0}\left(v_{4}\right) \cup C_{\phi}^{1}\left(v_{4}\right)$.
If $\phi\left(v v_{4}\right)=2$ and $v_{4} v \sim x v_{3}$, then $\phi\left(x v_{4}\right) \neq 2$ and then $v v_{4} \rightarrow 1, v v_{3} \rightarrow \phi\left(v v_{4}\right)$ and $x v_{3} \rightleftharpoons x v_{4}$. Otherwise, $v v_{4} \rightarrow 1$ and $v v_{3} \rightarrow \phi\left(v v_{4}\right)$.
Subcase 2.1.1.2. $1 \in C_{\phi}^{2}\left(v_{4}\right)$. Then $\phi\left(x v_{4}\right)=\phi\left(v_{4} v_{5}\right)=1$.
Suppose that $\phi\left(v v_{2}\right)=c \neq 2$. If $\phi\left(v_{1} y\right)=c$ and $v_{2} v \sim y v_{1}$, then $\phi\left(v_{1} v_{2}\right)=1$ and we do $v v_{2} \sim v_{1} v_{2}$ and $v v_{3} \rightarrow c$. Otherwise, $v v_{2} \sim v v_{1}, v_{2} v_{3} \rightarrow c$ and $v v_{3} \rightarrow 1$.

Suppose that $\phi\left(v v_{2}\right)=\phi\left(v_{1} v_{2}\right)=2$. If $v_{2} v \times x v_{3}$, then $v_{2} v \rightleftharpoons v_{2} v_{3}, v v_{1} \rightarrow 2$ and $v v_{3} \rightarrow 1$. Otherwise, $\phi\left(v v_{4}\right) \notin\{1,2\}$ and then $v_{2} v \rightleftharpoons v_{2} v_{3}, v v_{1} \rightarrow \phi\left(v v_{4}\right), v v_{4} \rightarrow 2$ and $v v_{3} \rightarrow 1$.

Suppose that $\phi\left(v v_{2}\right)=2$ and $\phi\left(v_{1} v_{2}\right)=c \neq 2$. If $c>2$, then $\phi\left(v_{1} y\right)=1$, and $v v_{2} \rightleftharpoons v v_{1}, v_{1} v_{2} \rightarrow 2, v v_{3} \rightarrow c$ and $v v_{3} \rightarrow 1$. Otherwise, $\phi\left(v_{1} v_{2}\right)=1$. If $\phi\left(v v_{5}\right)=2$ and $v v_{2} \sim x v_{3}$, then $v_{5} v_{4} \rightleftharpoons v_{5} v, v v_{3} \rightarrow \phi\left(v v_{4}\right)$ and $v v_{4} \rightarrow 2$. Otherwise, $v_{5} v_{4} \rightleftharpoons v_{5} v$ and $v v_{3} \rightarrow \phi\left(v v_{5}\right)$.
Subcase 2.1.2. $\phi\left(v v_{2}\right)=1$.
Then $\phi\left(v_{1} v_{2}\right) \neq 1$. If $\phi\left(v v_{1}\right) \neq 2$, or $\phi\left(v v_{1}\right)=2$ but $v v_{1} \times x v_{3}$, then $v v_{1} \rightarrow 1$ and $v v_{3} \rightarrow \phi\left(v v_{1}\right)$. Otherwise, if $1 \in C_{\phi}^{2}\left(v_{4}\right)$, then $v v_{1} \rightarrow 1, v v_{4} \rightarrow 2$ and $v v_{3} \rightarrow \phi\left(v v_{4}\right)$. Otherwise, $v v_{4} \rightarrow 1$ and $v v_{3} \rightarrow v v_{4}$.
Subcase 2.1.3. $1 \notin\left\{\phi\left(v v_{1}\right), \phi\left(v v_{2}\right)\right\}$.
Suppose that $\phi\left(v_{1} v_{2}\right) \neq 1$. If $\phi\left(v v_{1}\right)=2$ and $v_{1} v \sim x v_{3}$, then $\phi\left(v_{1} v_{2}\right)>2$ and $v_{1} v_{2} \rightleftharpoons v_{2} v_{3}, v v_{3} \rightarrow 1$. Otherwise, $v v_{1} \rightarrow 1$ and $v v_{3} \rightarrow \phi\left(v v_{1}\right)$.

Suppose that $\phi\left(v_{1} v_{2}\right)=1$. Since $(v, 1) \sim v_{2} v_{3}, \phi\left(v_{1} y\right)=1$. If $\phi\left(v v_{2}\right) \neq 2$, then $v v_{2} \sim v_{1} v_{2}$ and $v v_{3} \rightarrow \phi\left(v v_{2}\right)$. If $\phi\left(v v_{2}\right)=2$ and $\phi\left(v v_{1}\right) \neq 2$, then $v v_{2} \sim v_{1} v_{2}, v v_{1} \rightarrow \phi\left(v v_{2}\right)$ and $v v_{3} \rightarrow \phi\left(v v_{1}\right)$. Suppose that $\phi\left(v v_{1}\right)=\phi\left(v v_{2}\right)=$ 2. We also have $v v_{2} \sim x v_{3}$ for otherwise $v v_{2} \sim v_{1} v_{2}$ and $v v_{3} \rightarrow \phi\left(v v_{2}\right)$. Thus, if $1 \in C_{\phi}^{0}\left(v_{4}\right) \cup C_{\phi}^{1}\left(v_{4}\right)$, then $v v_{4} \rightarrow 1$ and $v v_{3} \rightarrow \phi\left(v v_{4}\right)$. Otherwise, if $\phi\left(v v_{4}\right)=\phi\left(v_{4} v_{5}\right)=1$, then $\phi\left(v_{4} x\right)>2$ and $v v_{2} \sim v_{1} v_{2}, v v_{3} \rightarrow \phi\left(v v_{2}\right)$ and $x v_{3} \rightleftharpoons x v_{4}$. If $\phi\left(v v_{4}\right)=\phi\left(x v_{4}\right)=1$, then $v v_{2} \sim v_{2} v_{3}, v v_{3} \rightarrow \phi\left(v v_{2}\right)$ and $x v_{3} \rightleftharpoons x v_{4}$. If $\phi\left(v_{5} v_{4}\right)=\phi\left(x v_{4}\right)=1$, then $v v_{2} \sim v_{1} v_{2}, v v_{3} \rightarrow \phi\left(v v_{4}\right)$ and $v v_{4} \rightarrow 2$.
Subcase 2.2. $a=2$.

Then $(v, 2) \sim x v_{3}$. Suppose that $2 \in C_{\phi}^{0}\left(v_{1}\right) \cup C_{\phi}^{1}\left(v_{1}\right)$. Then $\phi\left(v v_{1}\right) \neq 2$ and we can recolor $v v_{1}$ with 2 . If $\phi\left(v v_{1}\right)=1$, then we come back to Subcase 2.1. Otherwise, $v v_{3} \rightarrow \phi\left(v v_{1}\right)$. Suppose that $1 \in C_{\phi}^{0}\left(v_{4}\right) \cup C_{\phi}^{1}\left(v_{4}\right)$. Then $\phi\left(v v_{4}\right) \neq 2$ and we can recolor $v v_{4}$ with 2 . If $\phi\left(v v_{4}\right)=1$, then we go back to Subcase 2.1. Otherwise, $v v_{3} \rightarrow \phi\left(v v_{4}\right)$. So in the following, we assume that $2 \in C_{\phi}^{2}\left(v_{1}\right) \cap C_{\phi}^{2}\left(v_{4}\right)$.
Subcase 2.2.1. $\phi\left(v v_{4}\right)=\phi\left(x v_{4}\right)=2$.
Then $\phi\left(v_{2} v_{1}\right)=\phi\left(v_{1} y\right)=2$. It follows that $v_{2} v_{1} \sim v_{2} v_{3}, v v_{1} \rightarrow 2$ and $v v_{3} \rightarrow \phi\left(v v_{1}\right)$.
Subcase 2.2.2. $\phi\left(v v_{4}\right)=\phi\left(v_{4} v_{5}\right)=2$.
Then $\phi\left(v_{2} v_{1}\right)=\phi\left(v_{1} y\right)=2$. Suppose that $\phi\left(v v_{5}\right)=1$. If $\phi\left(x v_{4}\right)=1$ and $v v_{5} \sim x v_{4}$, then $v v_{5} \rightleftharpoons v_{4} v_{5}$, $x v_{4} \rightleftharpoons x v_{3}, v v_{4} \rightarrow 1$ and $v v_{2} \rightarrow 2$. Otherwise, $v v_{5} \rightleftharpoons v_{4} v_{5}$ and we go back to Subcase 2.1.

Suppose that $\phi\left(v v_{5}\right)=c>2$. If $\phi\left(x v_{4}\right)=c$ and $v v_{5} \sim x v_{4}$, then $v v_{5} \rightleftharpoons v_{4} v_{5}, x v_{4} \rightleftharpoons x v_{3}, v v_{4} \rightarrow c$ and $v v_{2} \rightarrow 2$. Otherwise, $v v_{5} \rightleftharpoons v_{4} v_{5}$ and $v v_{3} \rightarrow c$.
Subcase 2.2.3. $\phi\left(v_{5} v_{4}\right)=\phi\left(x v_{4}\right)=2$.
Subcase 2.2.3.1. $\phi\left(v v_{1}\right)=\phi\left(v_{1} v_{2}\right)=2$.
Suppose that $\phi\left(v v_{2}\right)=1$. If $\phi\left(v_{1} y\right)=1$ and $v_{2} v \sim y v_{1}$, then $v_{2} v_{1} \sim v_{2} v, v v_{4} \rightarrow 1$ and $v v_{3} \rightarrow \phi\left(v v_{4}\right)$. Otherwise, $v_{2} v_{1} \sim v_{2} v$ and $v v_{3} \rightarrow 1$.

Suppose that $\phi\left(v v_{2}\right)=c>2$. If $\phi\left(v_{1} y\right)=c$, then $v_{2} v_{1} \rightarrow 1, v v_{2} \rightarrow 2, v_{2} v_{3} \rightarrow c$ and $v v_{3} \rightarrow c$. Otherwise, $v_{2} v_{1} \sim v_{2} v$ and $v v_{3} \rightarrow c$.
Subcase 2.2.3.2. $\phi\left(v v_{1}\right)=\phi\left(v_{1} y\right)=2$.
First, $v v_{5} \rightleftharpoons v_{4} v_{5}, v v_{1} \rightarrow \phi\left(v v_{5}\right)$ and $v v_{3} \rightarrow 2$. Then, if $\phi\left(v_{1} v_{2}\right)=\phi\left(v v_{5}\right) \neq 1$, then $v_{1} v_{2} \rightleftharpoons v_{2} v_{3}$.
Subcase 2.2.3.3. $\phi\left(v_{1} v_{2}\right)=\phi\left(y v_{1}\right)=2$.
Suppose that $v_{1} v_{2} \times x v_{3}$. If $\phi\left(v v_{1}\right)=1$ and $v_{1} v \sim v_{2} v_{3}$, then $v_{2} v_{1} \rightleftharpoons v_{2} v_{3}$ and $v v_{1} \rightleftharpoons v v_{4}$. Otherwise, $v_{2} v_{1} \rightleftharpoons v_{2} v_{3}$. Thus, we go back to Subcase 2.1.

Suppose that $v_{1} v_{2} \sim x v_{3}$, that is, there is a monochromatic path $v \cdots y v_{1} v_{2} \cdots v_{5} v_{4} x v_{3}$. It follows that $2 \notin\left\{\phi\left(v v_{1}\right), \phi\left(v v_{2}\right), \phi\left(v v_{4}\right), \phi\left(v v_{5}\right)\right\}$. If $\phi\left(v v_{1}\right)=\phi\left(v v_{2}\right)=1$, then $v_{2} v_{1} \rightleftharpoons v_{2} v, v v_{4} \rightarrow 1$ and $v v_{3} \rightarrow \phi\left(v v_{4}\right)$. Otherwise, $v_{2} v_{1} \rightleftharpoons v_{2} v$ and $v v_{3} \rightarrow \phi\left(v v_{2}\right)$.

Claim 2.11. If a planar graph G contains no 5 -cycles with two chords and $\delta(G)>2$, then the following results hold.
(a) Every 4^{+}-vertex v is incident with at most $\left\lfloor\frac{2 d(v)}{3}\right\rfloor 3$-faces;
(b) If a vertex v is incident with three continuous faces f_{1}, f_{2} and f_{3} such that $d\left(f_{1}\right)=3, d\left(f_{2}\right)=4$ and f_{1}, f_{2} have a common 2-vertex, then $d\left(f_{3}\right) \geq 4$;
(c) If a vertex v is incident with four continuous faces f_{1}, f_{2}, f_{3} and f_{4} such that $d\left(f_{1}\right)=d\left(f_{3}\right)=3, d\left(f_{2}\right)=4$ and a 2-vertex is incident with f_{2} and f_{3}, then $d\left(f_{4}\right) \geq 4$;
(d) If a face is adjacent to two nonadjacent 3-face, then the face must be a 4^{+}-face.

The proof of the claim is obvious, we omit here. By the Euler's formula $|V|-|E|+|F|=2$, we have

$$
\begin{equation*}
\sum_{v \in V}(2 d(v)-6)+\sum_{f \in F}(d(f)-6)=-6(|V|-|E|+|F|)=-12<0 . \tag{1}
\end{equation*}
$$

We define $c h$ to be the initial charge. Let $c h(v)=2 d(v)-6$ for each $v \in V(G)$ and $c h(f)=d(f)-6$ for each $f \in F(G)$. In the following, we will reassign a new charge denoted by $c h^{\prime}(x)$ to each $x \in V(G) \cup F(G)$ according to the discharging rules. Since our rules only move charges around, and do not affect the sum, we have

$$
\begin{equation*}
\sum_{x \in V(G) \cup F(G)} c h^{\prime}(x)=\sum_{x \in V(G) \cup F(G)} \operatorname{ch}(x)=-12<0 . \tag{2}
\end{equation*}
$$

In the following, we will show that $\operatorname{ch}^{\prime}(x) \geq 0$ for $x \in V(G) \cup F(G)$, a contradiction to (2), completing the proof.

For a face $f=\left(v_{1}, v_{2}, \cdots, v_{t}\right)$ of G, we use $\left(d\left(v_{1}\right), d\left(v_{2}\right), \cdots, d\left(v_{t}\right)\right) \rightarrow\left(c_{1}, c_{2}, \cdots, c_{t}\right)$ to denote that vertex v_{i} sends f the amount of charge c_{i} for any $i \in\{1,2, \cdots, t\}$. Now, let us introduce the needed discharging rules as follows.

R1. Every 8^{+}-vertex sends 1 to each of its adjacent 2-vertices.
R2. Let f be a 3-face. Then

$$
\begin{aligned}
& \left(3,7^{+}, 7^{+}\right) \rightarrow\left(0, \frac{3}{2}, \frac{3}{2}\right) \\
& \left(4,6^{+}, 7^{+}\right) \rightarrow\left(\frac{1}{2}, \frac{5}{4}, \frac{5}{4}\right) \\
& \left(5^{+}, 5^{+}, 5^{+}\right) \rightarrow(1,1,1)
\end{aligned}
$$

R3. Let f be a 4-face. Then

$$
\begin{aligned}
\left(3^{-}, 7^{+}, 3^{-}, 7^{+}\right) & \rightarrow(0,1,0,1) \\
\left(3^{-}, 7^{+}, 4^{+}, 7^{+}\right) & \rightarrow\left(0, \frac{3}{4}, \frac{1}{2}, \frac{3}{4}\right) \\
\left(4^{+}, 4^{+}, 4^{+}, 4^{+}\right) & \rightarrow\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)
\end{aligned}
$$

R4. Let f be a 5-face. Then

$$
\begin{aligned}
& \left(3^{-}, 7^{+}, 7^{+}, 3^{-}, 7^{+}\right) \rightarrow\left(0, \frac{1}{3}, \frac{1}{3}, 0, \frac{1}{3}\right) \\
& \left(3^{-}, 7^{+}, 4^{+}, 4^{+}, 7^{+}\right) \rightarrow\left(0, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) \\
& \left(4^{+}, 4^{+}, 4^{+}, 4^{+}, 4^{+}\right) \rightarrow\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)
\end{aligned}
$$

Now we begin to check $c h^{\prime}(x) \geq 0$ for all $x \in V(G) \cup F(G)$. Let $f \in F$. If $d(f) \geq 6$, then $c h^{\prime}(f)=$ $d(f)-6 \geq 0$. If $d(f)=5$, then $\operatorname{ch}^{\prime}(f)=\operatorname{ch}(f)+\max \left\{\frac{1}{3} \times 3, \frac{1}{4} \times 4, \frac{1}{4} \times 5\right\}=0$ by R4. If $d(f)=4$, then $\operatorname{ch}^{\prime}(f)=\operatorname{ch}(f)+\max \left\{1 \times 2, \frac{1}{2}+\frac{3}{4} \times 2, \frac{1}{2} \times 4\right\}=0$. If $d(f)=3$, then $\operatorname{ch}^{\prime}(f)=\operatorname{ch}(f)+\max \left\{\frac{3}{2} \times 2, \frac{1}{2}+\frac{5}{4} \times 2,1 \times 3\right\}=0$.

Let $v \in V$. If $d(v)=2$, then $\operatorname{ch}^{\prime}(v)=\operatorname{ch}(v)+2=0$ by R1. If $d(v)=3$, then $\operatorname{ch}^{\prime}(v)=\operatorname{ch}(v)=0$ by R2-R4. If $d(v)=4$, then it sends every incident face at most $\frac{1}{2}$. So $c h^{\prime}(v)=\operatorname{ch}(v)-\frac{1}{2} \times f_{3}(v)-\frac{1}{2} \times\left(4-f_{3}(v)\right)=0$ by R2-R4. If $d(v)=5$, then $f_{3}(v) \leq 3$ by Claim 2.11. So $c h^{\prime}(v) \geq \operatorname{ch}(v)-1 \times f_{3}(v)-\frac{1}{2} \times\left(5-f_{3}(v)\right)=$ $\frac{3-f_{3}(v)}{2} \geq 0$. If $d(v)=6$, then $f_{3}(v) \leq 4$ and $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-\frac{5}{4} \times f_{3}(v)-\frac{1}{2} \times\left(6-f_{3}(v)\right)=\frac{12-3 f_{3}(v)}{4} \geq 0$. Suppose $d(v)=7$. By Claim 2.11, $f_{3}(v) \leq 4$. If v has a 3-neighbor u such that $u v$ is incident with a 3 -cycle (note that $u v$ may be incident with two 3-faces), then all neighbors of v except u are 4^{+}-vertices, and it follows that $c h^{\prime}(v) \geq \operatorname{ch}(v)-\left(\frac{3}{2} \times 2+\frac{5}{4} \times\left(f_{3}(v)-2\right)+\frac{3}{4} \times\left(7-f_{3}(v)\right)\right)=\frac{9-2 f_{3}(v)}{4}>0$. Otherwise, $\operatorname{ch}^{\prime}(v)=\operatorname{ch}(v)-\frac{5}{4} \times f_{3}(v)-1 \times\left(7-f_{3}(v)\right)=\frac{4-f_{3}(v)}{4} \geq 0$.

Suppose $d(v)=8$. Then $f_{3}(v) \leq 5$. Let $v_{1}, v_{2}, \ldots, v_{8}$ be neighbors of v in a clockwise order, and denote by $f_{1}, f_{2}, \ldots, f_{8}$ be faces incident with v such that v_{i} is incident with $f_{i}, f_{i+1}, i=1,2, \ldots, 7$ and v_{8} is incident with f_{8} and f_{1}. By Claim 2.4, we consider the following three cases.
Case 1. $n_{2}(v)=2$.
Without loss of generality, assume that v_{1} and v_{i} are 2 -vertices $(2 \leq i \leq 5)$. By Claim 2.4, $f_{1}, f_{2}, f_{i}, f_{i+1}$ are 4^{+}-faces. Note that if some f_{j} is a 3 -face, then all vertices incident with f_{j} are 4^{+}-vertices by Claim 2.5, and it follows that v sends at most $\frac{5}{4}$ to f_{j}. If f_{j} is a 3 -face and f_{j+1} is a 4 -face, then f_{j+1} is incident with at least three 4^{+}-vertices, and it follows that it receives at most $\frac{3}{4}$ from v.
Subcase 1.1. $i=2$.
Then $f_{3}(v) \leq 4$ since G contains no 5 -cycles with two chords. If $f_{3}(v)<4$, then $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-2-\frac{5}{4} \times$ $f_{3}(v)-\frac{3}{4} \times f_{3}(v)-1 \times\left(8-2 f_{3}(v)\right)=0$ by R2-R4. Otherwise, we must have that $f_{4}, f_{5}, f_{7}, f_{8}$ are 3 -faces and f_{6} is a 4^{+}-face. If $d\left(f_{2}\right)=4$, then f_{3} (or $\left.f_{1}\right)$ is 5^{+}-face or $f_{4}\left(\right.$ or $\left.f_{8}\right)$ is a $\left(5^{+}, 5^{+}, 5^{+}\right)$-face by Claim 2.10 , respectively, and it follows that $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-2-\max \left\{1 \times 2+\frac{5}{4} \times 2+1+\frac{3}{4} \times 3, \frac{5}{4} \times 3+1+\frac{3}{4} \times 2+\frac{1}{3}, \frac{5}{4} \times 4+1+\frac{3}{4}+\frac{1}{3} \times 2\right\}=\frac{1}{4}>0$. Otherwise, $d\left(f_{2}\right) \geq 5$, and we have $c h^{\prime}(v) \geq \operatorname{ch}(v)-2-\frac{5}{4} \times 4-\frac{3}{4} \times 3-\frac{1}{3}>0$.
Subcase 1.2. $i=3$.

Then $f_{3}(v) \leq 3$. So $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-2-\frac{5}{4} \times f_{3}(v)-\frac{3}{4} \times f_{3}(v)-1 \times\left(8-2 f_{3}(v)\right)=0$ by R2, R3 and R4.
Subcase 1.3. $i=4$.
Then $f_{3}(v) \leq 3$. So $c h^{\prime}(v) \geq \operatorname{ch}(v)-2-\frac{5}{4} \times f_{3}(v)-\frac{3}{4} \times f_{3}(v)-1 \times\left(8-2 f_{3}(v)\right) \geq 0$ by R2, R3 and R4.
Subcase 1.4. $i=5$.
Then $f_{3}(v) \leq 4$. So $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-2-\frac{5}{4} \times f_{3}(v)-\frac{3}{4} \times f_{3}(v)-1 \times\left(8-2 f_{3}(v)\right) \geq 0$ by R2, R3 and R4.
Case 2. $n_{2}(v)=1$. Without loss of generality, assume that v_{8} is the 2 -vertex.
Suppose that there is an integer $i(2 \leq i \leq 6)$ such that f_{i} and f_{i+1} are 3-faces, then f_{i} or f_{i+1} is incident with three 4^{+}-vertices by Claim 2.6, and f_{i} or f_{j} receive at most $\frac{5}{4}$ from v, and accordingly, f_{i-1} or f_{j+1} is a 4^{+}-face incident with at least three 4^{+}-vertices and receive at most $\frac{3}{4}$ from v.
Subcase 2.1. f_{1} and f_{8} are 4^{+}-faces.
By the hypothesis of the theorem, $f_{3}(v) \leq 4$. If $f_{3}(v) \leq 2$, then $c h^{\prime}(v) \geq \operatorname{ch}(v)-1-\frac{3}{2} \times 2-1 \times 6=0$. Suppose that $f_{3}(v)=3$. Let f_{i}, f_{j}, f_{k} be three 3-faces, where $1<i<j<k<8$. If $i+1<j<k-1$, then there are at least three 4^{+}-faces each of which is incident with at least three 4^{+}-vertices, and it follows that $c h^{\prime}(v) \geq \operatorname{ch}(v)-1-\frac{3}{2} \times 3-\frac{3}{4} \times 3-1 \times 2>0$. Otherwise, there is a 3 -face received $\frac{5}{4}$ from v and a 4^{+}-face received $\frac{3}{4}$ from v, so $c h^{\prime}(v) \geq \operatorname{ch}(v)-1-\frac{3}{2} \times 2-\frac{5}{4}-\frac{3}{4}-1 \times 4=0$.

Suppose that $f_{3}(v)=4$. Let $f_{i}, f_{j}, f_{k}, f_{l}$ be four 3-faces, where $2 \leq i<j<k<l \leq 7$. If $i+1=j$ and $k+1=l$, then $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-1-\left(\frac{3}{2}+\frac{5}{4}\right) \times 2-\max \left\{1 \times 3+\frac{1}{2}, \frac{3}{4} \times 2+1 \times 2\right\}=0$. Otherwise, there is a pair of adjacent 3 -faces in $\left\{f_{i}, f_{j}, f_{k}, f_{l}\right\}$ and there are at least three 4^{+}-faces incident with at least three 4^{+}-vertices, and it follows that $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-1-\frac{3}{2} \times 3-\frac{5}{4}-\frac{3}{4} \times 3-1=0$.
Subcase 2.2. f_{1} or f_{8} is a 3-face. Without loss of generality, assume that $d\left(f_{1}\right)=3$.
Then $d\left(f_{8}\right) \geq 4$ and $f_{3}(v) \leq 5$.
Subcase 2.2.1. $f_{3}(v) \leq 2$.
Then $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-1-\frac{3}{2} \times 2-1 \times 6=0$.
Subcase 2.2.2. $f_{3}(v)=3$.
Let f_{1}, f_{i}, f_{j} be three 3-faces, where $1<i<j<8$. If $i=2$, that is, f_{1} and f_{2} are two adjacent 3 -faces, then $d\left(v_{2}\right) \geq 4$ by Claim 2.7, and it follows that v sends at most $\frac{5}{4}$ to f_{2}, at most $\frac{3}{4}$ to f_{3}, and we have $c h^{\prime}(v) \geq$ $\operatorname{ch}(v)-1-\frac{3}{2} \times 2-\frac{5}{4}-\frac{3}{4}-1 \times 4=0$. Otherwise $c h^{\prime}(v) \geq \operatorname{ch}(v)-1-\max \left\{\frac{3}{2} \times 3+\frac{3}{4} \times 3+2 \times 1, \frac{3}{2} \times 2+\frac{5}{4}+\frac{3}{4} \times 2+1 \times 2\right\}>0$. Subcase 2.2.3. $f_{3}(v)=4$.

Let $f_{1}, f_{i}, f_{j}, f_{k}$ be three 3 -faces, where $1<i<j<k<8$. Suppose that $i=2$, that is, f_{1} and f_{2} are two adjacent 3 -faces. Then $d\left(v_{2}\right) \geq 4$ by Claim 2.7, and it follows that v sends at most $\frac{5}{4}$ to f_{2}, at most $\frac{3}{4}$ to f_{3}. If f_{j}, f_{k} are not adjacent, then $c h^{\prime}(v) \geq \operatorname{ch}(v)-1-\frac{3}{2} \times 3-\frac{5}{4}-\frac{3}{4}-\max \left\{\frac{1}{2}+1 \times 2, \frac{3}{4} \times 2+1\right\}=0$. Otherwise $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-1-\frac{3}{2} \times 2-\frac{5}{4} \times 2-\max \left\{\frac{3}{4} \times 2+2 \times 1, \frac{3}{4} \times 3+1\right\}=0$.

Suppose that $i>2$. If $i=3, j=5, k=7$, then $c h^{\prime}(v) \geq \operatorname{ch}(v)-1-\frac{3}{2} \times 4-\max \left\{\frac{3}{4} \times 4, \frac{3}{4} \times 2+\frac{1}{2}+1, \frac{1}{2}+1 \times 2\right\}=0$. Otherwise, there are two adjacent 3-faces in $\left\{f_{i}, f_{j}, f_{k}\right\}$, and $c h^{\prime}(v) \geq \operatorname{ch}(v)-1-\frac{3}{2} \times 3-\frac{5}{4}-\max \left\{\frac{3}{4} \times 3+1, \frac{3}{4}+\right.$ $\left.\frac{1}{2}+1 \times 2\right\}=0$.
Subcase 2.2.4. $f_{3}(v)=5$.
Then we must have $d\left(f_{7}\right)=3$ and $d\left(f_{8}\right) \geq 5$. Suppose that $d\left(f_{2}\right) \geq 4$. Then $f_{3}, f_{4}, f_{6}, f_{7}$ are 3 -faces. By Claim 2.6, $\max \left\{d\left(v_{2}\right), d\left(v_{4}\right)\right\} \geq 4$ and $\max \left\{d\left(v_{5}\right), d\left(v_{7}\right)\right\} \geq 4$. So $c h^{\prime}(v) \geq \operatorname{ch}(v)-1-\frac{3}{2} \times 3-\frac{5}{4} \times 2-\frac{1}{3}-\max \left\{\frac{3}{4} \times 2, \frac{1}{2}+1\right\}>0$.

Suppose that $d\left(f_{2}\right)=3$, that is, f_{1} and f_{2} are two adjacent 3 -faces. Then $d\left(v_{2}\right) \geq 4$ by Claim 2.7, and $d\left(f_{3}\right) \geq 4$. We also have $c h^{\prime}(v) \geq \operatorname{ch}(v)-1-\frac{3}{2} \times 3-\frac{5}{4} \times 2-\frac{1}{3}-\max \left\{\frac{3}{4} \times 2, \frac{1}{2}+1\right\}>0$.
Case 3. $n_{2}(v)=0$.
Then $f_{3}(v) \leq 5$. If $f_{3}(v) \leq 4$, then $c h^{\prime}(v) \geq \operatorname{ch}(v)-\frac{3}{2} \times 4-1 \times 4=0$. Otherwise, assume that $f_{1}, f_{2}, f_{4}, f_{5}, f_{7}$ are 3-faces. If there is a 5^{+}-face in $\left\{f_{3}, f_{6}, f_{8}\right\}$, then $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-\frac{3}{2} \times 5-\frac{1}{3}-1 \times 2>0$. Otherwise, $d\left(f_{3}\right)=d\left(f_{6}\right)=d\left(f_{8}\right)=4$. By Claim 2.10, there are at least two 4 -faces in $\left\{f_{3}, f_{6}, f_{8}\right\}$ each of which is incident with at least three 4^{+}-vertices. So $c h^{\prime}(v) \geq \operatorname{ch}(v)-\frac{3}{2} \times 4-\frac{5}{4}-\frac{3}{4} \times 2-1>0$.

Hence the proof is completed.

References

[1] J. Akiyama, G. Exoo, F. Harary, Covering and packing in graphs III: cyclic and acyclic invariants, Math. Slovaca 30(1980) 405-417.
[2] J. Akiyama, G. Exoo, F. Harary, Covering and packing in graphs IV: linear arboricity, Networks 11(1981) 69-72.
[3] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, MacMillan, New York, 1976.
[4] H. Y. Chen, J. M. Qi, The linear arboricity of planar graphs with maximum degree at least 5, Inform. Process. Letter 112(2012) 767-771.
[5] H. Y. Chen, X. Tan, J. L. Wu, G. J. Li, The linear arboricity of planar graphs with 5-,6-cycles with Chords, Graphs Combin. 29(2013) 373-385.
[6] H. Y. Chen, X. Tan, J. L. Wu, The linear arboricity of planar graphs without 5-Cycles with chords, Bulletin of the Malaysian Mathematical Sciences Society 36(2013) 285-290.
[7] H. Y. Chen, X. Tan, J. L. Wu, The linear arboricity of planar graphs with maximum degree at least 7, Utilitas Mathematica 90(2013) 199-218.
[8] M. Cygan, J. F. Hou, L. Kowalik, B. Luzar, J. L. Wu, A planar linear arboricity conjecture, J. Graph Theory 69(2012) 403-425.
[9] H. Enomoto, B. Péroche, The linear arboricity of some regular graphs, J. Graph Theory 8(1984) 309-324.
[10] F. Harary, Covering and packing in graphs I, Ann. N.Y. Acad. Sci. 175(1970) 198-205.
[11] X. Tan, H. Y. Chen, J. L. Wu, The Linear Arboricity of Planar Graphs without 5-cycles and 6-cycles, ARS Combinatoria 97(2010) 367-375.
[12] X. Tan, H. Y. Chen, J. L. Wu, The linear arboricity of planar graphs with maximum degree at least five, Bull. Malays. Math. Sci. Soc. 34(2011) 541-552.
[13] H. J. Wang, B. Liu, J. L. Wu, The linear arboricity of planar graphs without chordal short cycles, Utilitas Mathematica 87(2012) 255-263.
[14] H. J. Wang, B. Liu, J. L. Wu, The linear arboricity of planar graphs without adjacent 4-cycles, Utilitas Mathematica 91(2013) 143-153.
[15] H. J. Wang, L. D. Wu, W. L. Wu, J. L. Wu, Minimum number of disjoint linear forests covering a planar graph, J. Comb. Optim. 28(2014) 274-287.
[16] J. L. Wu, Some path decompositions of Halin graphs, J. Shandong Mining Institute 17(1998) 92-96.
[17] J. L. Wu, On the linear arboricity of planar graphs, J. Graph Theory 31(1999) 129-134.
[18] J. L. Wu, The linear arboricity of series-parallel graphs, Graphs Combin. 16(2000) 367-372.
[19] J. L. Wu, J. F. Hou, G. Z. Liu, The linear arboricity of planar graphs with no short cycles, Theor. Comput. Sci. 381(2007) $230-233$.
[20] J. L. Wu, G. Z. Liu, Y. L. Wu, The linear arboricity of composition of two graphs, Journal of System Science and Complexity, 15(2002) 372-375.
[21] J. L. Wu, Y. W. Wu, The linear arboricity of planar graphs of maximum degree seven are four, J. Graph Theory 58(2008) $210-220$.
[22] J. L. Wu, J. F. Hou, X. Y. Sun, A note on the linear arboricity of planar graphs without 4-cycles, ISORA' Lect. Notes Oper. Res. 10(2009) 174-178.

[^0]: 2010 Mathematics Subject Classification. Primary 05C15
 Keywords. planar graph; linear arboricity; cycle; chord
 Received: 19 March 2014; Accepted: 03 January 2015
 Communicated by Francesco Belardo
 Research supported by the National Natural Science Foundation of China(No.11271006) and the National Natural Science Foundation of Xinjiang (No. 201442137-3)

 Email addresses: xjxianglian@163.com (Xiang-Lian Chen), jlwu@sdu.edu.cn (Jian-Liang Wu)

