On the Rates of Convergence of the q-Lupaş-Stancu Operators

Ogün Doğru ${ }^{\text {a }}$, Gürhan İçöz ${ }^{\text {a }}$, Kadir Kanat ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Faculty of Science, Gazi University, Ankara, Turkey;
${ }^{b}$ Department of Mathematics, Polatll Faculty of Science and Art, Gazi University, Ankara, Turkey;

Abstract

We introduce a Stancu type generalization of the Lupaş operators based on the q-integers, rate of convergence of this modification are obtained by means of the modulus of continuity, Lipschitz class functions and Peetre's K-functional. We will also introduce r-th order generalization of these operators and obtain its statistical approximation properties.

1. Introduction

Firstly, we give some definitions about q-integers. For any non-negative integer r, the q-integer of the number r is defined by

$$
[r]_{q}:=[r]=\left\{\begin{array}{cc}
\frac{1-q^{r}}{1-q} & \text { if } q \neq 1 \\
r & \text { if } q=1 .
\end{array}\right.
$$

The q-factorial is defined as

$$
[r]!=\left\{\begin{array}{cl}
{[1][2] \ldots[r]} & \text { if } k=1,2, \ldots \\
1 & \text { if } k=0
\end{array}\right.
$$

and the q-binomial coefficient is defined as

$$
\left[\begin{array}{l}
n \\
r
\end{array}\right]=\frac{[n]!}{[r]![n-r]!}
$$

$(r, n \in \mathbb{N})$ for $q \in(0,1]$. It is obvious that q-binomial coefficient reduce to the ordinary case when $q=1$. Details on q-integers can be found in [2], [10], [12], [18], [19], [16] and [14].

The q-analogue of the classical Bernstein operators [3] is defined by Lupaş [15] as follows:

$$
\begin{equation*}
R_{n, q}(f ; x)=\sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right) b_{n, k}(q ; x) \tag{1}
\end{equation*}
$$

[^0]$(f \in C[0,1]$ and $x \in[0,1])$ where
\[

b_{n, k}(q ; x)=\frac{1}{\prod_{s=0}^{n-1}\left(1-x+q^{s} x\right)}\left[$$
\begin{array}{l}
n \tag{2}\\
k
\end{array}
$$\right] q^{\left(\frac{k}{2}\right) x^{k}(1-x)^{n-k} . . . ~ . ~ . ~}
\]

In [15], Lupaş proved the following Lemma.
Lemma 1.1. Let $e_{i}(x)=x^{i},(i=0,1,2)$. Then we have

$$
\begin{align*}
& R_{n, q}\left(e_{0} ; x\right)=1, \tag{3}\\
& R_{n, q}\left(e_{1} ; x\right)=x, \tag{4}\\
& R_{n, q}\left(e_{2} ; x\right)=x^{2}+\frac{x(1-x)}{n}\left(\frac{1-x+q^{n} x}{1-x+q x}\right) . \tag{5}
\end{align*}
$$

Stancu type generalization of linear positive operators has been studied in several years (for instance see [11]). Now, we introduce the Stancu type generalization of the Lupaş operators based on q-integers as

$$
\begin{equation*}
R_{n, q}^{\alpha, \beta}(f ; x)=\sum_{k=0}^{n} f\left(\frac{[k]+[\alpha]}{[n]+[\beta]}\right) b_{n, k}(q ; x) \tag{6}
\end{equation*}
$$

where $0<\alpha<\beta$ and $b_{n, k}(q ; x)$ is given by (2).
We give some equalities for operators (6) in the following lemma.
Lemma 1.2. Let $e_{i}(x)=x^{i},(i=0,1,2)$. The following equalities are true:

$$
\begin{align*}
R_{n, 9}^{\alpha, \beta}\left(e_{0} ; x\right)= & 1 \tag{7}\\
R_{n, 9}^{\alpha, \beta}\left(e_{1} ; x\right)= & \frac{[n] x+[\alpha]}{[n]+[\beta]} \tag{8}\\
R_{n, 9}^{\alpha, \beta}\left(e_{2} ; x\right)= & \left(\frac{[n]}{[n]+[\beta \beta}\right)^{2}\left\{x^{2}+\frac{x(1-x)}{n}\left(\frac{1-x+q^{n} x}{1-x+q x}\right)\right\} \\
& +\frac{2[\alpha][n]}{[n n]+[\beta]]^{2}} x+\left(\frac{[a]}{[n]+[\beta]}\right)^{2} . \tag{9}
\end{align*}
$$

Proof. From (6), for the case $f(s)=e_{0}(s)$, we can easily get the equality (7).
If we take $f(s)=e_{1}(s)$ in operators (6), then we have

$$
\begin{aligned}
R_{n, q}^{\alpha, \beta}\left(e_{1}(s) ; x\right) & =\sum_{k=0}^{n} \frac{[k]+[\alpha]}{[n]+[\beta]} b_{n, k}(q ; x) \\
& =\frac{[n]}{[n]+[\beta]} R_{n, q}\left(e_{1} ; x\right)+\frac{[\alpha]}{[n]+[\beta]} R_{n, q}\left(e_{0} ; x\right) .
\end{aligned}
$$

So, from the equalities (3) and (4), we obtain (8).
Now, we take $f(s)=e_{2}(s)$ in operators (6), we get

$$
\begin{aligned}
R_{n, q}^{\alpha, \beta}\left(e_{2}(s) ; x\right) & =\sum_{k=0}^{n}\left(\frac{[k]+[\alpha]}{[n]+[\beta]}\right)^{2} b_{n, k}(q ; x) \\
& =\left(\frac{[n]}{[n]+[\beta]}\right)^{2} R_{n, q}\left(e_{2} ; x\right)+\frac{2[\alpha]}{[[n]+[\beta])^{2}} R_{n, q}\left(e_{1} ; x\right)+\left(\frac{[\alpha]}{[n]+[\beta]}\right)^{2} R_{n, q}\left(e_{0} ; x\right) .
\end{aligned}
$$

So, from the equalities (3), (4) and (5), we have (9).
In the light of the Lemma 2, we can give the following theorem for the convergence of $R_{n, \eta}^{\alpha, \beta}$ operators.

Theorem 1.3. Let $f \in C[0,1]$ and $\left(q_{n}\right)$ be a sequence, $0<q_{n} \leq 1$, satisfying the following expressions:

$$
\lim _{n} q_{n}=1 \text { and } \lim _{n} q_{n}^{n}=c(c \text { is a constant }) .
$$

Then we have

$$
\lim _{n}\left|R_{n, q}^{\alpha, \beta}(f ; x)-f(x)\right|=0
$$

Proof. From Lemma 2 and Korovkin's theorem, the proof is obvious.

2. The Rates of Convergence

In this section, we compute the rates of convergence of the operators $R_{n, q}^{\alpha, \beta}$ to the function f by means of modulus continuity, elements of Lipschitz class and Peetre's K-functional.

Let $f \in C[0,1]$. The modulus of continuity of f denotes by $\omega(f, \delta)$, is defined to be

$$
\omega(f, \delta)=\sup _{\substack{y, x \in[0, b] \\|y-x|<\delta}}|f(y)-f(x)|
$$

It is well known that a necessary and sufficient condition for a function $f \in C[0,1]$ is

$$
\lim _{\delta \rightarrow 0} \omega(f, \delta)=0
$$

It is also well known that for any $\delta>0$ and each $y \in[0,1]$

$$
\begin{equation*}
|f(y)-f(x)| \leq \omega(f, \delta)\left(1+\frac{|y-x|}{\delta}\right) \tag{10}
\end{equation*}
$$

Recall that, in [15], for every $f \in C[0,1]$ and $\delta>0$ Lupaş obtained the following rate of convergence for the operators (1).

$$
\begin{equation*}
\left|R_{n, q}(f ; x)-f(x)\right| \leq \omega(f, \delta)\left\{1+\frac{1}{\delta} \sqrt{\frac{x(1-x)}{[n]}}\right\} \tag{11}
\end{equation*}
$$

Theorem 2.1. Let $\left(q_{n}\right)$ be a sequence, $0<q_{n} \leq 1$, satisfying the following conditions:

$$
\begin{equation*}
\lim _{n} q_{n}=1 \text { and } \lim _{n} q_{n}^{n}=c(c \text { is a constant }) \tag{12}
\end{equation*}
$$

For $f \in C[0,1]$ and $\delta_{n}>0$, we have

$$
\left\|R_{n, q}^{\alpha, \beta}(f ; x)-f(x)\right\|_{C[0,1]} \leq 2 \omega\left(f, \delta_{n}\right)
$$

where

$$
\delta_{n}=\left(\left(\frac{[\alpha]+[\beta]}{[n]+[\beta]}\right)^{2}+\frac{[n]}{([n]+[\beta])^{2}}\right)^{1 / 2}
$$

Proof. From (7), (8) and (9), we have

$$
\begin{align*}
R_{n, q}^{\alpha, \beta}\left((t-x)^{2} ; x\right)= & \left(\frac{[\beta]}{[n]+[\beta]}\right)^{2} x^{2}-\frac{2[\alpha][\beta]}{([n]+[\beta])^{2}} x \\
& +\frac{[n] x(1-x)}{([n]+[\beta])^{2}}\left(\frac{1-x+q^{n} x}{1-x+q x}\right)+\left(\frac{[\alpha]}{[n]+[\beta]}\right)^{2} . \tag{13}
\end{align*}
$$

Here one can observe that

$$
\begin{equation*}
\max _{x \in[0,1]} \frac{1-x+q^{n} x}{1-x+q x}=1 \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{x \in[0,1]} x(1-x)=\frac{1}{4} \tag{15}
\end{equation*}
$$

By using (13), (14) and (15), we get

$$
\begin{equation*}
\max _{x \in[0,1]} R_{n, q}^{\alpha, \beta}\left((t-x)^{2} ; x\right) \leq\left(\frac{[\alpha]+[\beta]}{[n]+[\beta]}\right)^{2}+\frac{[n]}{([n]+[\beta])^{2}} \tag{16}
\end{equation*}
$$

For $x \in[0,1]$, If we take the maximum of both side of the following inequality

$$
\left|R_{n, q}^{\alpha, \beta}(f ; x)-f(x)\right| \leq \omega(f, \delta)\left\{1+\frac{1}{\delta}\left(R_{n, q}^{\alpha, \beta}\left((t-x)^{2} ; x\right)\right)^{1 / 2}\right\}
$$

then we get

$$
\begin{aligned}
& \left\|R_{n, q}^{\alpha, \beta}(f ; x)-f(x)\right\|_{C[0,1]} \\
\leq & \omega(f, \delta)\left\{1+\frac{1}{\delta}\left(\max _{x \in[0,1]} R_{n, q}^{\alpha, \beta}\left((t-x)^{2} ; x\right)\right)^{1 / 2}\right\} \\
\leq & \omega(f, \delta)\left\{1+\frac{1}{\delta}\left(\left(\frac{[\alpha]+[\beta]}{[n]+[\beta]}\right)^{2}+\frac{[n]}{([n]+[\beta])^{2}}\right)^{1 / 2}\right\} .
\end{aligned}
$$

If we choose

$$
\begin{equation*}
\delta_{n}=\left(\left(\frac{[\alpha]+[\beta]}{[n]+[\beta]}\right)^{2}+\frac{[n]}{([n]+[\beta])^{2}}\right)^{1 / 2} \tag{17}
\end{equation*}
$$

then we have

$$
\left\|R_{n, q}^{\alpha, \beta}(f ; x)-f(x)\right\|_{C[0,1]} \leq 2 \omega\left(f, \delta_{n}\right)
$$

So we have the desired result.
Now, we compute the approximation order of operator $R_{n, q}^{\alpha, \beta}$ in term of the elements of the usual Lipschitz class.

Let $f \in C[0,1]$ and $0<\alpha \leq 1$. We recall that f belongs to $\operatorname{Lip}_{M}(\rho)$ if the inequality

$$
\begin{equation*}
|f(x)-f(y)| \leq M|x-y|^{\rho} ; \forall x, y \in[0,1] \tag{18}
\end{equation*}
$$

holds.
Theorem 2.2. For all $f \in \operatorname{Lip}_{M}(\rho)$, we have

$$
\left\|R_{n, q}^{\alpha, \beta}(f ; x)-f(x)\right\|_{C[0,1]} \leq M \delta_{n}^{\rho}
$$

where

$$
\delta_{n}=\left(\left(\frac{[\alpha]+[\beta]}{[n]+[\beta]}\right)^{2}+\frac{[n]}{([n]+[\beta])^{2}}\right)^{1 / 2}
$$

and M is a positive constant.

Proof. Let $f \in \operatorname{Lip}_{M}(\rho)$ and $0<\rho \leq 1$. By (18) and linearity and monotonicity of $R_{n, q}^{\alpha, \beta}$ then we have

$$
\begin{aligned}
\left|R_{n, q}^{\alpha, \beta}(f ; x)-f(x)\right| & \leq R_{n, q}^{\alpha, \beta}(|f(t)-f(x)| ; x) \\
& \leq M R_{n, q}^{\alpha, \beta}\left(|t-x|^{\rho} ; x\right) .
\end{aligned}
$$

Applying the Hölder inequality with $m=\frac{2}{\rho}$ and $n=\frac{2}{2-\rho}$, we get

$$
\begin{equation*}
\left|R_{n, q}^{\alpha, \beta}(f ; x)-f(x)\right| \leq M\left(R_{n, q}^{\alpha, \beta}\left((t-x)^{2} ; x\right)\right)^{\rho / 2} \tag{19}
\end{equation*}
$$

For $x \in[0,1]$, if we take the maximum of both side of (19) then we have

$$
\left\|R_{n, q}^{\alpha, \beta}(f ; x)-f(x)\right\|_{C[0,1]} \leq M\left(\max _{x} R_{n, q}^{\alpha, \beta}\left((t-x)^{2} ; x\right)\right)^{\rho / 2}
$$

If we use (13) and choose $\delta=\delta_{n}$ as in (17), then proof is completed.
Finally, we will study the rate of convergence of the positive linear operators $R_{n, q}^{\alpha, \beta}$ by means of the Peetre's K-functionals.

First of all, we recall the definition of $R_{n, q}^{\alpha, \beta}$.
$C^{2}[0,1]$: The space of those functions f for which $f, f^{\prime}, f^{\prime \prime} \in C[0,1]$. We recall the following norm in the space $C^{2}[0,1]$:

$$
\|f\|_{C^{2}[0,1]}=\|f\|_{C[0,1]}+\left\|f^{\prime}\right\|_{C[0,1]}+\left\|f^{\prime \prime}\right\|_{C[0,1]}
$$

We consider the following Peetre's K-functional

$$
K(f, \delta):=\inf _{g \in C^{2}[0,1]}\left\{\|f-g\|_{C[0,1]}+\delta\|g\|_{C^{2}[0,1]}\right\} .
$$

Theorem 2.3. Let $f \in C[0,1]$. Then we have

$$
\left\|R_{n, q}^{\alpha, \beta}(f ; x)-f(x)\right\|_{C[0,1]} \leq 2 K\left(f, \delta_{n}\right)
$$

where $K\left(f, \delta_{n}\right)$ is Peetre's K-functional and

$$
\delta_{n}=\frac{1}{2} \frac{[\alpha]+[\beta]}{[n]+[\beta]}+\frac{1}{4}\left(\frac{[\alpha]+[\beta]}{[n]+[\beta]}\right)^{2}+\frac{[n]}{4([n]+[\beta])^{2}} .
$$

Proof. Let $g \in C^{2}[0,1]$. If we use the Taylor expansion of the function g at $s=x$, we have

$$
g(s)=g(x)+(s-x) g^{\prime}(x)+\frac{(s-x)^{2}}{2!} g^{\prime \prime}(x)
$$

Hence, we get

$$
\begin{align*}
\left\|R_{n, q}^{\alpha, \beta}(g ; x)-g(x)\right\|_{C[0,1]} \leq & \left\|R_{n, q}^{\alpha, \beta}((s-x) ; x)\right\|_{C[0,1]}\|g(x)\|_{C^{2}[0,1]} \\
& +\frac{1}{2}\left\|R_{n, q}^{\alpha, \beta}\left((s-x)^{2} ; x\right)\right\|_{C[0,1]}\|g(x)\|_{C^{2}[0,1]} \tag{20}
\end{align*}
$$

From the equality (8), we have

$$
\begin{equation*}
\left\|R_{n, q}^{\alpha, \beta}((s-x) ; x)\right\|_{C[0,1]} \leq \frac{[\alpha]+[\beta]}{[n]+[\beta]} . \tag{21}
\end{equation*}
$$

So if we use (16) and (21) in (20), then we get

$$
\begin{equation*}
\left\|R_{n, q}^{\alpha, \beta}(g ; x)-g(x)\right\|_{C[0,1]} \leq\left[\frac{1}{2}\left(\frac{[\alpha]+[\beta]}{[n]+[\beta]}\right)^{2}+\frac{1}{2} \frac{[n]}{[n]+[\beta])^{2}}+\frac{[\alpha]+[\beta]}{[n]+[\beta]}\right]\|g(x)\|_{C^{2}[0,1]} \tag{22}
\end{equation*}
$$

On the other hand, we can write

$$
\begin{aligned}
\left|R_{n, q}^{\alpha, \beta}(f ; x)-f(x)\right| \leq & \left|R_{n, q}^{\alpha, \beta}(f-g ; x)\right|+\left|R_{n, q}^{\alpha, \beta}(g ; x)-g(x)\right| \\
& +|f(x)-g(x)| .
\end{aligned}
$$

If we take the maximum on $[0,1]$, we have

$$
\begin{equation*}
\left\|R_{n, q}^{\alpha, \beta}(f ; x)-f(x)\right\|_{C[0,1]} \leq 2\|f-g\|_{C[0,1]}+\left\|R_{n, q}^{\alpha, \beta}(g ; x)-g(x)\right\|_{C[0,1]} \tag{23}
\end{equation*}
$$

If we consider (22) in (23), we obtain

$$
\begin{aligned}
\left\|R_{n, q}^{\alpha, \beta}(f ; x)-f(x)\right\|_{C[0,1]} \leq & 2\left\{\|f-g\|_{C[0,1]}+\left[\frac{1}{4}\left(\frac{[\alpha]+[\beta]}{[n]+[\beta]}\right)^{2}+\frac{1}{4} \frac{[n]}{([n]+[\beta])^{2}}\right.\right. \\
& \left.\left.+\frac{1}{2} \frac{[\alpha]+[\beta]}{[n]+[\beta]}\right]\|g(x)\|_{C^{2}[0,1]}\right\} .
\end{aligned}
$$

If we choose

$$
\delta_{n}=\frac{1}{2} \frac{[\alpha]+[\beta]}{[n]+[\beta]}+\frac{1}{4}\left(\frac{[\alpha]+[\beta]}{[n]+[\beta]}\right)^{2}+\frac{1}{4} \frac{[n]}{([n]+[\beta])^{2}},
$$

then we get

$$
\left\|R_{n, q}^{\alpha, \beta}(f ; x)-f(x)\right\|_{C[0,1]} \leq 2\left\{\|f-g\|_{C[0,1]}+\delta_{n}\|g(x)\|_{C^{2}[0,1]}\right\} .
$$

Finally, one can observe that if we take the infimum of both side above inequality for the function $g \in C^{2}[0,1]$, we can find

$$
\left\|R_{n, q}^{\alpha, \beta}(f ; x)-f(x)\right\|_{C[0,1]} \leq 2 K\left(f, \delta_{n}\right) .
$$

3. The r - $t h$ Order Generalization of the Operators $R_{n, q}^{\alpha, \beta}$

By $C^{r}[0,1](r=0,1,2, \ldots)$ we denote the set of functions f having continuous r-th derivatives $f^{r}\left(f^{0}(x)=\right.$ $f(x)$) on the segment [0,1] (see [4] and [13]).

We consider the following generalization of the positive linear operators $R_{n, q}^{\alpha, \beta}$ defined by (6).

$$
\begin{equation*}
R_{n, q, r}^{\alpha, \beta}(f ; x)=\sum_{k=0}^{n}\left[\sum_{i=0}^{r} f^{(i)}\left(\frac{[k]+[\alpha]}{[n]+[\beta]}\right) \frac{\left(x-\frac{[k]+[\alpha]}{[n]+[\beta]}\right)^{i}}{i!}\right] b_{n, k}(q ; x) \tag{24}
\end{equation*}
$$

where $b_{n, k}(q ; x)$ is given by (2), $f \in C^{r}[0,1](r=0,1,2, \ldots)$ and $n \in \mathbb{N}$. We call the operators (24) the r-th order of the operators $R_{n, q}^{\alpha, \beta}$. Taking $r=0$, we get the sequence $R_{n, q}^{\alpha, \beta}$ defined by (6).

Theorem 3.1. Let $f^{(r)} \in \operatorname{Lip}(\alpha)$ and $f \in C^{r}[0,1]$. We have

$$
\left\|R_{n, q, r}^{\alpha, \beta}(f ; x)-f(x)\right\|_{C[0,1]} \leq \frac{M}{(r-1)!} \frac{\alpha}{\alpha+r} B(\alpha, r)\left\|R_{n, q}^{\alpha, \beta}\left(|s-x|^{\alpha+r} ; x\right)\right\|_{C[0,1]}
$$

here $B(\alpha, r)$ is Beta function $r, n \in \mathbb{N}$.

Proof. By (24), we get

$$
\begin{align*}
& f(x)-R_{n, q}^{\alpha, \beta}(f ; x) \\
= & \sum_{k=0}^{n}\left[f(x)-\sum_{i=0}^{r} f^{(i)}\left(\frac{[k]+[\alpha]}{[n]+[\beta]}\right) \frac{\left(x-\frac{[k]+[\alpha]}{[n]+[\beta]}\right)^{i}}{i!}\right] b_{n, k}(q ; x) . \tag{25}
\end{align*}
$$

It is known from Taylor's formula that

$$
\begin{align*}
& f(x)-\left[\sum_{i=0}^{r} f^{(i)}\left(\frac{[k]+[\alpha]}{[n]+[\beta]}\right) \frac{\left(x-\frac{[k]+[\alpha]}{[n]+[\beta]}\right)^{i}}{i!}\right] \\
= & \frac{\left(x-\frac{[k]+[\alpha]}{[n]][\beta])^{r}}\right.}{(r-1)!} \int_{0}^{1}(1-z)^{r-1} \\
& \times\left[f^{(r)}\left(\frac{[k]+[\alpha]}{[n]+[\beta]}+z\left(x-\frac{[k]+[\alpha]}{[n]+[\beta]}\right)\right)-f^{(r)}\left(\frac{[k]+[\alpha]}{[n]+[\beta]}\right)\right] d z \tag{26}
\end{align*}
$$

Because of $f^{(r)} \in \operatorname{Lip}(\alpha)$, one can get

$$
\begin{align*}
& \left|f^{(r)}\left(\frac{[k]+[\alpha]}{[n]+[\beta]}+z\left(x-\frac{[k]+[\alpha]}{[n]+[\beta]}\right)\right)-f^{(r)}\left(\frac{[k]+[\alpha]}{[n]+[\beta]}\right)\right| \\
\leq & M z^{\alpha}\left|x-\frac{[k]+[\alpha]}{[n]+[\beta]}\right|^{\alpha} . \tag{27}
\end{align*}
$$

From the well known expansion of the Beta function, we can write

$$
\begin{equation*}
\int_{0}^{1}(1-z)^{r-1} z^{\alpha} d z=B(\alpha+1, r)=\frac{\alpha}{\alpha+r} B(\alpha, r) \tag{28}
\end{equation*}
$$

Now, by using (28) and (27) in (26), we conclude that

$$
\begin{align*}
& \quad\left|f(x)-\left[\sum_{i=0}^{r} f^{(i)}\left(\frac{[k]+[\alpha]}{[n]+[\beta]}\right) \frac{\left(x-\frac{[k]+[\alpha]}{[n]+[\beta]}\right)^{i}}{i!}\right]\right| \\
& \leq \tag{29}\\
& \leq \frac{M}{(r-1)!} \frac{\alpha}{\alpha+r} B(\alpha, r)\left|x-\frac{[k]+[\alpha]}{[n]+[\beta]}\right|^{\alpha+r} .
\end{align*}
$$

Taking into consideration (29) and (25), we have the desired result.
Now consider the function $g \in C[0,1]$ defined by

$$
\begin{equation*}
g(s)=|s-x|^{\alpha+r} . \tag{30}
\end{equation*}
$$

Since $g(x)=0$, Theorem 1 yields

$$
\lim _{n}\left\|R_{n, q}^{\alpha, \beta}(g ; x)\right\|_{C[0,1]}=0
$$

So, it follows from above Theorem that, for all $f \in C^{r}[0,1]$ such that $f^{(r)} \in \operatorname{Lip} p_{M}(\alpha)$, we have

$$
\lim _{n}\left\|R_{n, q, r}^{\alpha, \beta}(f ; x)-f(x)\right\|_{C[0,1]}=0
$$

4. The Rates of Statistical Convergence

At this point, let us recall the concept of statistical convergence.
The statistical convergence which was introduced by Fast [8] in 1951, is an important research area in approximation theory. In [9], Gadjiev and Orhan used the concept of statistical convergence in approximation theory. They proved a Bohman-Korovkin type theorem for statistical convergence.

Recently, statistical approximation properties of many operators are investigated (see for instance, [$1,6,7,15]$).

A sequence $x=\left(x_{k}\right)$ is said to be statistically convergent to a number L if for every $\varepsilon>0$,

$$
\delta\left\{k \in \mathbb{N}:\left|x_{k}-L\right| \geq \varepsilon\right\}=0
$$

where $\delta(K)$ is the natural density of the set $K \subset \mathbb{N}$.
The density of subset $K \subset \mathbb{N}$ is defined by

$$
\delta(K):=\lim _{n} \frac{1}{n}\{\text { the number } k \leq n: k \in K\}
$$

whenever the limit is exists (see [17]).
For instance, $\delta(\mathbb{N})=1, \delta\{2 k: k \in \mathbb{N}\}=\frac{1}{2}$ and $\delta\left\{k^{2}: k \in \mathbb{N}\right\}=0$. To emphasize the importance of the statistical convergence, one can give the following example: The sequence

$$
x_{k}=\left\{\begin{array}{ll}
L_{1} ; & \text { if } k=m^{2} \\
L_{2} ; & \text { if } k \neq m^{2}
\end{array},(m=1,2,3, \ldots)\right.
$$

is statistically convergent to L_{2} but not convergent in ordinary sense when $L_{1} \neq L_{2}$. We note that any convergent sequence is statistically convergent but not conversely. Details can be found in [5] and [6].

Now, we consider a sequence $q:=\left(q_{n}\right)$ satisfying the following expressions:

$$
\begin{equation*}
s t-\lim _{n} q_{n}=1 \text { and } s t-\lim _{n} q_{n}^{n}=a . \tag{31}
\end{equation*}
$$

Gadjiev and Orhan [9] gave the below theorem for linear positive operators which is about statistically Korovkin type theorem. Now, we recall this theorem.

Theorem 4.1. If the sequence of linear positive operators $A_{n}: C_{B}[a, b] \rightarrow C_{B}[a, b]$ satisfies the conditions

$$
s t-\lim _{n}\left\|A_{n}\left(e_{v} ; .\right)-e_{v}\right\|_{C[a, b]}=0,
$$

for $e_{v}(t)=t^{v}, v=0,1,2$, then for any $f \in C[a, b]$, we get

$$
s t-\lim _{n}\left\|A_{n}(f ; .)-f\right\|_{C[a, b]}=0
$$

Finally, we investigate the rates of statistical convergence of $R_{n, q}^{\alpha, \beta}$ operators. So we give the below theorem.

Theorem 4.2. Let $q:=\left(q_{n}\right), 0<q_{n}<1$ be a sequence satisfying (31) conditions. For any monotone increasing continuous function f defined on $[0,1]$, we have

$$
\begin{equation*}
s t-\lim _{n}\left\|R_{n, q}^{\alpha, \beta}\left(f, q_{n} ; .\right)-f\right\|_{C[0,1]}=0 . \tag{32}
\end{equation*}
$$

Proof. We know that $R_{n, q_{n}}^{\alpha, \beta}$ is a positive linear operator. Here, we need to show that

$$
\begin{equation*}
s t-\lim _{n}\left\|R_{n, q}^{\alpha, \beta}\left(e_{v}, q_{n} ; .\right)-e_{v}\right\|_{C[0,1]}=0, \text { for } v=0,1,2 . \tag{33}
\end{equation*}
$$

For $v=0$, we get

$$
s t-\lim _{n}\left\|R_{n, q}^{\alpha, \beta}\left(e_{0}, q_{n} ; .\right)-e_{0}\right\|_{C[0,1]}=0 .
$$

For $v=1$, we have

$$
R_{n, q}^{\alpha, \beta}\left(e_{1}, q_{n} ; x\right)-e_{1}(x)=\frac{-[\beta]_{q n} x}{[n]_{q_{n}}+[\beta]_{q n}}+\frac{\left[\alpha \alpha_{q n}\right.}{[n]_{q_{n}}+[\beta]_{q n}} .
$$

If we take the maximum of both side for $x \in[0,1]$, we obtain

$$
\begin{equation*}
\left\|R_{n, q}^{\alpha, \beta}\left(e_{1}, q_{n} ; .\right)-e_{1}(x)\right\|_{C[0,1]} \leq \frac{[\alpha]_{q_{n}}+[\beta]_{q_{n}}}{[n]_{q_{n}}+[\beta]_{q_{n}}} . \tag{34}
\end{equation*}
$$

Now, we define the sets

$$
\begin{aligned}
& T:=\left\{k:\left\|R_{k, q}^{\alpha, \beta}\left(e_{1}, q_{k} ; .\right)-e_{1}\right\|_{C[0,1]} \geq \varepsilon\right\}, \\
& T_{1}:=\left\{k: \frac{[\alpha]_{q_{k}}+[\beta]_{q_{k}}}{[n]_{q_{k}}+[\beta]_{q_{k}}} \geq \varepsilon\right\}
\end{aligned}
$$

for $\varepsilon>0$. From the inequality (34), we have $T \subset T_{1}$. So, we write

$$
\begin{align*}
& \delta\left\{k \leq n:\left\|R_{n, q}^{\alpha, \beta}\left(e_{1}, q_{k} ; \cdot\right)-e_{1}\right\|_{C[0,1]} \geq \varepsilon\right\} \\
\leq & \delta\left\{k \leq n: \frac{[\alpha]_{q_{k}}+[\beta]_{q_{k}}}{[n]_{q_{k}}+[\beta]_{q_{k}}} \geq \varepsilon\right\} . \tag{35}
\end{align*}
$$

From the conditions (31), we get

$$
s t-\lim _{n}\left(\frac{[\alpha]_{q_{n}}+[\beta]_{q n}}{[n]_{q_{n}}+[\beta]_{q n}}\right)=0 .
$$

From the definition of density, we see that

$$
\delta\left\{k \leq n: \frac{[\alpha]_{q_{k}}+[\beta]_{q_{k}}}{[n]_{q_{k}}+[\beta]_{q_{k}}} \geq \varepsilon\right\}=0
$$

and from (35), we find

$$
s t-\lim _{n}\left\|R_{n, q}^{\alpha, \beta}\left(e_{1}, q_{n} ; .\right)-e_{1}\right\|_{C[0,1]}=0
$$

Finally, for the case $v=2$, we get

$$
\begin{align*}
\left\|R_{n, q}^{\alpha, \beta}\left(e_{2}, q_{n} ; .\right)-e_{2}(x)\right\|_{C[0,1]} \leq & \frac{[\alpha]_{q_{n}}^{2}+[\beta]_{q_{n}}^{2}}{\left([n]_{q_{n}}+[\beta]_{q_{n}}\right)^{2}} \\
& +\left(2[\alpha]_{q_{n}}+2[\beta]_{q_{n}}+\frac{1}{4}\right) \frac{[n]_{q_{n}}}{\left([n]_{q_{n}}+[\beta]_{q_{n}}\right)^{2}} \tag{36}
\end{align*}
$$

If we choose

$$
\begin{aligned}
\alpha_{n} & =\frac{[\beta]_{q_{n}}^{2}}{\left([n]_{q n}+[\beta]_{q_{n}}\right)^{2}}, \\
\beta_{n} & =\left(2[\alpha]_{q_{n}}+2[\beta]_{q_{n}}+\frac{1}{4}\right) \frac{[n]_{q_{n}}}{\left([n]_{q_{n}}+[\beta]_{q n}\right)^{2}}, \\
\gamma_{n} & =\frac{[\alpha]_{q n}^{2}}{\left([n]_{q_{n}}+[\beta]_{q_{n}}\right)^{2}}
\end{aligned}
$$

then from (31), we have

$$
\begin{equation*}
s t-\lim _{n} \alpha_{n}=s t-\lim _{n} \beta_{n}=s t-\lim _{n} \gamma_{n}=0 \tag{37}
\end{equation*}
$$

Now, for $\varepsilon>0$, we define

$$
\begin{aligned}
& U:=\left\{k:\left\|R_{k, q}^{\alpha, \beta}\left(e_{2}, q_{k} ; .\right)-e_{2}\right\|_{C[0,1]} \geq \varepsilon\right\}, \\
& U_{1}:=\left\{k: \alpha_{k} \geq \frac{\varepsilon}{3}\right\}, \\
& U_{2}:=\left\{k: \beta_{k} \geq \frac{\varepsilon}{3}\right\}, \\
& U_{3}:=\left\{k: \gamma_{k} \geq \frac{\varepsilon}{3}\right\} .
\end{aligned}
$$

From the inequality (36), we observe that $U \subseteq U_{1} \cup U_{2} \cup U_{3}$. Hence, one can write

$$
\begin{aligned}
& \delta\left\{k \leq n:\left\|R_{k, 9}^{\alpha, \beta}\left(e_{2}, q_{k} ; \cdot\right)-e_{2}\right\|_{C[0,1]} \geq \varepsilon\right\} \leq \delta\left\{k \leq n: \alpha_{k} \geq \frac{\varepsilon}{3}\right\} \\
+ & \delta\left\{k \leq n: \beta_{k} \geq \frac{\varepsilon}{3}\right\}+\delta\left\{k \leq n: \gamma_{k} \geq \frac{\varepsilon}{3}\right\} .
\end{aligned}
$$

Since the right hand side of above inequality is zero, we get

$$
s t-\lim _{n}\left\|R_{n, q}^{\alpha, \beta}\left(e_{2}, q_{n} ; .\right)-e_{2}\right\|_{C[0,1]}=0 .
$$

This gives the proof.

References

[1] O. Agratini, O. Doğru, Weighted approximation by q-Szász-King type operators, Taiwanese J. Math. 14 (4) (2010) 1283-1296.
[2] G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge Univ. Press, Cambridge, 1999.
[3] S.N. Bernstein, Demonstration du theoreme de Weierstrass fondee sur la calcul des probabilities, Comm. Soc. Math. Kharkov 13 (1912) 1-2.
[4] O. Doğru, Approximation order and asymptotic approximation for generalized Meyer-König and Zeller operators, Math. Balkanica 12 (3-4) (1998) 359-368.
[5] O. Doğru, On statistical approximation properties of Stancu type bivariate generalization of q-Balázs-Szabados operators, Proc. of Int. Conf. on Numer. Anal. and Approx. Th. Cluj-Napoca, Romanya, (2006) 179-194.
[6] O. Doğru, K. Kanat, Statistical Approximation Properties of King-type Modification of Lupaş Operators, Comput. Math. Appl. 64 (2012) 511-517.
[7] O. Doğru, M. Örkcü, King type modification of Meyer-König and Zeller operators based on q-integers, Math. Comput. Modelling 50 (7-8) (2009) 1245-1251.
[8] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241-244.
[9] A.D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32 (2002) $129-138$.
[10] W. Hahn, Über orthogonal polynome, die q-differenzengleichungen genügen, Math. Nach. 2 (1949) 4-34.
[11] G. İçöz, A Kantorovich variant of a new type Bernstein-Stancu polynomials, Appl. Math. Comput. 218(17) (2012) 8552-8560.
[12] V. G. Kac, P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, 2002.
[13] G.H. Kirov, L. Popova, A generalization of the linear positive operators, Math. Balkanica 7 (1993) 149-162.
[14] Q. Luo, q-Extensions of Some Results Involving the Luo-Srivastava Generalizations of the Apostol-Bernoulli and Apostol-Euler Polynomials, Filomat 28 (2) (2014) 329-351.
[15] A. Lupaş, A q-analogue of the Bernstein operator, in: Seminar on Numerical and Statistical Calculus, No. 9, University of Cluj-Napoca, 1987.
[16] N.I. Mahmudov, P. Sabancigil, Approximation Theorems for q-Bernstein-Kantorovich Operators, Filomat 27 (4) (2013) 721-730.
[17] I. Niven, H.S. Zuckerman, H. Montgomery, An Introduction to the Theory Numbers, fifth ed., Wiley, New York, 1991.
[18] G.M. Phillips, Interpolation and Approximation by Polynomials, Springer-Verlag, New York, 2003.
[19] H. M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci. 5 (2011) 390-444.
[20] D.D. Stancu, Use of probabilistic methods in the theory of uniform approximation of continuous functions, Rev. Rom. Math. Pures Appl. 14 (1969) 675-691.

[^0]: 2010 Mathematics Subject Classification. 41A25, 41A35, 41A36.
 Keywords. Lupaş operator, q-analogue, Stancu type generalization.
 Received: 19 March 2014; Accepted: 05 July 2014
 Communicated by Hari M. Srivastava
 Email addresses: ogun.dogru@gazi. edu.tr (Ogün Doğru), gurhanicoz@gazi. edu.tr (Gürhan İçöz), kadirkanat@gazi.edu.tr (Kadir Kanat)

