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Abstract. In this paper, we establish some new Hermite-Hadamard type inequalities involving Riemann-
Liouville fractional integrals via s-convex functions in the second sense. Meanwhile, we present many
useful estimates on these types of new Hermite-Hadamard type inequalities. Some applications to special
means of real numbers are given.

1. Introduction

It is well known that the classical Hermite-Hadamard type inequality provides a lower and an upper
estimations for the integral average of any convex function defined on a compact interval, involving the
midpoint and the endpoints of the domain. This interesting inequality was firstly discovered by Hermite in
1881 in the journal Mathesis (see Mitrinović and Lacković [12]). However, this beautiful result was nowhere
mentioned in the mathematical literature and was not widely known as Hermite’s result (see Pečarić et
al. [17]). For more recent results which generalize, improve, and extend this classical Hermite-Hadamard
inequality, one can see Dragomir [5], Sarikaya et al. [19], Xiao et al. [27], Bessenyei [4], Tseng et al. [24],
Niculescu [13], Bai et al. [3], Li and Qi [11], Tunç [25], Srivastava et al. [23], and references therein. In
particular, let us note that Professor Srivastava et al. present some interesting refinements and extensions
of the Hermite-Hadamard inequalities in n variables (see Theorems 6-12, [23]) and compare with some
various inequalities in earlier works.

Fractional calculus have recently proved to be a powerful tool for the study of dynamical properties of
many interesting systems in physics, chemistry, and engineering. It draws a great application in nonlinear
oscillations of earthquakes, many physical phenomena such as seepage flow in porous media and in fluid
dynamic traffic model. For more recent development on fractional calculus, one can see the monographs
of Kilbas et al. [9], Lakshmikantham et al. [10], and Podlubny [18].
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Due to the widely application of Hermite-Hadamard type inequality and fractional calculus, it is natural
to offer to study Hermite-Hadamard type inequalities involving fractional integrals. It is remarkable that
Sarikaya et al. [20] begin to study inequalities of Hermite-Hadamard type involving Riemann-Liouville
fractional integrals and give the following new Hermite-Hadamard type inequalities.

Theorem 1.1. (Theorem 2, [20]) Let f : [a, b] → R be a positive function with 0 ≤ a < b and f ∈ L[a, b]. If f is a
convex function on [a, b], then the following inequality for fractional integrals hold

f
(

a + b
2

)
≤

Γ(α + 1)
2(b − a)α

[Jαa+ f (b) + Jαb− f (a)] ≤
f (a) + f (b)

2
.

Here, the symbol Jαa+ f and Jαb− f denote the left-sided and right-sided Riemann-Liouville fractional integrals
of the order α ∈ R+ := [0,∞) are defined by

(Jαa+ f )(x) =
1

Γ(α)

∫ x

a
(x − t)α−1 f (t)dt, (0 ≤ a < x ≤ b), (Jαb− f )(x) =

1
Γ(α)

∫ b

x
(t − x)α−1 f (t)dt, (0 ≤ a < x ≤ b),

respectively. Here Γ(·) is the Gamma function.

Lemma 1.2. (Lemma 2, [20]) Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b. If f ′ ∈ L[a, b], then
the following equality for fractional integrals holds

f (a) + f (b)
2

−
Γ(α + 1)
2(b − a)α

[Jαa+ f (b) + Jαb− f (a)] =
b − a

2

∫ 1

0
[(1 − t)α − tα] f ′(ta + (1 − t)b)dt.

Theorem 1.3. (Theorem 3, [20]) Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b. If | f ′| is convex
on [a, b], then the following equality for fractional integrals holds∣∣∣∣∣ f (a) + f (b)

2
−

Γ(α + 1)
2(b − a)α

[Jαa+ f (b) + Jαb− f (a)]
∣∣∣∣∣ ≤ b − a

2(α + 1)

(
1 −

1
2α

)
| f ′(a) + f ′(b)|.

In addition to the classical convex functions, Hudzik and Maligranda [8] introduced the definition of
s-convex functions in the second sense as following.

Definition 1.4. A function f : I ⊆ R+ → R+ is said to be s-convex on I if the inequality f (λx + (1 − λ)y) ≤
λs f (x) + (1 − λ)s f (y) holds for all x, y ∈ I and λ ∈ [0, 1] and for some fixed s ∈ (0, 1].

Applying the tool of s-convex functions in the second sense, Set [22] gives some new inequalities of
Ostrowski type involving fractional integrals. The author generalizes the interesting and useful Ostrowski
inequality (see [14]) and other numerous extensions and variants of Ostrowski inequalities (see for example
[1, 7, 15, 21]).

The authors [2, 6] study the inequalities of Hermite-Hadamard type via s-convex functions in the second
sense, to the best of our knowledge, Hadamard type inequalities involving Riemann-Liouville fractional
integrals via s-convex functions have not been studied extensively. Motivated by the recent results given
in [2, 6, 20, 22, 26], we will establish here some new Hermite-Hadamard type inequalities involving
Riemann-Liouville fractional integrals via s-convex functions in the second sense. Meanwhile, we present
many useful estimates on these types of new Hermite-Hadamard type inequalities for Riemann-Liouville
fractional integrals.

2. Hermite-Hadamard Inequality for Fractional Integrals via s-convex Functions

An important Hermite-Hadamard inequality involving Riemann-Liouville fractional integrals (with
α ≥ 1) can be represented as follows.
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Theorem 2.1. Let α ≥ 1 and f : [a, b]→ R be a positive function with 0 ≤ a < b and f ∈ L[a, b]. If f is a s-convex
function on [a, b], then the following inequality for fractional integrals hold

2s−1 f
(

a + b
2

)
≤

Γ(α + 1)
2(b − a)α

[Jαa+ f (b) + Jαb− f (a)] ≤
[ f (a) + f (b)]

2

[ 1
α + s

+
2

α + s

(
1 −

1
2α+s

)]
. (1)

Proof. Since f is a s-convex function on [a, b], we have for x, y ∈ [a, b] with λ = 1
2 f

( x+y
2

)
≤

1
2s f (x) + 1

2s f (y),
i.e., with x = ta + (1 − t)b, y = (1 − t)a + tb,

2s f
(

a + b
2

)
≤ f (ta + (1 − t)b) + f ((1 − t)a + tb). (2)

Multiplying both sides of (2) by tα−1, then integrating the resulting inequality with respect to t over [0, 1],
we obtain

2s−1 f
(

a + b
2

)
≤

Γ(α + 1)
2(b − a)α

[Jαa+ f (b) + Jαb− f (a)]

and the first inequality in (1) is proved.
Because f is a s-convex function, we have

f (ta + (1 − t)b) + f ((1 − t)a + tb) ≤ [ts + (1 − t)s][ f (a) + f (b)]. (3)

Then multiplying both sides of (3) by tα−1 and integrating the resulting inequality with respect to t over
[0, 1], we obtain the right-sided inequality in (1). The proof is completed. �

Remark 2.2. One can follow the same ideas to construct fractional version F(1)
n ,F

(2)
n ,F

(3)
n (see (3.4)-(3.6), [23]) try

to extend to study fractional Hermite-Hadamard inequalities in n variables based on these fundamental results. We
shall study such interesting problems in the forthcoming works.

3. Hermite-Hadamard Type Inequalities for Fractional Integrals via s-convex Functions

Now we are ready to state the first result in this section.

Theorem 3.1. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b, such that f ∈ L[a, b]. If f ′ is
s-convex on [a, b], for some fixed s ∈ (0, 1], then the following inequality for fractional integrals holds∣∣∣∣∣ f (a) + f (b)

2
−

Γ(α + 1)
2(b − a)α

[Jαa+ f (b) + Jαb− f (a)]
∣∣∣∣∣ ≤ b − a

α + s + 1

(
1 −

1
2α+s

)
(| f ′(a)| + | f ′(b)|).

Proof. Using Lemma 1.2 and the s-convexity of f , we have∣∣∣∣∣ f (a) + f (b)
2

−
Γ(α + 1)
2(b − a)α

[Jαa+ f (b) + Jαb− f (a)]
∣∣∣∣∣

≤
b − a

2

{∫ 1
2

0
[(1 − t)α − tα][ts

| f ′(a)| + (1 − t)s
| f ′(b)|]dt +

∫ 1

1
2

[tα − (1 − t)α][ts
| f ′(a)| + (1 − t)s

| f ′(b)|]dt
}

:=
b − a

2
(K1 + K2). (4)

Calculating K1 and K2, we have

K1 ≤ | f ′(a)|

∫ 1
2

0
(1 − t)α+sds −

∫ 1
2

0
tα+sds

 + | f ′(b)|

∫ 1
2

0
(1 − t)α+sds −

∫ 1
2

0
tα+sds


=
| f ′(a)| + | f ′(b)|
α + s + 1

(
1 −

1
2α+s

)
, (5)
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and

K2 ≤ | f ′(a)|

∫ 1

1
2

tα+sds −
∫ 1

1
2

(1 − t)α+sds

 + | f ′(b)|

∫ 1

1
2

tα+sds −
∫ 1

1
2

(1 − t)α+sds


=
| f ′(a)| + | f ′(b)|
α + s + 1

(
1 −

1
2α+s

)
. (6)

Thus if we use (5) and (6) in (4), we obtain the result. The proof is completed. �
The second theorem gives a new upper bound of the left-Hadamard inequality for s-convex mappings.

Theorem 3.2. Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b, such that f ∈ L[a, b]. If | f ′|q(q > 1)
is s-convex on [a, b], for some fixed s ∈ (0, 1], then the following inequality for fractional integrals holds∣∣∣∣∣ f (a) + f (b)

2
−

Γ(α + 1)
2(b − a)α

[Jαa+ f (b) + Jαb− f (a)]
∣∣∣∣∣

≤

(
b − a

2

) (
1

αp + 1

) 1
p (

1 −
1

2αp

) 1
p
(

1
(s + 1)2s+1

) 1
q

×

[
(| f ′(a)|q + (2s+1

− 1)| f ′(b)|q)
1
q + ((2s+1

− 1)| f ′(a)|q + | f ′(b)|q)
1
q
]
, (7)

where 1
p = 1 − 1

q .

Proof. Using Lemma 1.2 and Hölder inequality and the s-convexity of | f ′|q(q > 1), we have∣∣∣∣∣ f (a) + f (b)
2

−
Γ(α + 1)
2(b − a)α

[Jαa+ f (b) + Jαb− f (a)]
∣∣∣∣∣

≤
b − a

2

(
1

αp + 1

(
1 −

1
2αp

)) 1
p { ∫ 1

2

0
(ts
| f ′(a)|q + (1 − t)s

| f ′(b)|q)dt


1
q

+

∫ 1

1
2

(ts
| f ′(a)|q + (1 − t)s

| f ′(b)|q)dt


1
q }
.

We note that∫ 1
2

0
ts
| f ′(a)|q + (1 − t)s

| f ′(b)|qdt =
1

(s + 1)2(s+1)
| f ′(a)|q +

1
s + 1

(
1 −

1
2s+1

)
| f ′(b)|q (8)

and ∫ 1

1
2

(ts
| f ′(a)|q + (1 − t)s

| f ′(b)|q)dt =
1

s + 1

(
1 −

1
2s+1

)
| f ′(a)|q +

1
(s + 1)2(s+1)

| f ′(b)|q. (9)

Note that (8) and (9), we get our result. The proof is completed. �
It is not difficult to see that Theorem 3.2 can be extended to the following result.

Corollary 3.3. Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b, such that f ∈ L[a, b]. If | f ′|q, (q > 1)
is s-convex on [a, b], for some fixed s ∈ (0, 1], then the following inequality for fractional integrals holds∣∣∣∣∣ f (a) + f (b)

2
−

Γ(α + 1)
2(b − a)α

[Jαa+ f (b) + Jαb− f (a)]
∣∣∣∣∣

≤

(
b − a

2

) (
1

αp + 1

) 1
p (

1 −
1

2αp

) 1
p
(

1
(s + 1)2s+1

) 1
q

×

(
1 + (2s+1

− 1)
1
q
)

(| f ′(a)| + | f ′(b)|),

where 1
p = 1 − 1

q .

Proof. We consider inequality (7), and we let a1 = | f ′(a)|q, b1 = (2s+1
− 1)| f ′(b)|q, a2 = (2s+1

− 1)| f ′(a)|q, b2 =
| f ′(b)|q. Here, 0 < 1

q < 1 for q > 1. Using the fact
∑n

i=1(ai +bi)r
≤

∑n
i=1 ar

i +
∑n

i=1 br
i for 0 < r < 1, a1, a2, · · · , an > 0

and b1, b2, · · · , bn > 0, we obtain the required result. This completes the proof. �
The following theorem is the third main result in this section.
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Theorem 3.4. Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b,such that f ∈ L[a, b]. If | f ′|q, (q > 1)
is s-convex on [a, b], for some fixed s ∈ (0, 1], then the following inequality for fractional integrals holds∣∣∣∣∣ f (a) + f (b)

2
−

Γ(α + 1)
2(b − a)α

[Jαa+ f (b) + Jαb− f (a)]
∣∣∣∣∣

≤ (b − a)
( 1
α + 1

)1− 1
q
(
1 −

1
2α

)1− 1
q
( 1
α + s + 1

) 1
q
(
1 −

1
2α+s

) 1
q

× (| f ′(a)|q + | f ′(b)|q)
1
q . (10)

Proof. Using Lemma 1.2 and the power mean inequality, we have∣∣∣∣∣ f (a) + f (b)
2

−
Γ(α + 1)
2(b − a)α

[Jαa+ f (b) + Jαb− f (a)]
∣∣∣∣∣

≤
b − a

2

{∫ 1
2

0
[(1 − t)α − tα]| f ′(ta + (1 − t)b)|dt +

∫ 1

1
2

[tα − (1 − t)α]| f ′(ta + (1 − t)b)|dt
}

≤
b − a

2

( 1
α + 1

)1− 1
q
(
1 −

1
2α

)1− 1
q
{ ∫ 1

2

0
[(1 − t)α − tα]| f ′(ta + (1 − t)b)|qdt


1
q

+

∫ 1

1
2

[tα − (1 − t)α]| f ′(ta + (1 − t)b)|qdt


1
q }
.

Because the s-convex of | f ′|q, (q > 1), we have∫ 1
2

0
[(1 − t)α − tα]| f ′(ta + (1 − t)b)|qdt

≤

∫ 1
2

0
(1 − t)αtsdt| f ′(a)|q +

∫ 1
2

0
(1 − t)α+sdt| f ′(b)|q −

∫ 1
2

0
tα+sdt| f ′(a)|q −

∫ 1
2

0
tα(1 − t)sdt| f ′(b)|q

≤
1

α + s + 1

(
1 −

1
2α+s

)
(| f ′(a)|q + | f ′(b)|q), (11)

and similarly∫ 1

1
2

[tα − (1 − t)α]| f ′(ta + (1 − t)b)|qdt ≤
1

α + s + 1

(
1 −

1
2α+s

)
(| f ′(a)|q + | f ′(b)|q). (12)

A combination of (11) and (12), we get∣∣∣∣∣ f (a) + f (b)
2

−
Γ(α + 1)
2(b − a)α

[Jαa+ f (b) + Jαb− f (a)]
∣∣∣∣∣

≤ (b − a)
( 1
α + 1

)1− 1
q
(
1 −

1
2α

)1− 1
q
( 1
α + s + 1

) 1
q
(
1 −

1
2α+s

) 1
q

(| f ′(a)|q + | f ′(b)|q)
1
q .

This completes the proof. �

Corollary 3.5. Let f be as in Theorem 3.4, then the following inequality holds∣∣∣∣∣ f (a) + f (b)
2

−
Γ(α + 1)
2(b − a)α

[Jαa+ f (b) + Jαb− f (a)]
∣∣∣∣∣

≤ (b − a)
( 1
α + 1

)1− 1
q
(
1 −

1
2α

)1− 1
q
( 1
α + s + 1

) 1
q
(
1 −

1
2α+s

) 1
q

(| f ′(a)| + | f ′(b)|).

Proof. Using the technique in the proof of Corollary 3.3, by considering inequality (10), one can obtain the
result. �

To end this section, we give the following Hermite-Hadamard type inequality for concave mapping.
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Theorem 3.6. Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b, such that f ∈ L[a, b]. If | f ′|q(q > 1)
is concave on [a, b], for some fixed s ∈ (0, 1], then the following inequality for fractional integrals holds∣∣∣∣∣ f (a) + f (b)

2
−

Γ(α + 1)
2(b − a)α

[Jαa+ f (b) + Jαb− f (a)]
∣∣∣∣∣ ≤ b − a

2

(
1

αp + 1

) 1
p (

1 −
1

2αp

) 1
p
(1

2

) 1
q
[∣∣∣∣∣∣ f ′

(
a + 3b

4

)∣∣∣∣∣∣ +

∣∣∣∣∣∣ f ′
(

3a + b
4

)∣∣∣∣∣∣
]
.

Proof. Using Theorem 3.1 and Hölder inequality and the s-convex of | f ′|q, (q > 1), we have∣∣∣∣∣ f (a) + f (b)
2

−
Γ(α + 1)
2(b − a)α

[Jαa+ f (b) + Jαb− f (a)]
∣∣∣∣∣

≤
b − a

2

(
1

αp + 1

(
1 −

1
2αp

)) 1
p { ∫ 1

2

0
| f ′(ta + (1 − t)b)|qdt


1
q

+

∫ 1

1
2

| f ′(ta + (1 − t)b)|qdt


1
q }
,

where 1
p = 1 − 1

q .
We note that | f ′|q is concave on [a, b], and use the Jensen integral inequality, we have∫ 1

2

0
| f ′(ta + (1 − t)b|qdt ≤

∫ 1
2

0
t∗dt


∣∣∣∣∣∣∣∣ f ′


∫ 1

2

0 (ta + (1 − t)b)dt∫ 1
2

0 t∗dt


∣∣∣∣∣∣∣∣
q

≤
1
2

∣∣∣∣∣∣ f ′
(

a + 3b
4

)∣∣∣∣∣∣q ,
and analogously

∫ 1

1
2

| f ′(ta + (1 − t)b)|qdt ≤

∫ 1

1
2

t∗dt


∣∣∣∣∣∣∣∣∣ f ′


∫ 1

1
2

(ta + (1 − t)b)dt∫ 1
1
2

t∗dt


∣∣∣∣∣∣∣∣∣
q

≤
1
2

∣∣∣∣∣∣ f ′
(

3a + b
4

)∣∣∣∣∣∣q .
Combining all obtained inequalities, we get the required result. �

4. Applications to Some Special Means

Consider the following special means (see Pearce and Pečarić [16]) for arbitrary real numbers α, β, α , β
as follows:

H(α, β) =
2

1
α + 1

β

, α, β ∈ R \ {0},

A(α, β) =
α + β

2
, α, β ∈ R,

L(α, β) =
β − α

ln |β| − ln |α|
, |α| , |β|, αβ , 0,

Ln(α, β) =

[
βn+1
− αn+1

(n + 1)(β − α)

] 1
n

, n ∈ Z \ {−1, 0}, α, β ∈ R, α , β.

Now, using the obtained results in Section 3, we give some applications to special means of real numbers.

Proposition 4.1. Let a, b ∈ R+, a < b, s ∈ (0, 1] and q > 1. Then

|A(a−1, b−1) − L−1(a, b)| ≤



2(b−a)
s+2

(
1 − 1

21+s

)
A(a−2, b−2),

(b − a)
(

1
p+1

) 1
p
(
1 − 1

2p

) 1
p
(

1
(s+1)2s+1

) 1
q

×

(
1 + (2s+1

− 1)
1
q
)

A(a−2, b−2),

2(b − a)
(

1
4

)1− 1
q
(

1
s+2

) 1
q
(
1 − 1

21+s

) 1
q A(a−2, b−2),

(13)

where 1
p = 1 − 1

q .



J. Wang, X. Li, Y. Zhou / Filomat 30:5 (2016), 1143–1150 1149

Proof. Applying Theorem 3.1, Corollary 3.3, and Corollary 3.5 respectively, for f (x) = 1
x and α = 1, one can

obtain the result immediately. �

Proposition 4.2. Let a, b ∈ R+, a < b, n ∈ Z, |n| ≥ 2, s ∈ (0, 1] and q > 1. Then

|A(an, bn) − Ln
n(a, b)| ≤



2|n|(b−a)
s+2

(
1 − 1

21+s

)
A(an−1, bn−1),

|n|(b − a)
(

1
p+1

) 1
p
(
1 − 1

2p

) 1
p
(

1
(s+1)2s+1

) 1
q

×

(
1 + (2s+1

− 1)
1
q
)

A(an−1, bn−1),

2|n|(b − a)
(

1
4

)1− 1
q
(

1
s+2

) 1
q
(
1 − 1

21+s

) 1
q A(an−1, bn−1),

(14)

where 1
p = 1 − 1

q .

Proof. Applying Theorem 3.1, Corollary 3.3, and Corollary 3.5 respectively, for f (x) = xn and α = 1, one can
obtain the result immediately. �

Proposition 4.3. Let a, b ∈ R+, (a < b), a−1 > b−1. For n ∈ Z, |n| ≥ 2, s ∈ (0, 1] and q > 1, we have

|H−1(b−1, a−1) − L−1(b−1, a−1)| ≤



2(b−a)
ab(s+2)

(
1 − 1

21+s

)
H−1(a−2, b−2),

b−a
ab

(
1

p+1

) 1
p
(
1 − 1

2p

) 1
p
(

1
(s+1)2s+1

) 1
q

×

(
1 + (2s+1

− 1)
1
q
)

H−1(a−2, b−2),
2(b−a)

ab

(
1
4

)1− 1
q
(

1
s+2

) 1
q
(
1 − 1

21+s

) 1
q H−1(a−2, b−2),

(15)

|H−1(bn, an) − Ln
n(b−1, a−1)| ≤



2|n|(b−a)
ab(s+2)

(
1 − 1

21+s

)
H−1(an−1, bn−1),

|n|(b−a)
ab

(
1

p+1

) 1
p
(
1 − 1

2p

) 1
p
(

1
(s+1)2s+1

) 1
q

×

(
1 + (2s+1

− 1)
1
q
)

H−1(an−1, bn−1),
2|n|(b−a)

ab

(
1
4

)1− 1
q
(

1
s+2

) 1
q
(
1 − 1

21+s

) 1
q H−1(an−1, bn−1),

(16)

where 1
p = 1 − 1

q .

Proof. Making the substitutions a → b−1, b → a−1 in the inequalities (13) and (14), one can obtain desired
inequalities (15) and (16) respectively. �

5. Acknowledgements

The authors thank the referees for their careful reading of the manuscript and insightful comments,
which helped to improve the quality of the paper. We would also like to acknowledge the valuable
comments and suggestions from the editors, which vastly contributed to improve the presentation of the
paper.

References

[1] M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the
second sense, Appl. Math. Lett., 23(2010) 1071–1076.
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