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Steklov Averages as Positive Linear Operators
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Abstract. We introduce a class of positive linear operators defined by Steklov means, investigate their
properties and prove that the Weierstrass operators can be approximated in terms of the Steklov averages.

1. Introduction

For b > 0 let Ln,b : C(R)→ C(R) be defined by
L0,b f = f

Ln,b f (x) =
1
2b

∫ x+b

x−b
Ln−1,b f (t)dt, n ≥ 1,

(1.1)

where f ∈ C(R), x ∈ R.
Then (Ln,b f )n≥0 are the Steklov averages of f with increment b; see [19, p. 163].Their relations with the

theory of C0-semigroups of operators were investigated in [7] and [8].
Expanding some results presented in [20, Ch.24], we shall give several analytic and probabilistic repre-

sentations of the positive linear operators Ln,b.
As consequences, some properties of these operators will be derived. In particular, we give recurrence

relations for computing the moments of the operators Ln,b and the moments of the associated B-spline
functions. Another result is concerned with the convergence of the sequence (Ln,b f )n≥1 when f is periodic.

We shall see also that the Weierstrass operators can be approximated by means of the Steklov averages
as well as in terms of the Bernstein operators. Some new interesting results on linear operators are given in
[13]and [14].

2. Representations of the Steklov Averages

For n ≥ 1 and i = 0, 1, . . . ,n, let hn,i = −1 +
2i
n

. Given x ∈ R and b > 0, let Bx,b
n−1 be the B-spline function of

degree n − 1 associated to the points

x − b = x + bhn,0 < x + bhn,1 < . . . < x + bhn,n = x + b. (2.1)
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Then Bx,b
n−1 is in Cn−2(R) and vanishes outside [x − b, x + b]. The divided difference of a function f ∈ Cn(R)

on the nodes (2.1) can be expressed by

[x + bhn,0, . . . , x + bhn,n f ] =
1
n!

∫ +∞

−∞

f (n)(t)Bx,b
n−1(t)dt. (2.2)

For t and y in R we have

Bx,b
n−1(t) = Bx+y,b

n−1 (t + y). (2.3)

A well-known property of the B-spline functions (see, e.g., [18, Prop. 1.3.9]) asserts that

d
dt

Bx,nb
n−1(t) =

1
2b

(Bx−b,(n−1)b
n−2 (t) − Bx+b,(n−1)b

n−2 (t)), n ≥ 2. (2.4)

Now let Xi(x,n, b), i = 1, . . . ,n, be independent random variables, uniformly distributed in [x − nb, x + nb].
Let

Yx,b
n =

1
n

n∑
i=1

Xi(x,n, b).

The probability density of
1
n

Xi(x,n, b) is the function

ϕx,n,b(t) =


1
2b
, t ∈

[x
n
− b,

x
n

+ b
]

0, otherwise.

It is well-known that the density of Yx,b
n is Bx,nb

n−1 , which is also the n-fold convolution of ϕx,n,b.
On the other hand, it is easy to prove that ϕx,n,b is a Pólya frequency function (see the definition in [11]).

Using Proposition 1.5, p. 333 of [11] we conclude that Bx,nb
n−1 is a Pólya frequency function.

Theorem 2.1. For f ∈ C(R) and n ≥ 1, Ln,b f is the convolution of f and B0,nb
n−1 . Moreover,

Ln,b f (x) = E f (Yx,b
n ), (2.5)

where E denotes mathematical expectation.

Proof. For a fixed b > 0 let An f be the convolution of f and B0,nb
n−1 , i.e.,

An f (x) =

∫ +∞

−∞

f (t)B0,nb
n−1(x − t)dt, x ∈ R. (2.6)

Since B0,nb
n−1 is an even function we have alternatively

An f (x) =

∫ +∞

−∞

f (t)B0,nb
n−1(t − x)dt =

∫ +∞

−∞

f (u + x)B0,nb
n−1(u)du. (2.7)

Let f1 ∈ C1(R), f ′1 = f . Then (2.7) yields

d
dx

An f1(x) = An f (x). (2.8)

By using (2.4) and (2.3) we obtain

An f (x) =
d
dx

∫ +∞

−∞

f1(t)B0,nb
n−1(x − t)dt
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=
1
2b

∫ +∞

−∞

f1(t)(B−b,(n−1)b
n−2 (x − t) − Bb,(n−1)b

n−2 (x − t))dt

=
1
2b

∫ +∞

−∞

f1(t)(B0,(n−1)b
n−2 (x + b − t) − B0,(n−1)b

n−2 (x − b − t))dt

=
1
2b

(An−1 f1(x + b) − An−1 f1(x − b)) =
1
2b

∫ x+b

x−b

d
dt

An−1 f1(t)dt.

Now (2.8) implies

An f (x) =
1
2b

∫ x+b

x−b
An−1 f (t)dt.

This means that Ln,b and An satisfy the same recurrence relation. Moreover, from (1.1) and (2.6) we deduce

L1,b f (x) =
1
2b

∫ x+b

x−b
f (t)dt = A1 f (x).

Thus Ln,b = An, n ≥ 1. In particular,

Ln,b f (x) =

∫ +∞

−∞

f (t)Bx,nb
n−1(t)dt = E f (Yx,b

n )

and the proof is finished. �

Remark 2.2. As a consequence of (2.5) and (2.2) we have also the following representations:

Ln,b f (x) =
1

(2nb)n

∫ x+nb

x−nb
. . .

∫ x+nb

x−nb
f
( t1 + . . . + tn

n

)
dt1 . . . dtn, (2.9)

Ln,b f (x) = n![x + nbhn,0, . . . , x + nbhn,n; fn], (2.10)

where fn is an arbitrary function in Cn(R) with f (n)
n = f .

3. Some Properties of the Operators Ln,b

(I) Let ei(t) = ti, t ∈ R, i = 0, 1, . . .. By using (1.1) it is easy to deduce that

Ln,bei = ei + pn,b,i, (3.1)

where pn,b,i is a polynomial of degree ≤ i − 1. In particular,

Ln,be0 = e0; Ln,be1 = e1; Ln,be2 = e2 +
nb2

3
e0. (3.2)

By using the general theory (see [4]) we can derive various qualitative and quantitative Korovkin-type
results involving the positive linear operators Ln,b. (See also [15] and [16]).

In establishing such results, an important role is played by the moments of the operators Ln,b, defined
for m = 0, 1, . . . and x ∈ R by

Mn,b,m(x) :=
1

m!
Ln,b(e1 − xe0)m(x). (3.3)

In fact, we have

m!Mn,b,m(x) =

∫ +∞

−∞

(t − x)mB0,nb
n−1(t − x)dt =

∫ +∞

−∞

umB0,nb
n−1(u)du.

It follows that the moments Mn,b,m are constant functions, and the numbers m!Mn,b,m are the moments of
the function B0,nb

n−1 .
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Theorem 3.1. For each k = 0, 1, . . . we have

Mn,b,2k+1 = 0, n ≥ 1, (3.4)

Mn,b,2k = cn,2kb2k, n ≥ 1, (3.5)

where

c1,2k =
1

(2k + 1)!
(3.6)

and

cn,2k =

k∑
l=0

1
(2l + 1)!

cn−1,2k−2l, n ≥ 2. (3.7)

Proof. (3.4) is a consequence of the fact that B0,nb
n−1 is an even function. Let us remark that

Ln,b = L1,b ◦ Ln−1,b = · · · = Ln
1,b,

and consequently

Ln,b = Ln−1,b ◦ L1,b. (3.8)

From (3.8) and [9, Theorem 4] we deduce

Mn,b,2k =

2k∑
i=0

Mn−1,b,2k−iM1,b,i.

On the other hand, M1,b,2l+1 = 0 and

M1,b,2l =
1

(2l + 1)!
b2l, l ≥ 0. (3.9)

It follows that

Mn,b,2k =

k∑
l=0

1
(2l + 1)!

b2lMn−1,b,2k−2l. (3.10)

(3.5) for n = 1, and (3.6) are consequences of (3.9). Using (3.10) and induction on n, it is easy to prove (3.5)
and (3.7). �
Example. From Theorem 3.1 it is easy to obtain

cn,0 = 1, cn,2 =
n
6
, cn,4 =

5n2
− 2n

360
,n ≥ 1.

(II) We have seen that

Ln,b f (x) =

∫ +∞

−∞

f (t)B0,nb
n−1(x − t)dt

and B0,nb
n−1 is a Pólya frequency function. Consequently,

(a) Ln,b has the variation-diminishing properties in the sense of [11], Section 3 of Chapter 1 and Section 4 of
Chapter 5. (See also Theorem 4.6, p. 249);
(b) If f is convex with respect to the Tchebycheff system {ϕ1, . . . , ϕm}, then Ln,b f is convex with respect to
{Ln,bϕ1, . . . ,Ln,bϕm}. (See [11], Section 4 of Chapter 1).
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(III) Due to the probabilistic representation (2.5), we can apply the results of [2] and [3] in order to prove that
Ln,b preserves global smoothness and diminishes both the φ-variation and the fine φ-variation. Moreover,
if the sequence (nbn) is decreasing and f ∈ C(R) is convex, then

Ln,bn f ≥ Ln+1,bn+1 f ≥ f .

The same probabilistic representation allows us to apply to Ln,b the Casteljau-type algorithm discussed in
[17].
(IV) Let us mention also the following Voronovskaja-type formula established in [10] (see also [1]):

lim
n→∞

nk

Ln, 1
n

f (x) −
k−1∑
i=0

Ln, 1
n
e2i(0)

f (2i)(x)
(2i)!

 =
1

k!6k
f (2k)(x)

for f ∈ C(R) 2k-times differentiable at x. In particular,

lim
n→∞

n(Ln, 1
n

f (x) − f (x)) =
1
6

f ′′(x),

lim
n→∞

n
(
n
(
n
(
Ln, 1

n
f (x) − f (x)

)
−

1
6

f ′′(x)
)
−

1
72

f IV(x)
)

=
f VI(x)
1296

−
f IV(x)
180

.

(V) Let C2π :=
{
f ∈ C(R) : f is 2π − periodic

}
, and b > 0 fixed.

Theorem 3.2. For each f ∈ C2π and b > 0, lim
n→∞

Ln,b f = 1
2π

(∫ π
−π

f (t)dt
)
1, uniformly on R.

Proof. Let

p(x) = a0 +

m∑
k=1

(ak cos kx + bk sin kx) .

Then

a0 =
1

2π

∫ π

−π
p(t)dt

and

Ln,bp(x) =
1

2π

∫ π

−π
p(t)dt +

m∑
k=1

(
sin kb

kb

)n

(ak cos kx + bk sin kx) ,

so that

lim
n→∞

Ln,bp =
1

2π

(∫ π

−π
p(t)dt

)
1, (3.11)

uniformly on R.
Let f ∈ C2π and ε > 0. Then there exists a trigonometric polynomial p such that

∥∥∥ f − p
∥∥∥
∞
≤

ε
3 (see [12],

p.413).
Consequently we have also ∣∣∣∣∣ 1

2π

∫ π

−π
p(t)dt −

1
2π

∫ π

−π
f (t)dt

∣∣∣∣∣ ≤ ε3 .
According to (3.3),

∃nε :

∥∥∥∥∥∥Ln,bp −
1

2π

(∫ π

−π
p(t)dt

)
1

∥∥∥∥∥∥
∞

≤
ε
3
,∀n ≥ nε.
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Now we have∥∥∥∥∥∥Ln,b f −
1

2π

(∫ π

−π
f (t)dt

)
1

∥∥∥∥∥∥
∞

≤

∥∥∥Ln,b( f − p)
∥∥∥ +

∥∥∥∥∥∥Ln,bp −
1

2π

(∫ π

−π
p(t)dt

)
1

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥ 1
2π

(∫ π

−π
(p(t) − f (t)dt

)
1

∥∥∥∥∥∥
≤
ε
3

+
ε
3

+
ε
3

= ε,∀n ≥ nε.

This finishes the proof. �

4. Approximation of the Weierstrass Operator by Steklov Averages and Bernstein Operators

We shall apply a probabilistic technique from [6] in order to approximate the Weierstrass operator
defined by

W0 f = f ,

Wt f (x) = (2πt)−1/2
∫ +∞

−∞

f (u) exp
(
−

(u − x)2

2t

)
du, t > 0,

(4.1)

where x ∈ R and f is in the space CB(R) of continuous and bounded functions on R.

Theorem 4.1. Let bn > 0, n ≥ 1 be such that

lim
n→∞

nb2
n = a ≥ 0. (4.2)

Then for all f ∈ CB(R) and x ∈ R we have

lim
n→∞

Ln,bn f (x) = Wa/3 f (x).

Proof. The probability density of Yx,bn
n is Bx,nbn

n−1 and the characteristic function is

eitx
(

sin bnt
bnt

)n

, t ∈ R.

When n→∞, this sequence of functions converges on R to the function

exp
(
itx −

at2

6

)
, t ∈ R.

From Lévy’s convergence theorem we deduce that for a > 0 and y ∈ R,

lim
n→∞

∫ y

−∞

Bx,nbn
n−1 (t)dt =

( 3
2πa

)1/2 ∫ y

−∞

exp
(
−

3(u − x)2

2a

)
du, (4.3)

while for a = 0 and y ∈ R,

lim
n→∞

∫ y

−∞

Bx,nbn
n−1 (t)dt =


0, y < x
1/2, y = x
1, y > x.

(4.4)

Let us remark that (4.3) and (4.4) are concrete illustrations of a general result contained in Theorem 5.1,
p. 533 of [11].
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Now a well-known result from Probability Theory (see, e.g., [5], or Theorem 1 in [6]) yields

lim
n→∞

Ln,bn f (x) = Wa/3 f (x)

for f ∈ CB(R) and x ∈ R. This finishes the proof. �
The Weierstrass operator can be also approximated by means of the Bernstein operators. Indeed, let bn

be as in (4.2), 0 < t < 1, and Zn a binomial variable with parameters n and t. Then, for a fixed x ∈ R, the
sequence of random variables

x +
nbn√

t(1 − t)

(Zn

n
− t

)
, n ≥ 1,

converges in law to:
- a normal variable with mean x and variance a, if a > 0;
- the constant x, if a = 0.
Consequently, if Bn(1(u); t) are the classical Bernstein operators associated to a function 1(u), then

lim
n→∞

Bn

 f

x +
nbn√

t(1 − t)
(u − t)

 ; t

 = Wa f (x), f ∈ CB(R). (4.5)
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