Filomat 30:5 (2016), 1151–1160 DOI 10.2298/FIL1605151D

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On the Rates of Convergence of the *q*-Lupaş-Stancu Operators

Ogün Doğru^a, Gürhan İçöz^a, Kadir Kanat^b

^aDepartment of Mathematics, Faculty of Science, Gazi University, Ankara, Turkey; ^bDepartment of Mathematics, Polatlı Faculty of Science and Art, Gazi University, Ankara, Turkey;

Abstract. We introduce a Stancu type generalization of the Lupaş operators based on the *q*-integers, rate of convergence of this modification are obtained by means of the modulus of continuity, Lipschitz class functions and Peetre's K-functional. We will also introduce *r*-th order generalization of these operators and obtain its statistical approximation properties.

1. Introduction

Firstly, we give some definitions about q-integers. For any non-negative integer r, the q-integer of the number r is defined by

$$[r]_q := [r] = \begin{cases} \frac{1-q^r}{1-q} & if \ q \neq 1\\ r & if \ q = 1. \end{cases}$$

The *q*-factorial is defined as

$$[r]! = \begin{cases} [1][2] \dots [r] & \text{if } k = 1, 2, \dots \\ 1 & \text{if } k = 0 \end{cases}$$

and the *q*-binomial coefficient is defined as

$$\left[\begin{array}{c}n\\r\end{array}\right] = \frac{[n]!}{[r]! [n-r]!}$$

 $(r, n \in \mathbb{N})$ for $q \in (0, 1]$. It is obvious that *q*-binomial coefficient reduce to the ordinary case when q = 1. Details on *q*-integers can be found in [2], [10], [12], [18], [19], [16] and [14].

The *q*-analogue of the classical Bernstein operators [3] is defined by Lupas [15] as follows:

$$R_{n,q}(f;x) = \sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right) b_{n,k}(q;x)$$
(1)

²⁰¹⁰ Mathematics Subject Classification. 41A25, 41A35, 41A36.

Keywords. Lupaş operator, q-analogue, Stancu type generalization.

Received: 19 March 2014; Accepted: 05 July 2014

Communicated by Hari M. Srivastava

Email addresses: ogun.dogru@gazi.edu.tr (Ogün Doğru), gurhanicoz@gazi.edu.tr (Gürhan İçöz), kadirkanat@gazi.edu.tr (Kadir Kanat)

 $(f \in C[0,1] \text{ and } x \in [0,1])$ where

$$b_{n,k}(q;x) = \frac{1}{\prod_{s=0}^{n-1} (1-x+q^s x)} \begin{bmatrix} n \\ k \end{bmatrix} q^{\binom{k}{2}} x^k (1-x)^{n-k}.$$
(2)

In [15], Lupaş proved the following Lemma.

Lemma 1.1. Let $e_i(x) = x^i$, (i = 0, 1, 2). Then we have

$$R_{n,q}(e_0; x) = 1, (3)$$

$$R_{n,q}(e_1;x) = x,$$
(4)
$$R_{n,q}(e_1;x) = x^2 + \frac{x(1-x)}{(1-x+q^n x)} (1-x+q^n x)$$
(5)

$$R_{n,q}(e_2;x) = x^2 + \frac{n(1-x)}{n} (\frac{1}{1-x+qx}).$$
(5)

Stancu type generalization of linear positive operators has been studied in several years (for instance see [11]). Now, we introduce the Stancu type generalization of the Lupaş operators based on *q*-integers as

$$R_{n,q}^{\alpha,\beta}(f;x) = \sum_{k=0}^{n} f\left(\frac{[k] + [\alpha]}{[n] + [\beta]}\right) b_{n,k}(q;x)$$
(6)

where $0 < \alpha < \beta$ and $b_{n,k}(q; x)$ is given by (2).

We give some equalities for operators (6) in the following lemma.

Lemma 1.2. Let $e_i(x) = x^i$, (i = 0, 1, 2). The following equalities are true:

$$R_{n,q}^{\alpha,\beta}(e_0;x) = 1$$

$$R_{n,q}^{\alpha,\beta}(e_0;x) = 1$$

$$R_{n,q}^{\alpha,\beta}(e_0;x) = 0$$

$$R_{n,q}^{\alpha,\beta}(e_1;x) = \frac{[n]x+[\alpha]}{[n]+[\beta]}$$
(8)

$$R_{n,q}^{\alpha,\beta}(e_2;x) = \left(\frac{[n]}{[n]+[\beta]}\right)^2 \left\{ x^2 + \frac{x(1-x)}{n} \left(\frac{1-x+q^n x}{1-x+qx}\right) \right\} + \frac{2[\alpha][n]}{([n]+[\beta])^2} x + \left(\frac{[\alpha]}{[n]+[\beta]}\right)^2.$$
(9)

Proof. From (6), for the case $f(s) = e_0(s)$, we can easily get the equality (7). If we take $f(s) = e_1(s)$ in operators (6), then we have

$$\begin{aligned} R_{n,q}^{\alpha,\beta}(e_1(s);x) &= \sum_{k=0}^n \frac{[k] + [\alpha]}{[n] + [\beta]} b_{n,k}(q;x) \\ &= \frac{[n]}{[n] + [\beta]} R_{n,q}(e_1;x) + \frac{[\alpha]}{[n] + [\beta]} R_{n,q}(e_0;x). \end{aligned}$$

So, from the equalities (3) and (4), we obtain (8).

Now, we take $f(s) = e_2(s)$ in operators (6), we get

$$\begin{split} R_{n,q}^{\alpha,\beta}(e_2(s);x) &= \sum_{k=0}^n (\frac{[k] + [\alpha]}{[n] + [\beta]})^2 b_{n,k}(q;x) \\ &= (\frac{[n]}{[n] + [\beta]})^2 R_{n,q}(e_2;x) + \frac{2[\alpha]}{([n] + [\beta])^2} R_{n,q}(e_1;x) + (\frac{[\alpha]}{[n] + [\beta]})^2 R_{n,q}(e_0;x). \end{split}$$

So, from the equalities (3), (4) and (5), we have (9). \Box

In the light of the Lemma 2, we can give the following theorem for the convergence of $R_{n,q}^{\alpha,\beta}$ operators.

Theorem 1.3. Let $f \in C[0, 1]$ and (q_n) be a sequence, $0 < q_n \le 1$, satisfying the following expressions:

$$\lim_{n} q_n = 1 \text{ and } \lim_{n} q_n^n = c \text{ (c is a constant).}$$

Then we have

$$\lim_{n} \left| R_{n,q}^{\alpha,\beta}(f;x) - f(x) \right| = 0.$$

Proof. From Lemma 2 and Korovkin's theorem, the proof is obvious. \Box

2. The Rates of Convergence

In this section, we compute the rates of convergence of the operators $R_{n,q}^{\alpha,\beta}$ to the function f by means of modulus continuity, elements of Lipschitz class and Peetre's K-functional.

Let $f \in C[0, 1]$. The modulus of continuity of f denotes by $\omega(f, \delta)$, is defined to be

$$\omega(f, \delta) = \sup_{\substack{y, x \in [0,b] \\ |y-x| < \delta}} \left| f(y) - f(x) \right|.$$

It is well known that a necessary and sufficient condition for a function $f \in C[0, 1]$ is

$$\lim_{\delta\to 0}\omega\left(f,\delta\right)=0$$

It is also well known that for any $\delta > 0$ and each $y \in [0, 1]$

$$\left|f(y) - f(x)\right| \le \omega \left(f, \delta\right) \left(1 + \frac{|y - x|}{\delta}\right).$$
(10)

Recall that, in [15], for every $f \in C[0, 1]$ and $\delta > 0$ Lupaş obtained the following rate of convergence for the operators (1).

$$\left|R_{n,q}(f;x) - f(x)\right| \le \omega(f,\delta) \left\{1 + \frac{1}{\delta} \sqrt{\frac{x(1-x)}{[n]}}\right\}.$$
(11)

Theorem 2.1. Let (q_n) be a sequence, $0 < q_n \le 1$, satisfying the following conditions:

$$\lim_{n} q_n = 1 \text{ and } \lim_{n} q_n^n = c \text{ (c is a constant).}$$
(12)

For $f \in C[0, 1]$ and $\delta_n > 0$, we have

$$\left\| R_{n,q}^{\alpha,\beta}(f;x) - f(x) \right\|_{C[0,1]} \le 2\omega \left(f, \delta_n\right)$$

where

$$\delta_n = \left(\left(\frac{[\alpha] + [\beta]}{[n] + [\beta]} \right)^2 + \frac{[n]}{([n] + [\beta])^2} \right)^{1/2}.$$

Proof. From (7), (8) and (9), we have

$$R_{n,q}^{\alpha,\beta}((t-x)^{2};x) = \left(\frac{[\beta]}{[n]+[\beta]}\right)^{2}x^{2} - \frac{2[\alpha][\beta]}{(n]+[\beta])^{2}}x + \frac{[n]x(1-x)}{([n]+[\beta])^{2}}\left(\frac{1-x+q^{n}x}{1-x+qx}\right) + \left(\frac{[\alpha]}{[n]+[\beta]}\right)^{2}.$$
(13)

Here one can observe that

$$\max_{x \in [0,1]} \frac{1 - x + q^n x}{1 - x + q x} = 1 \tag{14}$$

and

$$\max_{x \in [0,1]} x(1-x) = \frac{1}{4}.$$
(15)

By using (13), (14) and (15), we get

$$\max_{x \in [0,1]} R_{n,q}^{\alpha,\beta}((t-x)^2; x) \le \left(\frac{[\alpha] + [\beta]}{[n] + [\beta]}\right)^2 + \frac{[n]}{([n] + [\beta])^2}.$$
(16)

For $x \in [0, 1]$, If we take the maximum of both side of the following inequality

$$\left| R_{n,q}^{\alpha,\beta}(f;x) - f(x) \right| \le \omega \left(f, \delta \right) \left\{ 1 + \frac{1}{\delta} \left(R_{n,q}^{\alpha,\beta}((t-x)^2;x) \right)^{1/2} \right\},$$

then we get

$$\begin{split} & \left\| R_{n,q}^{\alpha,\beta}(f;x) - f(x) \right\|_{C[0,1]} \\ \leq & \omega\left(f,\delta\right) \left\{ 1 + \frac{1}{\delta} \left(\max_{x \in [0,1]} R_{n,q}^{\alpha,\beta}((t-x)^2;x) \right)^{1/2} \right\} \\ \leq & \omega\left(f,\delta\right) \left\{ 1 + \frac{1}{\delta} \left(\left(\frac{[\alpha] + [\beta]}{[n] + [\beta]} \right)^2 + \frac{[n]}{([n] + [\beta])^2} \right)^{1/2} \right\}. \end{split}$$

If we choose

$$\delta_n = \left(\left(\frac{[\alpha] + [\beta]}{[n] + [\beta]} \right)^2 + \frac{[n]}{([n] + [\beta])^2} \right)^{1/2}$$
(17)

then we have

$$\left\| R_{n,q}^{\alpha,\beta}(f;x) - f(x) \right\|_{C[0,1]} \le 2\omega \left(f, \delta_n\right).$$

So we have the desired result. $\hfill\square$

Now, we compute the approximation order of operator $R_{n,q}^{\alpha,\beta}$ in term of the elements of the usual Lipschitz class.

Let $f \in C[0, 1]$ and $0 < \alpha \le 1$. We recall that f belongs to $Lip_M(\rho)$ if the inequality

$$|f(x) - f(y)| \le M |x - y|^{\rho}; \ \forall x, y \in [0, 1]$$
 (18)

holds.

Theorem 2.2. For all $f \in Lip_M(\rho)$, we have

$$\left\| R_{n,q}^{\alpha,\beta}(f;x) - f(x) \right\|_{C[0,1]} \le M \delta_n^{\rho}$$

where

$$\delta_n = \left(\left(\frac{[\alpha] + [\beta]}{[n] + [\beta]} \right)^2 + \frac{[n]}{([n] + [\beta])^2} \right)^{1/2}$$

and M is a positive constant.

Proof. Let $f \in Lip_M(\rho)$ and $0 < \rho \le 1$. By (18) and linearity and monotonicity of $R_{n,q}^{\alpha,\beta}$ then we have

$$\begin{aligned} \left| R_{n,q}^{\alpha,\beta}(f;x) - f(x) \right| &\leq \left| R_{n,q}^{\alpha,\beta}\left(\left| f(t) - f(x) \right| ; x \right) \right| \\ &\leq \left| M R_{n,q}^{\alpha,\beta}\left(\left| t - x \right|^{\rho} ; x \right) \right|. \end{aligned}$$

Applying the Hölder inequality with $m = \frac{2}{\rho}$ and $n = \frac{2}{2-\rho}$, we get

$$\left| R_{n,q}^{\alpha,\beta}(f;x) - f(x) \right| \le M \left(R_{n,q}^{\alpha,\beta}((t-x)^2;x) \right)^{\rho/2}.$$
(19)

For $x \in [0, 1]$, if we take the maximum of both side of (19) then we have

$$\left\| R_{n,q}^{\alpha,\beta}(f;x) - f(x) \right\|_{C[0,1]} \le M \left(\max_{x} R_{n,q}^{\alpha,\beta}((t-x)^{2};x) \right)^{\rho/2}$$

If we use (13) and choose $\delta = \delta_n$ as in (17), then proof is completed. \Box

Finally, we will study the rate of convergence of the positive linear operators $R_{n,q}^{\alpha,\beta}$ by means of the Peetre's K-functionals.

First of all, we recall the definition of $R_{n,q}^{\alpha,\beta}$. $C^2[0,1]$: The space of those functions f for which $f, f', f'' \in C[0,1]$. We recall the following norm in the space *C*² [0, 1]:

$$\left\|f\right\|_{C^{2}[0,1]} = \left\|f\right\|_{C[0,1]} + \left\|f'\right\|_{C[0,1]} + \left\|f''\right\|_{C[0,1]}$$

We consider the following Peetre's K-functional

$$K(f, \delta) := \inf_{g \in C^{2}[0,1]} \left\{ \left\| f - g \right\|_{C[0,1]} + \delta \left\| g \right\|_{C^{2}[0,1]} \right\}$$

Theorem 2.3. Let $f \in C[0, 1]$. Then we have

$$\left\| R_{n,q}^{\alpha,\beta}(f;x) - f(x) \right\|_{C[0,1]} \le 2K(f,\delta_n)$$

where $K(f, \delta_n)$ is Peetre's K-functional and

$$\delta_n = \frac{1}{2} \frac{[\alpha] + [\beta]}{[n] + [\beta]} + \frac{1}{4} \left(\frac{[\alpha] + [\beta]}{[n] + [\beta]}\right)^2 + \frac{[n]}{4([n] + [\beta])^2}$$

Proof. Let $g \in C^2[0, 1]$. If we use the Taylor expansion of the function g at s = x, we have

$$g(s) = g(x) + (s - x)g'(x) + \frac{(s - x)^2}{2!}g''(x).$$

Hence, we get

$$\begin{aligned} \left\| R_{n,q}^{\alpha,\beta}(g;x) - g(x) \right\|_{C[0,1]} &\leq \left\| R_{n,q}^{\alpha,\beta}((s-x);x) \right\|_{C[0,1]} \left\| g(x) \right\|_{C^{2}[0,1]} \\ &+ \frac{1}{2} \left\| R_{n,q}^{\alpha,\beta}((s-x)^{2};x) \right\|_{C[0,1]} \left\| g(x) \right\|_{C^{2}[0,1]}. \end{aligned}$$

$$(20)$$

From the equality (8), we have

$$\left\| R_{n,q}^{\alpha,\beta}((s-x);x) \right\|_{C[0,1]} \le \frac{[\alpha] + [\beta]}{[n] + [\beta]}.$$
(21)

So if we use (16) and (21) in (20), then we get

$$\left\| R_{n,q}^{\alpha,\beta}(g;x) - g(x) \right\|_{C[0,1]} \le \left[\frac{1}{2} \left(\frac{[\alpha] + [\beta]}{[n] + [\beta]} \right)^2 + \frac{1}{2} \frac{[n]}{([n] + [\beta]]^2} + \frac{[\alpha] + [\beta]}{[n] + [\beta]} \right] \left\| g(x) \right\|_{C^2[0,1]}.$$
(22)

On the other hand, we can write

$$\begin{aligned} \left| R_{n,q}^{\alpha,\beta}(f;x) - f(x) \right| &\leq \left| R_{n,q}^{\alpha,\beta}(f-g;x) \right| + \left| R_{n,q}^{\alpha,\beta}(g;x) - g(x) \right| \\ &+ \left| f(x) - g(x) \right|. \end{aligned}$$

If we take the maximum on [0, 1], we have

$$\left\| R_{n,q}^{\alpha,\beta}(f;x) - f(x) \right\|_{C[0,1]} \le 2 \left\| f - g \right\|_{C[0,1]} + \left\| R_{n,q}^{\alpha,\beta}(g;x) - g(x) \right\|_{C[0,1]}.$$
(23)

If we consider (22) in (23), we obtain

$$\begin{split} \left\| R_{n,q}^{\alpha,\beta}(f;x) - f(x) \right\|_{C[0,1]} &\leq 2 \left\{ \left\| f - g \right\|_{C[0,1]} + \left[\frac{1}{4} (\frac{[\alpha] + [\beta]}{[n] + [\beta]})^2 + \frac{1}{4} \frac{[n]}{([n] + [\beta])^2} \right. \\ &+ \frac{1}{2} \frac{[\alpha] + [\beta]}{[n] + [\beta]} \right] \left\| g(x) \right\|_{C^2[0,1]} \right\}. \end{split}$$

If we choose

$$\delta_n = \frac{1}{2} \frac{[\alpha] + [\beta]}{[n] + [\beta]} + \frac{1}{4} \left(\frac{[\alpha] + [\beta]}{[n] + [\beta]} \right)^2 + \frac{1}{4} \frac{[n]}{([n] + [\beta])^2},$$

then we get

$$\left\| R_{n,q}^{\alpha,\beta}(f;x) - f(x) \right\|_{C[0,1]} \le 2\left\{ \left\| f - g \right\|_{C[0,1]} + \delta_n \left\| g(x) \right\|_{C^2[0,1]} \right\}.$$

Finally, one can observe that if we take the infimum of both side above inequality for the function $g \in C^2[0, 1]$, we can find

$$\left\| R_{n,q}^{\alpha,\beta}(f;x) - f(x) \right\|_{C[0,1]} \le 2K(f,\delta_n).$$

3. The *r* – *th* Order Generalization of the Operators $R_{n,q}^{\alpha,\beta}$

By C^r [0, 1] (r = 0, 1, 2, ...) we denote the set of functions f having continuous r-th derivatives f^r ($f^0(x) = f(x)$) on the segment [0, 1] (see [4] and [13]).

We consider the following generalization of the positive linear operators $R_{n,q}^{\alpha,\beta}$ defined by (6).

$$R_{n,q,r}^{\alpha,\beta}(f;x) = \sum_{k=0}^{n} \left[\sum_{i=0}^{r} f^{(i)} \left(\frac{[k] + [\alpha]}{[n] + [\beta]} \right) \frac{\left(x - \frac{[k] + [\alpha]}{[n] + [\beta]}\right)^{i}}{i!} \right] b_{n,k}(q;x)$$
(24)

where $b_{n,k}(q;x)$ is given by (2), $f \in C^r[0,1]$ (r = 0, 1, 2, ...) and $n \in \mathbb{N}$. We call the operators (24) the *r*-th order of the operators $R_{n,q}^{\alpha,\beta}$. Taking r = 0, we get the sequence $R_{n,q}^{\alpha,\beta}$ defined by (6).

Theorem 3.1. Let $f^{(r)} \in Lip_M(\alpha)$ and $f \in C^r[0,1]$. We have

$$\left\| R_{n,q,r}^{\alpha,\beta}(f;x) - f(x) \right\|_{C[0,1]} \le \frac{M}{(r-1)!} \frac{\alpha}{\alpha+r} B(\alpha,r) \left\| R_{n,q}^{\alpha,\beta}(|s-x|^{\alpha+r};x) \right\|_{C[0,1]}$$

here $B(\alpha, r)$ *is Beta function* $r, n \in \mathbb{N}$ *.*

Proof. By (24), we get

$$f(x) - R_{n,q}^{\alpha,\beta}(f;x) = \sum_{k=0}^{n} \left[f(x) - \sum_{i=0}^{r} f^{(i)} \left(\frac{[k] + [\alpha]}{[n] + [\beta]} \right)^{\frac{(x - \frac{[k] + [\alpha]}{[n] + [\beta]})^{i}}{i!}} \right] b_{n,k}(q;x).$$
(25)

It is known from Taylor's formula that

$$f(x) - \left[\sum_{i=0}^{r} f^{(i)} \left(\frac{[k]+[\alpha]}{[n]+[\beta]}\right) \frac{(x - \frac{[k]+[\alpha]}{[n]+[\beta]})^{i}}{i!}\right]$$

= $\frac{(x - \frac{[k]+[\alpha]}{[n]+[\beta]})^{r}}{(r-1)!} \int_{0}^{1} (1-z)^{r-1}$
 $\times \left[f^{(r)} \left(\frac{[k]+[\alpha]}{[n]+[\beta]} + z(x - \frac{[k]+[\alpha]}{[n]+[\beta]})\right) - f^{(r)} \left(\frac{[k]+[\alpha]}{[n]+[\beta]}\right)\right] dz.$ (26)

Because of $f^{(r)} \in Lip_M(\alpha)$, one can get

$$\left| f^{(r)} \left(\frac{[k] + [\alpha]}{[n] + [\beta]} + z \left(x - \frac{[k] + [\alpha]}{[n] + [\beta]} \right) \right) - f^{(r)} \left(\frac{[k] + [\alpha]}{[n] + [\beta]} \right) \right|$$

$$\leq M z^{\alpha} \left| x - \frac{[k] + [\alpha]}{[n] + [\beta]} \right|^{\alpha}.$$
(27)

From the well known expansion of the Beta function, we can write

$$\int_{0}^{1} (1-z)^{r-1} z^{\alpha} dz = B(\alpha+1,r) = \frac{\alpha}{\alpha+r} B(\alpha,r).$$
(28)

Now, by using (28) and (27) in (26), we conclude that

$$\left| f(x) - \left[\sum_{i=0}^{r} f^{(i)} \left(\frac{[k] + [\alpha]}{[n] + [\beta]} \right) \frac{\left(x - \frac{[k] + [\alpha]}{[n] + [\beta]}\right)^{i}}{i!} \right] \right|$$

$$\leq \frac{M}{(r-1)!} \frac{\alpha}{\alpha + r} B(\alpha, r) \left| x - \frac{[k] + [\alpha]}{[n] + [\beta]} \right|^{\alpha + r}.$$
(29)

Taking into consideration (29) and (25), we have the desired result. \Box

Now consider the function $g \in C[0, 1]$ defined by

$$g(s) = |s - x|^{\alpha + r}.$$
(30)

Since g(x) = 0, Theorem 1 yields

$$\lim_{n} \left\| R_{n,q}^{\alpha,\beta}(g;x) \right\|_{C[0,1]} = 0.$$

So, it follows from above Theorem that, for all $f \in C^r[0,1]$ such that $f^{(r)} \in Lip_M(\alpha)$, we have

$$\lim_{n} \left\| R_{n,q,r}^{\alpha,\beta}(f;x) - f(x) \right\|_{C[0,1]} = 0.$$

4. The Rates of Statistical Convergence

At this point, let us recall the concept of statistical convergence.

The statistical convergence which was introduced by Fast [8] in 1951, is an important research area in approximation theory. In [9], Gadjiev and Orhan used the concept of statistical convergence in approximation theory. They proved a Bohman-Korovkin type theorem for statistical convergence.

Recently, statistical approximation properties of many operators are investigated (see for instance, [1, 6, 7, 15]).

A sequence $x = (x_k)$ is said to be statistically convergent to a number *L* if for every $\varepsilon > 0$,

 $\delta \{k \in \mathbb{N} : |x_k - L| \ge \varepsilon\} = 0,$

where $\delta(K)$ is the natural density of the set $K \subset \mathbb{N}$.

The density of subset $K \subset \mathbb{N}$ is defined by

$$\delta(K) := \lim_{n} \frac{1}{n} \{ \text{the number } k \le n : k \in K \}$$

whenever the limit is exists (see [17]).

For instance, $\delta(\mathbb{N}) = 1$, $\delta\{2k : k \in \mathbb{N}\} = \frac{1}{2}$ and $\delta\{k^2 : k \in \mathbb{N}\} = 0$. To emphasize the importance of the statistical convergence, one can give the following example: The sequence

$$x_k = \begin{cases} L_1; & \text{if } k = m^2 \\ L_2; & \text{if } k \neq m^2 \end{cases}, (m = 1, 2, 3, ...)$$

is statistically convergent to L_2 but not convergent in ordinary sense when $L_1 \neq L_2$. We note that any convergent sequence is statistically convergent but not conversely. Details can be found in [5] and [6].

Now, we consider a sequence $q := (q_n)$ satisfying the following expressions:

$$st - \lim_{n} q_n = 1 \text{ and } st - \lim_{n} q_n^n = a.$$
(31)

Gadjiev and Orhan [9] gave the below theorem for linear positive operators which is about statistically Korovkin type theorem. Now, we recall this theorem.

Theorem 4.1. If the sequence of linear positive operators $A_n : C_B[a, b] \to C_B[a, b]$ satisfies the conditions

$$st - \lim_{\nu \to 0} ||A_n(e_{\nu}; .) - e_{\nu}||_{C[a,b]} = 0$$

for $e_v(t) = t^v$, v = 0, 1, 2, then for any $f \in C[a, b]$, we get

$$st - \lim_{n} \|A_n(f;.) - f\|_{C[a,b]} = 0$$

Finally, we investigate the rates of statistical convergence of $R_{n,q}^{\alpha\beta}$ operators. So we give the below theorem.

Theorem 4.2. Let $q := (q_n)$, $0 < q_n < 1$ be a sequence satisfying (31) conditions. For any monotone increasing continuous function f defined on [0, 1], we have

$$st - \lim_{n} \left\| R_{n,q}^{\alpha,\beta}(f,q_n;.) - f \right\|_{C[0,1]} = 0.$$
(32)

Proof. We know that $R_{n,q_n}^{\alpha,\beta}$ is a positive linear operator. Here, we need to show that

$$st - \lim_{n} \left\| R_{n,q}^{\alpha,\beta}(e_{\nu}, q_{n}; .) - e_{\nu} \right\|_{C[0,1]} = 0, \text{ for } \nu = 0, 1, 2.$$
(33)

For v = 0, we get

$$st - \lim_{n} \left\| R_{n,q}^{\alpha,\beta}(e_0, q_n; .) - e_0 \right\|_{C[0,1]} = 0.$$

For $\nu = 1$, we have

$$R_{n,q}^{\alpha,\beta}(e_1,q_n;x) - e_1(x) = \frac{-[\beta]_{q_n}x}{[n]_{q_n} + [\beta]_{q_n}} + \frac{[\alpha]_{q_n}}{[n]_{q_n} + [\beta]_{q_n}}.$$

If we take the maximum of both side for $x \in [0, 1]$, we obtain

$$\left\| R_{n,q}^{\alpha,\beta}(e_1,q_n;.) - e_1(x) \right\|_{C[0,1]} \le \frac{[\alpha]_{q_n} + [\beta]_{q_n}}{[n]_{q_n} + [\beta]_{q_n}}.$$
(34)

Now, we define the sets

$$T := \left\{ k : \left\| R_{k,q}^{\alpha,\beta}(e_1, q_k; .) - e_1 \right\|_{C[0,1]} \ge \varepsilon \right\},$$
$$T_1 := \left\{ k : \frac{[\alpha]_{q_k} + [\beta]_{q_k}}{[n]_{q_k} + [\beta]_{q_k}} \ge \varepsilon \right\}$$

for $\varepsilon > 0$. From the inequality (34), we have $T \subset T_1$. So, we write

$$\delta\left\{k \le n : \left\|R_{n,q}^{\alpha,\beta}(e_1, q_k; .) - e_1\right\|_{C[0,1]} \ge \varepsilon\right\}$$

$$\le \delta\left\{k \le n : \frac{[\alpha]_{q_k} + [\beta]_{q_k}}{[n]_{q_k} + [\beta]_{q_k}} \ge \varepsilon\right\}.$$
(35)

From the conditions (31), we get

$$st-\lim_{n}\left(\frac{[\alpha]_{q_n}+[\beta]_{q_n}}{[n]_{q_n}+[\beta]_{q_n}}\right)=0.$$

From the definition of density, we see that

$$\delta\left\{k \le n : \frac{[\alpha]_{q_k} + [\beta]_{q_k}}{[n]_{q_k} + [\beta]_{q_k}} \ge \varepsilon\right\} = 0$$

and from (35), we find

$$st - \lim_{n} \left\| R_{n,q}^{\alpha,\beta}(e_1,q_n;.) - e_1 \right\|_{C[0,1]} = 0.$$

Finally, for the case v = 2, we get

$$\begin{aligned} \left\| R_{n,q}^{\alpha,\beta}(e_{2},q_{n};.) - e_{2}(x) \right\|_{C[0,1]} &\leq \frac{\left[\alpha\right]_{q_{n}}^{2} + \left[\beta\right]_{q_{n}}^{2}}{([n]_{q_{n}} + \left[\beta\right]_{q_{n}})^{2}} \\ &+ (2\left[\alpha\right]_{q_{n}} + 2\left[\beta\right]_{q_{n}} + \frac{1}{4}) \frac{[n]_{q_{n}}}{([n]_{q_{n}} + \left[\beta\right]_{q_{n}})^{2}}. \end{aligned}$$
(36)

If we choose

$$\begin{split} \alpha_n &= \frac{\left[\beta\right]_{q_n}^2}{([n]_{q_n} + \left[\beta\right]_{q_n})^2}, \\ \beta_n &= (2\left[\alpha\right]_{q_n} + 2\left[\beta\right]_{q_n} + \frac{1}{4})\frac{[n]_{q_n}}{([n]_{q_n} + \left[\beta\right]_{q_n})^2}, \\ \gamma_n &= \frac{[\alpha]_{q_n}^2}{([n]_{q_n} + \left[\beta\right]_{q_n})^2} \end{split}$$

then from (31), we have

$$st - \lim_{n} \alpha_n = st - \lim_{n} \beta_n = st - \lim_{n} \gamma_n = 0.$$
(37)

Now, for $\varepsilon > 0$, we define

$$\begin{aligned} U &:= \left\{ k : \left\| R_{k,q}^{\alpha,\beta}(e_2, q_k; .) - e_2 \right\|_{C[0,1]} \ge \varepsilon \right\}, \\ U_1 &:= \left\{ k : \alpha_k \ge \frac{\varepsilon}{3} \right\}, \\ U_2 &:= \left\{ k : \beta_k \ge \frac{\varepsilon}{3} \right\}, \\ U_3 &:= \left\{ k : \gamma_k \ge \frac{\varepsilon}{3} \right\}. \end{aligned}$$

From the inequality (36), we observe that $U \subseteq U_1 \cup U_2 \cup U_3$. Hence, one can write

$$\delta\left\{k \le n : \left\| \mathcal{R}_{k,q}^{\alpha,\beta}(e_2, q_k; .) - e_2 \right\|_{C[0,1]} \ge \varepsilon\right\} \le \delta\left\{k \le n : \alpha_k \ge \frac{\varepsilon}{3}\right\} \\ +\delta\left\{k \le n : \beta_k \ge \frac{\varepsilon}{3}\right\} + \delta\left\{k \le n : \gamma_k \ge \frac{\varepsilon}{3}\right\}.$$

Since the right hand side of above inequality is zero, we get

$$st - \lim_{n} \left\| R_{n,q}^{\alpha,\beta}(e_2, q_n; .) - e_2 \right\|_{C[0,1]} = 0.$$

This gives the proof. \Box

References

- [1] O. Agratini, O. Doğru, Weighted approximation by q-Szász-King type operators, Taiwanese J. Math. 14 (4) (2010) 1283–1296.
- [2] G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge Univ. Press, Cambridge, 1999.
- [3] S.N. Bernstein, Demonstration du theoreme de Weierstrass fondee sur la calcul des probabilities, Comm. Soc. Math. Kharkov 13 (1912) 1–2.
- [4] O. Doğru, Approximation order and asymptotic approximation for generalized Meyer-König and Zeller operators, Math. Balkanica 12 (3-4) (1998) 359-368.
- [5] O. Doğru, On statistical approximation properties of Stancu type bivariate generalization of q-Balázs-Szabados operators, Proc. of Int. Conf. on Numer. Anal. and Approx. Th. Cluj-Napoca, Romanya, (2006) 179–194.
- [6] O. Doğru, K. Kanat, Statistical Approximation Properties of King-type Modification of Lupaş Operators, Comput. Math. Appl. 64 (2012) 511-517.
- [7] O. Doğru, M. Örkcü, King type modification of Meyer–König and Zeller operators based on q-integers, Math. Comput. Modelling 50 (7–8) (2009) 1245–1251.
- [8] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241–244.
- [9] A.D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32 (2002) 129–138.
- [10] W. Hahn, Über orthogonal polynome, die q-differenzengleichungen genügen, Math. Nach. 2 (1949) 4-34.
- [11] G. İçöz, A Kantorovich variant of a new type Bernstein-Stancu polynomials, Appl. Math. Comput. 218(17) (2012) 8552-8560.
- [12] V. G. Kac, P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, 2002.
- [13] G.H. Kirov, L. Popova, A generalization of the linear positive operators, Math. Balkanica 7 (1993) 149-162.
- [14] Q. Luo, q-Extensions of Some Results Involving the Luo-Srivastava Generalizations of the Apostol-Bernoulli and Apostol-Euler Polynomials, Filomat 28 (2) (2014) 329–351.
- [15] A. Lupaş, A q-analogue of the Bernstein operator, in: Seminar on Numerical and Statistical Calculus, No. 9, University of Cluj-Napoca, 1987.
- [16] N.I. Mahmudov, P. Sabancigil, Approximation Theorems for q-Bernstein-Kantorovich Operators, Filomat 27 (4) (2013) 721–730.
- [17] I. Niven, H.S. Zuckerman, H. Montgomery, An Introduction to the Theory Numbers, fifth ed., Wiley, New York, 1991.
- [18] G.M. Phillips, Interpolation and Approximation by Polynomials, Springer-Verlag, New York, 2003.
- [19] H. M. Srivastava, Some generalizations and basic (or *q*-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci. 5 (2011) 390–444.
- [20] D.D. Stancu, Use of probabilistic methods in the theory of uniform approximation of continuous functions, Rev. Rom. Math. Pures Appl. 14 (1969) 675-691.

1160