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Abstract. The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition
the edges of G. In this paper, it is proved that for a planar graph G, la(G)=d(∆(G)/2)e if ∆(G) ≥ 7 and G has
no 5-cycles with two chords.

1. Introduction

In this paper, all graphs are finite, simple and undirected. For a real number x, dxe is the least integer
not less than x and bxc is the largest integer not larger than x. Let G be a graph. We use V(G) and E(G) to
denote the vertex set and edge set, respectively. If uv ∈ E(G), then u is said to be a neighbor of v, and NG(v) is
the set of neighbors of v. The degree d(v) of a vertex v is |NG(v)|, δ(G) is the minimum degree of G and ∆(G) is
the maximum degree of G. A k-, k+- or k−-vertex is a vertex of degree k, at least k, or at most k, respectively.
A k-cycle is a cycle of length k. Two cycles are said to be adjacent (or intersecting) if they have at least one
common edge (or vertex, respectively). Given a cycle C of length k(k ≥ 4) in G, an edge xy ∈ E(G)\E(C) is
called a chord of C if x, y ∈ V(C). Such a cycle C is also called a chordal-k-cycle.

If G is a planar graph, then we always assume that G has been embedded in the plane. Let G be a planar
graph and F(G) be the face set of G. For f ∈ F(G), the degree of f, denoted by d( f ), is the number of edges
incident with it, where each cut-edge is counted twice. A k-, k+- or k−-face is a face of degree k, at least k,
or at most k, respectively. Let ni(v) denote the number of i-vertices of G adjacent to the vertex v, fi(v) the
number of i-faces of G incident with v. All undefined notations and definitions follow that of Bondy and
Murty [3].

A linear f orest is a graph in which each component is a path. A map ϕ form E(G) to {1, 2, · · · , t} is called
a t-linear colorin1 if the induced subgraph of edges having the same color α is a linear forest for 1 ≤ α ≤ t.
The linear arboricity la(G) of a graph G defined by Harary [10] is the minimum number t for which G has
a t-linear coloring. Akiyama et al.[1] conjectured that la(G) = d

∆(G)+1
2 e for any simple regular graph G. The

conjecture is equivalent to the following conjecture.

Conjecture A. For any graph G, d∆(G)
2 e ≤ la(G) ≤ d∆(G)+1

2 e.
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The linear arboricity has been determined for complete bipartite graphs [1], complete regular multi-
partite graphs [20], Halin graphs [16], series-parallel graphs [18] and regular graphs with ∆ = 3, 4[2] and
5,6,8[9]. For planar graphs, more results are obtained. Conjecture A has already been proved to be true for
all planar graphs (see [17] and [21]). Wu [17] proved that for a planar graph G with girth 1 and maximum
degree ∆, la(G) = d

∆(G)
2 e if ∆(G) ≥ 13, or ∆(G) ≥ 7 and 1 ≥ 4, or ∆(G) ≥ 5 and 1 ≥ 5, ∆(G) ≥ 3 and 1 ≥ 6.

Recently, M. Cygan et al. [8] proved that if G is a planar graph with ∆ ≥ 9, then la(G) = d∆
2 e, and then they

posed the following conjecture.

Conjecture B. For any planar graph G of maximum degree ∆ ≥ 5, la(G) = d∆
2 e.

There are more partial results to support the conjecture. The linear arboricity of a planar graph G is
d

∆
2 e if it satisfies one of the following conditions: (1) ∆(G) ≥ 7 and G contains no chordal i-cycles for some

i ∈ {4, 5, 6, 7} ([5, 6, 13]); (2) ∆ ≥ 7 and for each vertex v ∈ V(G), there exist two integers iv, jv ∈ {3, 4, 5, 6, 7, 8}
such that any two iv, jv-cycles incident with v are not adjacent ([7, 15]); (3) ∆ ≥ 5 and G contains no 4-cycles
([22]); (4) ∆ ≥ 5 and G has no intersecting 4-cycles and intersecting 5-cycles ([4]); (5) ∆ ≥ 5 and G has no
5-, 6-cycles with chords ([5]); (6) ∆ ≥ 5 and any 4-cycle is not adjacent to an i-cycle for any i ∈ {3, 4, 5} or G
has no intersecting 4-cycles and intersecting i-cycles for either i = 3 or i = 6 ([11]); (7) ∆ ≥ 5 and any two
4-cycles are not adjacent, and any 3-cycle is not adjacent to a 5-cycle ([14]).

In the paper, we will prove that if G is a planar graph with ∆(G) ≥ 7 and any 5-cycle contains at most
one chord, then la(G) = d

∆(G)
2 e. It generalizes some above results.

2. Main Result and its Proof

First, we give some more definitions. Given a t-linear coloringϕ and v ∈ V(G), we denote by Ci
ϕ(v) the set

of colors appear i times at v, where i = 0, 1, 2. Then |C0
ϕ(v)|+ |C1

ϕ(v)|+ |C2
ϕ(v)| = t and d(v) = |C1

ϕ(v)|+ 2|C2
ϕ(v)|.

For two adjacent edges uv and uw, we denote by uv
 uw to exchange the colors of uv and uw, by uv→ c
to color uv with a color c. If i ∈ C1

ϕ(v), we denote by (v, i) the edge colored with i. For two vertices u and v,
we use (u, i) ∼ (v, i) to denote that there is a monochromatic path of color i between u and v. For a vertex v
and an edge xy of G, xy ∼ (v, i) denote that there exists a monochromatic path of color i between x and v
passing y. For two different edges x1y1 and x2y2 of G, we use x1y1 ∼ x2y2 to denote more accurately that
there is a monochromatic path from x1 to y2 passing through the edges x1y1 and x2y2 in G (that is, y1 and
x2 are internal vertices in the path). We use / to denote that such monochromatic path does not exist.

Now we begin to give the main result of the paper and its proof.

Theorem 2.1. Let G be a planar graph with ∆(G) ≥ 7. If any 5-cycle contains at most one chord, then la(G) = d
∆(G)

2 e.

Proof. Since all planar graphs G with ∆(G) ≥ 9 have been proved in [8] to be d∆(G)
2 e-linear colorable, it

suffices to prove the following result.

(A) Any planar graph G of maximum degree at most 8 has an 4-linear coloring using colors 1, 2, 3, 4 if G contains
no 5-cycles with two chords.

Let G = (V,E) be a minimal counterexample to (A). First, we show some known claims for G.

Claim 2.2. Let uv ∈ E(G) and G − uv has an 4-linear coloring ϕ. Let Cϕ(u, v) = C2
ϕ(u) ∪ C2

ϕ(v) ∪ (C1
ϕ(u) ∩ C1

ϕ(v)).
Then

(1) |Cϕ(u, v)| = 4;

(2) If there is a color i such that i ∈ C1
ϕ(u) ∩ C1

ϕ(v) then (u, i) ∼ (v, i).

Proof. (1) Suppose that |Cϕ(u, v)| < 4, We may extend ϕ to an 4-linear coloring of G by setting ϕ(uv) ∈
{1, 2, 3, 4} \ Cϕ(u, v), a contradiction.

(2) If (u, i) / (v, i), we may extend ϕ to an 4-linear coloring of G by setting ϕ(u, v) = i, a contradiction.
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By Claim 2.2, we have
(a) δ(G) ≥ 2,
(b) for any edge uv ∈ E(G), dG(u) + dG(v) ≥ 10,
(c) any two 4−-vertices are not adjacent,
(c) any 3-face is incident with three 5+-vertices, or at least two 6+-vertices, and
(d) any 7−-vertex has no neighbors of degree 2.

Claim 2.3. [13] If a 7-vertex u is adjacent to a 3-vertex v such that uv is incident with a 3-cycle, then all neighbors
of u except v are 4+-vertices.

Claim 2.4. [22] Every vertex is adjacent to at most two 2-vertices. Moreover, suppose that a vertex v is adjacent to
two 2-vertices x, y. Let x′,y′ be the other neighbors of x, y, respectively. Then x′v,y′v < E(G).

Claim 2.5. [5, 11] If a vertex u is adjacent to two 2-vertices v,w and incident with a 3-face uxyu, then d(x) ≥ 4 and
d(y) ≥ 4.

Claim 2.6. [5, 13] If a vertex u is adjacent to a 2-vertex v and incident with two adjacent 3-cycles uwxu,uwyu, then
d(w) ≥ 4 and max{d(y), d(x)} ≥ 4.

Claim 2.7. [8] If there are two adjacent 3-face uvwu and uvxu such that d(w) = 2, then d(x) ≥ 4.

By Claim 2.7, we have the following corollary.

Corollary 2.8. If a 3-face uxvu is adjacent to a 4-face uxvyu such that d(x) = 2, then d(y) ≥ 4.

Claim 2.9. [13] If G has a 3-face uvwu such that d(u) + d(v) = 10, then d(w) = 8.

Claim 2.10. G has no configurations depicted in Figure 1.
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Figure 1.

Proof. Suppose that G has a configuration as depicted in Figure 1(a). By the minimality of G, G′

= G − uy
has a 4-linear coloring ϕ. Without loss of generality, assume ϕ(vy) = 1. Then 1 ∈ C1

ϕ(u) and (u, 1) ∼ vy
by Claim 2.2. If ϕ(xu) , 1, then ϕ(xv) , 1, and then xu → 1 and uy → ϕ(xu). Otherwise, we must have
ϕ(xv) = ϕ(xu) = 1, and ϕ(uw) , 1, ϕ(uz) , 1, ϕ(vw) , 1. If 1 ∈ C0

ϕ(w)∪C1
ϕ(w), then wu→ 1 and uy→ ϕ(wu).

Otherwise 1 ∈ C2
ϕ(w), that is, ϕ(wz) = 1. We recolor wz and xu with ϕ(uz), and then uz → 1, vy 
 vw, and

uy→ 1. Hence we can obtain a 4-linear coloring of G, a contradiction.
Suppose that G has a configuration as depicted in Figure 1(b). By the minimality of G, G′

= G − uy has
a 4-linear coloring ϕ. Without loss of generality, assume ϕ(vy) = 1. By the same argument as above, we
have ϕ(xv) = ϕ(xu) = 1 and 1 ∈ C2

ϕ(w). Suppose that ϕ(wt) = ϕ(ws) = 1. If ϕ(ut) = ϕ(zw) and ut ∼ zw, then
us
 ws, uy→ ϕ(us). Otherwise, ut
 wt, uy→ ϕ(ut). Suppose that ϕ(wt) = 1 and ϕ(ws) , 1 (It is similar
to settle the case ϕ(wt) , 1 and ϕ(ws) = 1). Then ϕ(wz) = 1. First, wu → 1,ut → 1, wt → ϕ(ut). Then, if
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ϕ(ut) = ϕ(sw) and ut ∼ sw, then us 
 ws. Finally, ux → ϕ(wu) and uy → ϕ(ut). Hence, we can obtain a
4-linear coloring of G, a contradiction.

Suppose that G has a configuration as depicted in Figure 1(c). By the minimality of G, there exists
a 4-linear coloring φ of G − vv3 with colors 1, 2, 3, 4. We also show how to extend φ to G and obtain a
contradiction with the minimality. The only non-colored edge is vv3. Let C1

φ(v) = {a}.
Case 1. φ(v2v3) = φ(v3x). Without loss of generality, assume that φ(v2v3) = 1.

Then a = 1 for otherwise we can color vv3 with a directly. If (v, 1) / v2v3, then φ(vv2) , 1, v2v 
 v2v3
and vv3 → φ(vv2), a contradiction. So

(v, 1) ∼ v2v3. (∗)

Subcase 1.1. φ(vv1) = 1.
Then vv1 ∼ v2v3 by (*). If φ(v1y) = 1, then v2v
 v2v3, vv1 → φ(vv2) and vv3 → 1. Otherwise, φ(v1v2) = 1.

If φ(v1v2) = 1 and vv2 ∼ yv1, then v2v 
 v2v3, vv1 → φ(vv2) and vv3 → 1. Otherwise, v2v1 
 v2v and
vv3 → φ(vv2).
Subcase 1.2. φ(vv2) = 1.

Then φ(v1y) = 1 and v1y ∼ v2v for otherwise we can recolor v1v with 1 and color vv3 with φ(vv1). If
1 ∈ C0

φ(v4) ∪ C1
φ(v4), then vv4 → 1 and vv3 → φ(vv4). Otherwise, φ(v4v4) = φ(v4x) = 1. Thus vv5 
 v5v4 and

vv3 → φ(vv5).
Subcase 1.3. 1 < {φ(vv1), φ(vv2)}.

If φ(v1v2) = 1, then (v, 1) ∼ v1v2 by (∗) and then v2v1 
 v2v and vv3 → φ(vv2). Otherwise φ(v1v2) = b , 1.
By the same argument, we have 1 ∈ C2

φ(v4), φ(v1y) = 1 and (v, 1) ∼ v1y. It follows that φ(v4v5) = 1 and
φ(vv5) , 1. First, vv5 
 v5v4 and vv3 → φ(vv5). Then if φ(vv5) = φ(xv4) and vv5 ∼ xv4, then xv4 
 xv3.
Case 2. φ(v2v3) , φ(v3x). Without loss of generality, assume that ϕ(v2v3) = 1 and ϕ(v3x) = 2.

Then a ∈ {1, 2} and (v, a) ∼ (v3, a), for otherwise we directly color vv3 with a.
Subcase 2.1. a = 1.

Then (v, 1) ∼ v2v3.
Subcase 2.1.1. φ(vv1) = 1, that is, (v, 1) ∼ vv1.
Subcase 2.1.1.1. 1 ∈ C0

φ(v4) ∪ C1
φ(v4).

If φ(vv4) = 2 and v4v ∼ xv3, then φ(xv4) , 2 and then vv4 → 1, vv3 → φ(vv4) and xv3 
 xv4. Otherwise,
vv4 → 1 and vv3 → φ(vv4).
Subcase 2.1.1.2. 1 ∈ C2

φ(v4). Then φ(xv4) = φ(v4v5) = 1.
Suppose that φ(vv2) = c , 2. If φ(v1y) = c and v2v ∼ yv1, then φ(v1v2) = 1 and we do vv2 ∼ v1v2 and

vv3 → c. Otherwise, vv2 ∼ vv1, v2v3 → c and vv3 → 1.
Suppose that φ(vv2) = φ(v1v2) = 2. If v2v / xv3, then v2v 
 v2v3, vv1 → 2 and vv3 → 1. Otherwise,

φ(vv4) < {1, 2} and then v2v
 v2v3, vv1 → φ(vv4), vv4 → 2 and vv3 → 1.
Suppose that φ(vv2) = 2 and φ(v1v2) = c , 2. If c > 2, then φ(v1y) = 1, and vv2 
 vv1, v1v2 → 2, vv3 → c

and vv3 → 1. Otherwise, φ(v1v2) = 1. If φ(vv5) = 2 and vv2 ∼ xv3, then v5v4 
 v5v, vv3 → φ(vv4) and
vv4 → 2. Otherwise, v5v4 
 v5v and vv3 → φ(vv5).
Subcase 2.1.2. φ(vv2) = 1.

Then φ(v1v2) , 1. If φ(vv1) , 2, or φ(vv1) = 2 but vv1 / xv3, then vv1 → 1 and vv3 → φ(vv1). Otherwise,
if 1 ∈ C2

φ(v4), then vv1 → 1, vv4 → 2 and vv3 → φ(vv4). Otherwise, vv4 → 1 and vv3 → vv4.
Subcase 2.1.3. 1 < {φ(vv1), φ(vv2)}.

Suppose that φ(v1v2) , 1. If φ(vv1) = 2 and v1v ∼ xv3, then φ(v1v2) > 2 and v1v2 
 v2v3, vv3 → 1.
Otherwise, vv1 → 1 and vv3 → φ(vv1).

Suppose that φ(v1v2) = 1. Since (v, 1) ∼ v2v3, φ(v1y) = 1. If φ(vv2) , 2, then vv2 ∼ v1v2 and vv3 → φ(vv2).
Ifφ(vv2) = 2 andφ(vv1) , 2, then vv2 ∼ v1v2, vv1 → φ(vv2) and vv3 → φ(vv1). Suppose thatφ(vv1) = φ(vv2) =
2. We also have vv2 ∼ xv3 for otherwise vv2 ∼ v1v2 and vv3 → φ(vv2). Thus, if 1 ∈ C0

φ(v4) ∪ C1
φ(v4), then

vv4 → 1 and vv3 → φ(vv4). Otherwise, if φ(vv4) = φ(v4v5) = 1, then φ(v4x) > 2 and vv2 ∼ v1v2, vv3 → φ(vv2)
and xv3 
 xv4. If φ(vv4) = φ(xv4) = 1, then vv2 ∼ v2v3, vv3 → φ(vv2) and xv3 
 xv4. If φ(v5v4) = φ(xv4) = 1,
then vv2 ∼ v1v2, vv3 → φ(vv4) and vv4 → 2.
Subcase 2.2. a = 2.
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Then (v, 2) ∼ xv3. Suppose that 2 ∈ C0
φ(v1) ∪ C1

φ(v1). Then φ(vv1) , 2 and we can recolor vv1 with 2. If

φ(vv1) = 1, then we come back to Subcase 2.1. Otherwise, vv3 → φ(vv1). Suppose that 1 ∈ C0
φ(v4) ∪ C1

φ(v4).
Then φ(vv4) , 2 and we can recolor vv4 with 2. If φ(vv4) = 1, then we go back to Subcase 2.1. Otherwise,
vv3 → φ(vv4). So in the following, we assume that 2 ∈ C2

φ(v1) ∩ C2
φ(v4).

Subcase 2.2.1. φ(vv4) = φ(xv4) = 2.
Then φ(v2v1) = φ(v1y) = 2. It follows that v2v1 ∼ v2v3, vv1 → 2 and vv3 → φ(vv1).

Subcase 2.2.2. φ(vv4) = φ(v4v5) = 2.
Then φ(v2v1) = φ(v1y) = 2. Suppose that φ(vv5) = 1. If φ(xv4) = 1 and vv5 ∼ xv4, then vv5 
 v4v5,

xv4 
 xv3, vv4 → 1 and vv2 → 2. Otherwise, vv5 
 v4v5 and we go back to Subcase 2.1.
Suppose that φ(vv5) = c > 2. If φ(xv4) = c and vv5 ∼ xv4, then vv5 
 v4v5, xv4 
 xv3, vv4 → c and

vv2 → 2. Otherwise, vv5 
 v4v5 and vv3 → c.
Subcase 2.2.3. φ(v5v4) = φ(xv4) = 2.
Subcase 2.2.3.1. φ(vv1) = φ(v1v2) = 2.

Suppose that φ(vv2) = 1. If φ(v1y) = 1 and v2v ∼ yv1, then v2v1 ∼ v2v, vv4 → 1 and vv3 → φ(vv4).
Otherwise, v2v1 ∼ v2v and vv3 → 1.

Suppose that φ(vv2) = c > 2. If φ(v1y) = c, then v2v1 → 1, vv2 → 2, v2v3 → c and vv3 → c. Otherwise,
v2v1 ∼ v2v and vv3 → c.
Subcase 2.2.3.2. φ(vv1) = φ(v1y) = 2.

First, vv5 
 v4v5, vv1 → φ(vv5) and vv3 → 2. Then, if φ(v1v2) = φ(vv5) , 1, then v1v2 
 v2v3.
Subcase 2.2.3.3. φ(v1v2) = φ(yv1) = 2.

Suppose that v1v2 / xv3. If φ(vv1) = 1 and v1v ∼ v2v3, then v2v1 
 v2v3 and vv1 
 vv4. Otherwise,
v2v1 
 v2v3. Thus, we go back to Subcase 2.1.

Suppose that v1v2 ∼ xv3, that is, there is a monochromatic path v · · · yv1v2 · · · v5v4x v3. It follows that
2 < {φ(vv1), φ(vv2), φ(vv4), φ(vv5)}. If φ(vv1) = φ(vv2) = 1, then v2v1 
 v2v, vv4 → 1 and vv3 → φ(vv4).
Otherwise, v2v1 
 v2v and vv3 → φ(vv2).

Claim 2.11. If a planar graph G contains no 5-cycles with two chords and δ(G) > 2, then the following results hold.
(a) Every 4+-vertex v is incident with at most b 2d(v)

3 c 3-faces;
(b) If a vertex v is incident with three continuous faces f1, f2 and f3 such that d( f1) = 3, d( f2) = 4 and f1, f2 have

a common 2-vertex, then d( f3) ≥ 4;
(c) If a vertex v is incident with four continuous faces f1, f2 , f3 and f4 such that d( f1) = d( f3) = 3, d( f2) = 4 and

a 2-vertex is incident with f2 and f3, then d( f4) ≥ 4;
(d) If a face is adjacent to two nonadjacent 3-face, then the face must be a 4+-face.

The proof of the claim is obvious, we omit here. By the Euler’s formula |V| − |E| + |F| = 2, we have

∑
v∈V

(2d(v) − 6) +
∑
f∈F

(d( f ) − 6) = −6(|V| − |E| + |F|) = −12 < 0. (1)

We define ch to be the initial charge. Let ch(v) = 2d(v) − 6 for each v ∈ V(G) and ch( f ) = d( f ) − 6 for
each f ∈ F(G). In the following, we will reassign a new charge denoted by ch′ (x) to each x ∈ V(G) ∪ F(G)
according to the discharging rules. Since our rules only move charges around, and do not affect the sum,
we have∑

x∈V(G)∪F(G)

ch
′

(x) =
∑

x∈V(G)∪F(G)

ch(x) = −12 < 0. (2)

In the following, we will show that ch′ (x) ≥ 0 for x ∈ V(G) ∪ F(G), a contradiction to (2), completing the
proof.

For a face f = (v1, v2, · · · , vt) of G, we use (d(v1), d(v2), · · · , d(vt))→ (c1, c2, · · · , ct) to denote that vertex vi
sends f the amount of charge ci for any i ∈ {1, 2, · · · , t}. Now, let us introduce the needed discharging rules
as follows.
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R1. Every 8+-vertex sends 1 to each of its adjacent 2-vertices.

R2. Let f be a 3-face. Then

(3, 7+, 7+)→ (0,
3
2
,

3
2

),

(4, 6+, 7+)→ (
1
2
,

5
4
,

5
4

),

(5+, 5+, 5+)→ (1, 1, 1).

R3. Let f be a 4-face. Then
(3−, 7+, 3−, 7+)→ (0, 1, 0, 1),

(3−, 7+, 4+, 7+)→ (0,
3
4
,

1
2
,

3
4

),

(4+, 4+, 4+, 4+)→ (
1
2
,

1
2
,

1
2
,

1
2

).

R4. Let f be a 5-face. Then

(3−, 7+, 7+, 3−, 7+)→ (0,
1
3
,

1
3
, 0,

1
3

),

(3−, 7+, 4+, 4+, 7+)→ (0,
1
4
,

1
4
,

1
4
,

1
4

),

(4+, 4+, 4+, 4+, 4+)→ (
1
4
,

1
4
,

1
4
,

1
4
,

1
4

).

Now we begin to check ch′ (x) ≥ 0 for all x ∈ V(G) ∪ F(G). Let f ∈ F. If d( f ) ≥ 6, then ch′( f ) =
d( f ) − 6 ≥ 0. If d( f ) = 5, then ch′( f ) = ch( f ) + max{ 13 × 3, 1

4 × 4, 1
4 × 5} = 0 by R4. If d( f ) = 4, then

ch′( f ) = ch( f ) + max{1×2, 1
2 + 3

4 ×2, 1
2 ×4} = 0. If d( f ) = 3, then ch′( f ) = ch( f ) + max{ 32 ×2, 1

2 + 5
4 ×2, 1×3} = 0.

Let v ∈ V. If d(v) = 2, then ch′ (v) = ch(v) + 2 = 0 by R1. If d(v) = 3, then ch′ (v) = ch(v) = 0 by R2-R4.
If d(v) = 4, then it sends every incident face at most 1

2 . So ch′ (v) = ch(v) − 1
2 × f3(v) − 1

2 × (4 − f3(v)) = 0
by R2-R4. If d(v) = 5, then f3(v) ≤ 3 by Claim 2.11. So ch′ (v) ≥ ch(v) − 1 × f3(v) − 1

2 × (5 − f3(v)) =
3− f3(v)

2 ≥ 0. If d(v) = 6, then f3(v) ≤ 4 and ch′ (v) ≥ ch(v) − 5
4 × f3(v) − 1

2 × (6 − f3(v)) =
12−3 f3(v)

4 ≥ 0.
Suppose d(v) = 7. By Claim 2.11, f3(v) ≤ 4. If v has a 3-neighbor u such that uv is incident with a
3-cycle (note that uv may be incident with two 3-faces), then all neighbors of v except u are 4+-vertices,
and it follows that ch′(v) ≥ ch(v) − ( 3

2 × 2 + 5
4 × ( f3(v) − 2) + 3

4 × (7 − f3(v))) =
9−2 f3(v)

4 > 0. Otherwise,
ch′ (v) = ch(v) − 5

4 × f3(v) − 1 × (7 − f3(v)) =
4− f3(v)

4 ≥ 0.
Suppose d(v) = 8. Then f3(v) ≤ 5. Let v1, v2, ..., v8 be neighbors of v in a clockwise order, and denote by

f1, f2, ..., f8 be faces incident with v such that vi is incident with fi, fi+1, i = 1, 2, ..., 7 and v8 is incident with
f8 and f1. By Claim 2.4, we consider the following three cases.
Case 1. n2(v) = 2.

Without loss of generality, assume that v1 and vi are 2-vertices(2 ≤ i ≤ 5). By Claim 2.4, f1, f2, fi, fi+1 are
4+-faces. Note that if some f j is a 3-face, then all vertices incident with f j are 4+-vertices by Claim 2.5, and
it follows that v sends at most 5

4 to f j. If f j is a 3-face and f j+1 is a 4-face, then f j+1 is incident with at least
three 4+-vertices, and it follows that it receives at most 3

4 from v.
Subcase 1.1. i = 2.

Then f3(v) ≤ 4 since G contains no 5-cycles with two chords. If f3(v) < 4, then ch′ (v) ≥ ch(v) − 2 − 5
4 ×

f3(v)− 3
4 × f3(v)−1× (8−2 f3(v)) = 0 by R2-R4. Otherwise, we must have that f4, f5, f7, f8 are 3-faces and f6 is a

4+-face. If d( f2) = 4, then f3( or f1) is 5+-face or f4( or f8) is a (5+, 5+, 5+)-face by Claim 2.10, respectively, and
it follows that ch′ (v) ≥ ch(v)−2−max{1×2 + 5

4 ×2 + 1 + 3
4 ×3, 5

4 ×3 + 1 + 3
4 ×2 + 1

3 ,
5
4 ×4 + 1 + 3

4 + 1
3 ×2} = 1

4 > 0.
Otherwise, d( f2) ≥ 5, and we have ch′ (v) ≥ ch(v) − 2 − 5

4 × 4 − 3
4 × 3 − 1

3 > 0.
Subcase 1.2. i = 3.
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Then f3(v) ≤ 3. So ch′ (v) ≥ ch(v) − 2 − 5
4 × f3(v) − 3

4 × f3(v) − 1 × (8 − 2 f3(v)) = 0 by R2, R3 and R4.
Subcase 1.3. i = 4.

Then f3(v) ≤ 3. So ch′ (v) ≥ ch(v) − 2 − 5
4 × f3(v) − 3

4 × f3(v) − 1 × (8 − 2 f3(v)) ≥ 0 by R2, R3 and R4.
Subcase 1.4. i = 5.

Then f3(v) ≤ 4. So ch′ (v) ≥ ch(v) − 2 − 5
4 × f3(v) − 3

4 × f3(v) − 1 × (8 − 2 f3(v)) ≥ 0 by R2, R3 and R4.
Case 2. n2(v) = 1. Without loss of generality, assume that v8 is the 2-vertex.

Suppose that there is an integer i(2 ≤ i ≤ 6) such that fi and fi+1 are 3-faces, then fi or fi+1 is incident
with three 4+-vertices by Claim 2.6, and fi or f j receive at most 5

4 from v, and accordingly, fi−1 or f j+1 is a
4+-face incident with at least three 4+-vertices and receive at most 3

4 from v.
Subcase 2.1. f1 and f8 are 4+-faces.

By the hypothesis of the theorem, f3(v) ≤ 4. If f3(v) ≤ 2, then ch′(v) ≥ ch(v) − 1 − 3
2 × 2 − 1 × 6 = 0.

Suppose that f3(v) = 3. Let fi, f j, fk be three 3-faces, where 1 < i < j < k < 8. If i + 1 < j < k − 1, then
there are at least three 4+-faces each of which is incident with at least three 4+-vertices, and it follows that
ch′(v) ≥ ch(v) − 1 − 3

2 × 3 − 3
4 × 3 − 1 × 2 > 0. Otherwise, there is a 3-face received 5

4 from v and a 4+-face
received 3

4 from v, so ch′(v) ≥ ch(v) − 1 − 3
2 × 2 − 5

4 −
3
4 − 1 × 4 = 0.

Suppose that f3(v) = 4. Let fi, f j, fk, fl be four 3-faces, where 2 ≤ i < j < k < l ≤ 7. If i + 1 = j and
k + 1 = l, then ch′(v) ≥ ch(v) − 1 − ( 3

2 + 5
4 ) × 2 −max{1 × 3 + 1

2 ,
3
4 × 2 + 1 × 2} = 0. Otherwise, there is a pair

of adjacent 3-faces in { fi, f j, fk, fl} and there are at least three 4+-faces incident with at least three 4+-vertices,
and it follows that ch′(v) ≥ ch(v) − 1 − 3

2 × 3 − 5
4 −

3
4 × 3 − 1 = 0.

Subcase 2.2. f1 or f8 is a 3-face. Without loss of generality, assume that d( f1) = 3.
Then d( f8) ≥ 4 and f3(v) ≤ 5.

Subcase 2.2.1. f3(v) ≤ 2.
Then ch′(v) ≥ ch(v) − 1 − 3

2 × 2 − 1 × 6 = 0.
Subcase 2.2.2. f3(v) = 3.

Let f1, fi, f j be three 3-faces, where 1 < i < j < 8. If i = 2, that is, f1 and f2 are two adjacent 3-faces, then
d(v2) ≥ 4 by Claim 2.7, and it follows that v sends at most 5

4 to f2, at most 3
4 to f3, and we have ch′(v) ≥

ch(v)−1− 3
2×2− 5

4−
3
4−1×4 = 0. Otherwise ch′(v) ≥ ch(v)−1−max{ 32×3+ 3

4×3+2×1, 3
2×2+ 5

4 + 3
4×2+1×2} > 0.

Subcase 2.2.3. f3(v) = 4.
Let f1, fi, f j, fk be three 3-faces, where 1 < i < j < k < 8. Suppose that i = 2, that is, f1 and f2 are two

adjacent 3-faces. Then d(v2) ≥ 4 by Claim 2.7, and it follows that v sends at most 5
4 to f2, at most 3

4 to f3.
If f j, fk are not adjacent, then ch′(v) ≥ ch(v) − 1 − 3

2 × 3 − 5
4 −

3
4 −max{ 12 + 1 × 2, 3

4 × 2 + 1} = 0. Otherwise
ch′(v) ≥ ch(v) − 1 − 3

2 × 2 − 5
4 × 2 −max{ 34 × 2 + 2 × 1, 3

4 × 3 + 1} = 0.
Suppose that i > 2. If i = 3, j = 5, k = 7, then ch′(v) ≥ ch(v)−1− 3

2 ×4−max{ 34 ×4, 3
4 ×2+ 1

2 +1, 1
2 +1×2} = 0.

Otherwise, there are two adjacent 3-faces in { fi, f j, fk}, and ch′(v) ≥ ch(v) − 1 − 3
2 × 3 − 5

4 −max{ 34 × 3 + 1, 3
4 +

1
2 + 1 × 2} = 0.
Subcase 2.2.4. f3(v) = 5.

Then we must have d( f7) = 3 and d( f8) ≥ 5. Suppose that d( f2) ≥ 4. Then f3, f4, f6, f7 are 3-faces. By Claim
2.6, max{d(v2), d(v4)} ≥ 4 and max{d(v5), d(v7)} ≥ 4. So ch′(v) ≥ ch(v)−1− 3

2×3− 5
4×2− 1

3−max{ 34×2, 1
2 +1} > 0.

Suppose that d( f2) = 3, that is, f1 and f2 are two adjacent 3-faces. Then d(v2) ≥ 4 by Claim 2.7, and
d( f3) ≥ 4. We also have ch′(v) ≥ ch(v) − 1 − 3

2 × 3 − 5
4 × 2 − 1

3 −max{ 34 × 2, 1
2 + 1} > 0.

Case 3. n2(v) = 0.
Then f3(v) ≤ 5. If f3(v) ≤ 4, then ch′(v) ≥ ch(v) − 3

2 × 4 − 1 × 4 = 0. Otherwise, assume that f1, f2, f4, f5, f7
are 3-faces. If there is a 5+-face in { f3, f6, f8}, then ch′(v) ≥ ch(v) − 3

2 × 5 − 1
3 − 1 × 2 > 0. Otherwise,

d( f3) = d( f6) = d( f8) = 4. By Claim 2.10, there are at least two 4-faces in { f3, f6, f8} each of which is incident
with at least three 4+-vertices. So ch′(v) ≥ ch(v) − 3

2 × 4 − 5
4 −

3
4 × 2 − 1 > 0.

Hence the proof is completed.
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