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Abstract. We introduce a Stancu type generalization of the Lupaş operators based on the q-integers, rate
of convergence of this modification are obtained by means of the modulus of continuity, Lipschitz class
functions and Peetre’s K-functional. We will also introduce r-th order generalization of these operators and
obtain its statistical approximation properties.

1. Introduction

Firstly, we give some definitions about q-integers. For any non-negative integer r, the q-integer of the
number r is defined by

[r]q := [r] =

{ 1−qr

1−q i f q , 1
r i f q = 1.

The q-factorial is defined as

[r]! =

{
[1] [2] ... [r] if k = 1, 2, ...

1 if k = 0

and the q-binomial coefficient is defined as[
n
r

]
=

[n]!
[r]! [n − r]!

(r,n ∈N) for q ∈ (0, 1]. It is obvious that q-binomial coefficient reduce to the ordinary case when q = 1.
Details on q-integers can be found in [2], [10], [12], [18], [19], [16] and [14].

The q-analogue of the classical Bernstein operators [3] is defined by Lupaş [15] as follows:

Rn,q( f ; x) =

n∑
k=0

f
(

[k]
[n]

)
bn,k(q; x) (1)
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( f ∈ C [0,1] and x ∈ [0, 1]) where

bn,k(q; x) =
1

n−1∏
s=0

(1 − x + qsx)

[
n
k

]
q(k

2)xk(1 − x)n−k. (2)

In [15], Lupaş proved the following Lemma.

Lemma 1.1. Let ei(x) = xi, (i = 0, 1, 2). Then we have

Rn,q(e0; x) = 1, (3)
Rn,q(e1; x) = x, (4)

Rn,q(e2; x) = x2 +
x(1 − x)

n
(
1 − x + qnx
1 − x + qx

). (5)

Stancu type generalization of linear positive operators has been studied in several years (for instance
see [11]). Now, we introduce the Stancu type generalization of the Lupaş operators based on q-integers as

Rα,βn,q ( f ; x) =

n∑
k=0

f
(

[k] + [α]
[n] +

[
β
] ) bn,k(q; x) (6)

where 0 < α < β and bn,k(q; x) is given by (2).
We give some equalities for operators (6) in the following lemma.

Lemma 1.2. Let ei(x) = xi, (i = 0, 1, 2). The following equalities are true:

Rα,βn,q (e0; x) = 1 (7)

Rα,βn,q (e1; x) = [n]x+[α]
[n]+[β] (8)

Rα,βn,q (e2; x) = ( [n]
[n]+[β] )2

{
x2 +

x(1 − x)
n

(
1 − x + qnx
1 − x + qx

)
}

+ 2[α][n]
([n]+[β])2 x + ( [α]

[n]+[β] )2. (9)

Proof. From (6), for the case f (s) = e0(s), we can easily get the equality (7).
If we take f (s) = e1(s) in operators (6), then we have

Rα,βn,q (e1(s); x) =

n∑
k=0

[k] + [α]
[n] +

[
β
]bn,k(q; x)

= [n]
[n]+[β]Rn,q(e1; x) + [α]

[n]+[β]Rn,q(e0; x).

So, from the equalities (3) and (4), we obtain (8).
Now, we take f (s) = e2(s) in operators (6), we get

Rα,βn,q (e2(s); x) =

n∑
k=0

(
[k] + [α]
[n] +

[
β
] )2bn,k(q; x)

= ( [n]
[n]+[β] )2Rn,q(e2; x) + 2[α]

([n]+[β])2 Rn,q(e1; x) + ( [α]
[n]+[β] )2Rn,q(e0; x).

So, from the equalities (3), (4) and (5), we have (9).

In the light of the Lemma 2, we can give the following theorem for the convergence of Rα,βn,q operators.
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Theorem 1.3. Let f ∈ C [0, 1] and (qn) be a sequence, 0 < qn ≤ 1, satisfying the following expressions:

lim
n

qn = 1 and lim
n

qn
n = c (c is a constant).

Then we have

lim
n

∣∣∣∣Rα,βn,q ( f ; x) − f (x)
∣∣∣∣ = 0.

Proof. From Lemma 2 and Korovkin’s theorem, the proof is obvious.

2. The Rates of Convergence

In this section, we compute the rates of convergence of the operators Rα,βn,q to the function f by means of
modulus continuity, elements of Lipschitz class and Peetre’s K-functional.

Let f ∈ C [0, 1]. The modulus of continuity of f denotes by ω
(

f , δ
)
, is defined to be

ω
(

f , δ
)

= sup
y,x∈[0,b]

|y−x|<δ

∣∣∣ f (
y
)
− f (x)

∣∣∣ .
It is well known that a necessary and sufficient condition for a function f ∈ C [0, 1] is

lim
δ→0

ω
(

f , δ
)

= 0.

It is also well known that for any δ > 0 and each y ∈ [0, 1]

∣∣∣ f (
y
)
− f (x)

∣∣∣ ≤ ω (
f , δ

) 1 +

∣∣∣y − x
∣∣∣

δ

 . (10)

Recall that, in [15], for every f ∈ C [0, 1] and δ > 0 Lupaş obtained the following rate of convergence for
the operators (1).

∣∣∣Rn,q( f ; x) − f (x)
∣∣∣ ≤ ω( f , δ)

1 +
1
δ

√
x(1 − x)

[n]

 . (11)

Theorem 2.1. Let (qn) be a sequence, 0 < qn ≤ 1, satisfying the following conditions:

lim
n

qn = 1 and lim
n

qn
n = c (c is a constant). (12)

For f ∈ C [0, 1] and δn > 0, we have∥∥∥∥Rα,βn,q ( f ; x) − f (x)
∥∥∥∥

C[0,1]
≤ 2ω

(
f , δn

)
where

δn =
(
(

[α]+[β]
[n]+[β] )2 + [n]

([n]+[β])2

)1/2
.

Proof. From (7), (8) and (9), we have

Rα,βn,q ((t − x)2; x) = ( [β]
[n]+[β] )2x2

−
2[α][β]

([n]+[β])2 x

+
[n]x(1−x)
([n]+[β])2 ( 1−x+qnx

1−x+qx ) + ( [α]
[n]+[β] )2. (13)
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Here one can observe that

max
x∈[0,1]

1−x+qnx
1−x+qx = 1 (14)

and

max
x∈[0,1]

x(1 − x) =
1
4

. (15)

By using (13), (14) and (15), we get

max
x∈[0,1]

Rα,βn,q ((t − x)2; x) ≤ (
[α]+[β]
[n]+[β] )2 + [n]

([n]+[β])2 . (16)

For x ∈ [0, 1], If we take the maximum of both side of the following inequality∣∣∣∣Rα,βn,q ( f ; x) − f (x)
∣∣∣∣ ≤ ω (

f , δ
) {

1 +
1
δ

(
Rα,βn,q ((t − x)2; x)

)1/2
}

,

then we get∥∥∥∥Rα,βn,q ( f ; x) − f (x)
∥∥∥∥

C[0,1]

≤ ω
(

f , δ
) 1 +

1
δ

(
max
x∈[0,1]

Rα,βn,q ((t − x)2; x)
)1/2


≤ ω

(
f , δ

) {
1 +

1
δ

(
(

[α]+[β]
[n]+[β] )2 + [n]

([n]+[β])2

)1/2
}
.

If we choose

δn =
(
(

[α]+[β]
[n]+[β] )2 + [n]

([n]+[β])2

)1/2
(17)

then we have∥∥∥∥Rα,βn,q ( f ; x) − f (x)
∥∥∥∥

C[0,1]
≤ 2ω

(
f , δn

)
.

So we have the desired result.

Now, we compute the approximation order of operator Rα,βn,q in term of the elements of the usual Lipschitz
class.

Let f ∈ C [0, 1] and 0 < α ≤ 1. We recall that f belongs to LipM
(
ρ
)

if the inequality∣∣∣ f (x) − f
(
y
)∣∣∣ ≤M

∣∣∣x − y
∣∣∣ρ ; ∀x, y ∈ [0, 1] (18)

holds.

Theorem 2.2. For all f ∈ LipM
(
ρ
)
, we have∥∥∥∥Rα,βn,q ( f ; x) − f (x)

∥∥∥∥
C[0,1]

≤Mδ
ρ
n

where

δn =
(
(

[α]+[β]
[n]+[β] )2 + [n]

([n]+[β])2

)1/2

and M is a positive constant.
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Proof. Let f ∈ LipM(ρ) and 0 < ρ ≤ 1. By (18) and linearity and monotonicity of Rα,βn,q then we have∣∣∣∣Rα,βn,q ( f ; x) − f (x)
∣∣∣∣ ≤ Rα,βn,q

(∣∣∣ f (t) − f (x)
∣∣∣ ; x

)
≤ MRα,βn,q (|t − x|ρ ; x) .

Applying the Hölder inequality with m = 2
ρ and n = 2

2−ρ , we get∣∣∣∣Rα,βn,q ( f ; x) − f (x)
∣∣∣∣ ≤M

(
Rα,βn,q ((t − x)2; x)

)ρ/2
. (19)

For x ∈ [0, 1], if we take the maximum of both side of (19) then we have∥∥∥∥Rα,βn,q ( f ; x) − f (x)
∥∥∥∥

C[0,1]
≤M

(
max

x
Rα,βn,q ((t − x)2; x)

)ρ/2
.

If we use (13) and choose δ = δn as in (17), then proof is completed.

Finally, we will study the rate of convergence of the positive linear operators Rα,βn,q by means of the
Peetre’s K-functionals.

First of all, we recall the definition of Rα,βn,q .
C2 [0, 1] : The space of those functions f for which f , f ′, f ′′ ∈ C [0, 1]. We recall the following norm in the

space C2 [0, 1]:∥∥∥ f
∥∥∥

C2[0,1]
=

∥∥∥ f
∥∥∥

C[0,1]
+

∥∥∥ f ′
∥∥∥

C[0,1]
+

∥∥∥ f ′′
∥∥∥

C[0,1]
.

We consider the following Peetre’s K-functional

K( f , δ) := inf
1∈C2[0,1]

{∥∥∥ f − 1
∥∥∥

C[0,1]
+ δ

∥∥∥1∥∥∥C2[0,1]

}
.

Theorem 2.3. Let f ∈ C [0, 1]. Then we have∥∥∥∥Rα,βn,q ( f ; x) − f (x)
∥∥∥∥

C[0,1]
≤ 2K( f , δn)

where K( f , δn) is Peetre’s K-functional and

δn =
1
2

[α]+[β]
[n]+[β] +

1
4

(
[α]+[β]
[n]+[β] )2 + [n]

4([n]+[β])2 .

Proof. Let 1 ∈ C2 [0, 1]. If we use the Taylor expansion of the function 1 at s = x, we have

1(s) = 1(x) + (s − x)1′(x) +
(s − x)2

2!
1′′(x).

Hence, we get∥∥∥∥Rα,βn,q (1; x) − 1 (x)
∥∥∥∥

C[0,1]
≤

∥∥∥∥Rα,βn,q ((s − x); x)
∥∥∥∥

C[0,1]

∥∥∥1(x)
∥∥∥

C2[0,1]

+
1
2

∥∥∥∥Rα,βn,q ((s − x)2; x)
∥∥∥∥

C[0,1]

∥∥∥1(x)
∥∥∥

C2[0,1]
. (20)

From the equality (8), we have∥∥∥∥Rα,βn,q ((s − x); x)
∥∥∥∥

C[0,1]
≤

[α]+[β]
[n]+[β] . (21)
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So if we use (16) and (21) in (20), then we get∥∥∥∥Rα,βn,q (1; x) − 1 (x)
∥∥∥∥

C[0,1]
≤

[
1
2 (

[α]+[β]
[n]+[β] )2 + 1

2
[n]

([n]+[β])2 +
[α]+[β]
[n]+[β]

] ∥∥∥1(x)
∥∥∥

C2[0,1]
. (22)

On the other hand, we can write∣∣∣∣Rα,βn,q ( f ; x) − f (x)
∣∣∣∣ ≤ ∣∣∣∣Rα,βn,q ( f − 1; x)

∣∣∣∣ +
∣∣∣∣Rα,βn,q (1; x) − 1 (x)

∣∣∣∣
+

∣∣∣ f (x) − 1 (x)
∣∣∣ .

If we take the maximum on [0, 1], we have∥∥∥∥Rα,βn,q ( f ; x) − f (x)
∥∥∥∥

C[0,1]
≤ 2

∥∥∥ f − 1
∥∥∥

C[0,1]
+

∥∥∥∥Rα,βn,q (1; x) − 1 (x)
∥∥∥∥

C[0,1]
. (23)

If we consider (22) in (23), we obtain∥∥∥∥Rα,βn,q ( f ; x) − f (x)
∥∥∥∥

C[0,1]
≤ 2

{∥∥∥ f − 1
∥∥∥

C[0,1]
+

[
1
4 (

[α]+[β]
[n]+[β] )2 + 1

4
[n]

([n]+[β])2

+ 1
2

[α]+[β]
[n]+[β]

] ∥∥∥1(x)
∥∥∥

C2[0,1]

}
.

If we choose

δn = 1
2

[α]+[β]
[n]+[β] + 1

4 (
[α]+[β]
[n]+[β] )2 + 1

4
[n]

([n]+[β])2 ,

then we get∥∥∥∥Rα,βn,q ( f ; x) − f (x)
∥∥∥∥

C[0,1]
≤ 2

{∥∥∥ f − 1
∥∥∥

C[0,1]
+ δn

∥∥∥1(x)
∥∥∥

C2[0,1]

}
.

Finally, one can observe that if we take the infimum of both side above inequality for the function 1 ∈ C2 [0, 1],
we can find∥∥∥∥Rα,βn,q ( f ; x) − f (x)

∥∥∥∥
C[0,1]

≤ 2K( f , δn).

3. The r − th Order Generalization of the Operators Rα,βn,q

By Cr [0, 1] (r = 0, 1, 2, ...) we denote the set of functions f having continuous r-th derivatives f r ( f 0(x) =
f (x)) on the segment [0, 1] (see [4] and [13]).

We consider the following generalization of the positive linear operators Rα,βn,q defined by (6).

Rα,βn,q,r( f ; x) =

n∑
k=0


r∑

i=0

f (i)
(

[k]+[α]
[n]+[β]

) (x − [k]+[α]
[n]+[β] )i

i!

 bn,k(q; x) (24)

where bn,k(q; x) is given by (2), f ∈ Cr [0, 1] (r = 0, 1, 2, ...) and n ∈N. We call the operators (24) the r-th order
of the operators Rα,βn,q . Taking r = 0, we get the sequence Rα,βn,q defined by (6).

Theorem 3.1. Let f (r)
∈ LipM(α) and f ∈ Cr [0, 1]. We have∥∥∥∥Rα,βn,q,r( f ; x) − f (x)
∥∥∥∥

C[0,1]
≤

M
(r − 1)!

α
α + r

B(α, r)
∥∥∥∥Rα,βn,q (|s − x|α+r ; x)

∥∥∥∥
C[0,1]

here B(α, r) is Beta function r,n ∈N.
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Proof. By (24), we get

f (x) − Rα,βn,q ( f ; x)

=

n∑
k=0

 f (x) −
r∑

i=0

f (i)
(

[k]+[α]
[n]+[β]

) (x−
[k]+[α]
[n]+[β] )i

i!

 bn,k(q; x). (25)

It is known from Taylor’s formula that

f (x) −


r∑

i=0

f (i)
(

[k]+[α]
[n]+[β]

) (x − [k]+[α]
[n]+[β] )i

i!


=

(x−
[k]+[α]
[n]+[β] )r

(r−1)!

1∫
0

(1 − z)r−1

×

[
f (r)

(
[k]+[α]
[n]+[β] + z(x − [k]+[α]

[n]+[β] )
)
− f (r)

(
[k]+[α]
[n]+[β]

)]
dz. (26)

Because of f (r)
∈ LipM(α), one can get∣∣∣∣∣ f (r)
(

[k]+[α]
[n]+[β] + z(x − [k]+[α]

[n]+[β] )
)
− f (r)

(
[k]+[α]
[n]+[β]

)∣∣∣∣∣
≤ Mzα

∣∣∣∣x − [k]+[α]
[n]+[β]

∣∣∣∣α . (27)

From the well known expansion of the Beta function, we can write

1∫
0

(1 − z)r−1zαdz = B(α + 1, r) =
α

α + r
B(α, r). (28)

Now, by using (28) and (27) in (26), we conclude that∣∣∣∣∣∣∣∣ f (x) −


r∑

i=0

f (i)
(

[k]+[α]
[n]+[β]

) (x − [k]+[α]
[n]+[β] )i

i!


∣∣∣∣∣∣∣∣

≤
M

(r − 1)!
α

α + r
B(α, r)

∣∣∣∣x − [k]+[α]
[n]+[β]

∣∣∣∣α+r
. (29)

Taking into consideration (29) and (25), we have the desired result.

Now consider the function 1 ∈ C [0, 1] defined by

1(s) = |s − x|α+r . (30)

Since 1(x) = 0, Theorem 1 yields

lim
n

∥∥∥∥Rα,βn,q (1; x)
∥∥∥∥

C[0,1]
= 0.

So, it follows from above Theorem that, for all f ∈ Cr [0, 1] such that f (r)
∈ LipM(α), we have

lim
n

∥∥∥∥Rα,βn,q,r( f ; x) − f (x)
∥∥∥∥

C[0,1]
= 0.
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4. The Rates of Statistical Convergence

At this point, let us recall the concept of statistical convergence.
The statistical convergence which was introduced by Fast [8] in 1951, is an important research area in ap-

proximation theory. In [9], Gadjiev and Orhan used the concept of statistical convergence in approximation
theory. They proved a Bohman-Korovkin type theorem for statistical convergence.

Recently, statistical approximation properties of many operators are investigated (see for instance,
[1, 6, 7, 15]).

A sequence x = (xk) is said to be statistically convergent to a number L if for every ε > 0,

δ {k ∈N : |xk − L| ≥ ε} = 0,

where δ(K) is the natural density of the set K ⊂N.
The density of subset K ⊂N is defined by

δ(K) := lim
n

1
n
{the number k ≤ n : k ∈ K}

whenever the limit is exists (see [17]).
For instance, δ(N) = 1, δ {2k : k ∈N} = 1

2 and δ
{
k2 : k ∈N

}
= 0. To emphasize the importance of the

statistical convergence, one can give the following example: The sequence

xk =

{
L1; if k = m2

L2; if k , m2 , (m = 1, 2, 3, ...)

is statistically convergent to L2 but not convergent in ordinary sense when L1 , L2. We note that any
convergent sequence is statistically convergent but not conversely. Details can be found in [5] and [6].

Now, we consider a sequence q := (qn) satisfying the following expressions:

st − lim
n

qn = 1 and st − lim
n

qn
n = a. (31)

Gadjiev and Orhan [9] gave the below theorem for linear positive operators which is about statistically
Korovkin type theorem. Now, we recall this theorem.

Theorem 4.1. If the sequence of linear positive operators An : CB [a, b]→ CB [a, b] satisfies the conditions

st − lim
n
‖An(eν; .) − eν‖C[a,b] = 0,

for eν(t) = tν, ν = 0, 1, 2, then for any f ∈ C [a, b], we get

st − lim
n

∥∥∥An( f ; .) − f
∥∥∥

C[a,b]
= 0.

Finally, we investigate the rates of statistical convergence of Rα,βn,q operators. So we give the below
theorem.

Theorem 4.2. Let q := (qn), 0 < qn < 1 be a sequence satisfying (31) conditions. For any monotone increasing
continuous function f defined on [0, 1], we have

st − lim
n

∥∥∥∥Rα,βn,q ( f , qn; .) − f
∥∥∥∥

C[0,1]
= 0. (32)

Proof. We know that Rα,βn,qn
is a positive linear operator. Here, we need to show that

st − lim
n

∥∥∥∥Rα,βn,q (eν, qn; .) − eν
∥∥∥∥

C[0,1]
= 0, for ν = 0, 1, 2. (33)
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For ν = 0, we get

st − lim
n

∥∥∥∥Rα,βn,q (e0, qn; .) − e0

∥∥∥∥
C[0,1]

= 0.

For ν = 1, we have

Rα,βn,q (e1, qn; x) − e1(x) =
−[β]qn

x

[n]qn +[β]qn

+
[α]qn

[n]qn +[β]qn

.

If we take the maximum of both side for x ∈ [0, 1], we obtain∥∥∥∥Rα,βn,q (e1, qn; .) − e1(x)
∥∥∥∥

C[0,1]
≤

[α]qn +[β]qn

[n]qn +[β]qn

. (34)

Now, we define the sets

T :=
{
k :

∥∥∥∥Rα,βk,q (e1, qk; .) − e1

∥∥∥∥
C[0,1]

≥ ε
}
,

T1 :=
{

k :
[α]qk

+[β]qk

[n]qk
+[β]qk

≥ ε

}
for ε > 0. From the inequality (34), we have T ⊂ T1. So, we write

δ
{
k ≤ n :

∥∥∥∥Rα,βn,q (e1, qk; .) − e1

∥∥∥∥
C[0,1]

≥ ε
}

≤ δ

{
k ≤ n :

[α]qk
+[β]qk

[n]qk
+[β]qk

≥ ε

}
. (35)

From the conditions (31), we get

st − lim
n

(
[α]qn +[β]qn

[n]qn +[β]qn

) = 0.

From the definition of density, we see that

δ

{
k ≤ n :

[α]qk
+[β]qk

[n]qk
+[β]qk

≥ ε

}
= 0

and from (35), we find

st − lim
n

∥∥∥∥Rα,βn,q (e1, qn; .) − e1

∥∥∥∥
C[0,1]

= 0.

Finally, for the case ν = 2, we get∥∥∥∥Rα,βn,q (e2, qn; .) − e2(x)
∥∥∥∥

C[0,1]
≤

[α]2
qn +[β]2

qn

([n]qn +[β]qn
)2

+(2 [α]qn
+ 2

[
β
]

qn
+

1
4

)
[n]qn

([n]qn +[β]qn
)2 . (36)

If we choose

αn =
[β]2

qn

([n]qn +[β]qn
)2 ,

βn = (2 [α]qn
+ 2

[
β
]

qn
+

1
4

)
[n]qn

([n]qn +[β]qn
)2 ,

γn =
[α]2

qn

([n]qn +[β]qn
)2
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then from (31), we have

st − lim
n
αn = st − lim

n
βn = st − lim

n
γn = 0. (37)

Now, for ε > 0, we define

U :=
{
k :

∥∥∥∥Rα,βk,q (e2, qk; .) − e2

∥∥∥∥
C[0,1]

≥ ε
}

,

U1 :=
{
k : αk ≥

ε
3

}
,

U2 :=
{
k : βk ≥

ε
3

}
,

U3 :=
{
k : γk ≥

ε
3

}
.

From the inequality (36), we observe that U ⊆ U1 ∪U2 ∪U3. Hence, one can write

δ
{
k ≤ n :

∥∥∥∥Rα,βk,q (e2, qk; .) − e2

∥∥∥∥
C[0,1]

≥ ε
}
≤ δ

{
k ≤ n : αk ≥

ε
3

}
+δ

{
k ≤ n : βk ≥

ε
3

}
+ δ

{
k ≤ n : γk ≥

ε
3

}
.

Since the right hand side of above inequality is zero, we get

st − lim
n

∥∥∥∥Rα,βn,q (e2, qn; .) − e2

∥∥∥∥
C[0,1]

= 0.

This gives the proof.
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