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Abstract. In [1], Abdo and Dimitov defined the total irregularity of a graph G = (V,E) as
irrt(G) = 1

2

∑
u,v∈V |dG(u) − dG(v)|,

where dG(u) denotes the vertex degree of a vertex u ∈ V. In this paper, we investigate the minimal total
irregularity of the connected graphs, determine the minimal, the second minimal, the third minimal total
irregularity of trees, unicyclic graphs, bicyclic graphs on n vertices, and propose an open problem for
further research.

1. Introduction

Let G = (V,E) be a simple undirected graph with vertex set V and edge set E. For any vertices v ∈ V, the
degree of a vertex v in G, denoted by dG(v), is the number of edges of G incident with v. If V = {v1, v2, . . . , vn},
then the sequence (dG(v1), dG(v2), . . . , dG(vn)) is called a degree sequence of G ([5]). Without loss of generality,
we assume dG(v1) ≥ dG(v2) ≥ . . . ≥ dG(vn).

A graph is regular if all its vertices have the same degree, otherwise it is irregular. Several approaches
that characterize how irregular a graph is have been proposed. In [4], Alberson defined the imbalance of
an edge e = uv ∈ E as |dG(u) − dG(v)| and the irregularity of G as

irr(G) =
∑

uv∈E
|dG(u) − dG(v)|. (1)

More results on the imbalance, the irregularity of a graph G can be found in [2, 4, 7, 8].
Inspired by the structure and meaning of the equation (1), Abdo and Dimitov [1] introduced a new

irregularity measure, called the total irregularity. For a graph G, it is defined as

irrt(G) = 1
2

∑
u,v∈V
|dG(u) − dG(v)|. (2)

Although the two irregularity measures capture the irregularity only by a single parameter, namely the
degree of a vertex, the new measure is more superior than the old one in some aspects. For example, (2)
has an expected property of an irregularity measure that graphs with the same degree sequences have the
same total irregularity, while (1) does not have. Both measures also have common properties, including
that they are zero if and only if G is regular.
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Obviously, irrt(G) is an upper bound of irr(G). In [6], the authors derived relation between irrt(G) and
irr(G) for a connected graph G with n vertices, that is, irrt(G) ≤ n2irr(G)/4. Furthermore, they showed that
irrt(T) ≤ (n − 2)irr(T) for any tree T.

Let Pn, Cn and Sn be the path, cycle and star on n vertices, respectively. In [1], the authors obtained the
upper bound of the total irregularity among all graphs on n vertices, and they showed the star graph Sn is
the tree with the maximal total irregularity among all trees on n vertices.

Theorem 1.1. ([1]) Let G be a simple, undirected graph on n vertices. Then
(1) irrt(G) ≤ 1

12 (2n3
− 3n2

− 2n + 3).
(2) If G is a tree, then irrt(G) ≤ (n − 1)(n − 2), with equality holds if and only if G � Sn.

In [9], the authors investigated the total irregularity of unicyclic graphs, and determined the graph with
the maximal total irregularity n2

− n − 6 among all unicyclic graphs on n vertices. In [10], the authors
investigated the total irregularity of bicyclic graphs, and determined the graph with the maximal total
irregularity n2 + n − 16 among all bicyclic graphs on n vertices.

Recently, Abdo and Dimitrov ([3]) also obtained the upper bounds on the total irregularity of graphs
under several graph operations including join, lexicographic product, Cartesian product, strong product,
direct product, corona product, disjunction and symmetric difference and so on.

In this paper, we introduce an important transformation to investigate the minimal total irregularity
of graphs in Section 2, determine the minimal, the second minimal, the third minimal total irregularity
of trees, unicyclic graphs, bicyclic graphs on n vertices in Sections 3-5, and propose an open problem for
further research.

2. Branch-Transformation

In this section, we introduce an important transformation to investigate the minimal total irregularity
of graphs on n vertices.

Let G be a graph on n vertices, T be an induced subtree of G. We call T is a hanging tree of G if G can be
formed by connecting a vertex of T and a vertex of G − T.
Branch-transformation: Let G be a simple graph with at least two pendent vertices. Without loss of
generality, let u be a vertex of G with dG(u) ≥ 3, T be a hanging tree of G connecting to u with |V(T)| ≥ 1,
and v be a pendent vertex of G with v < T. Let G′ be the graph obtained from G by deleting T from vertex u
and attaching it to vertex v. We call the transformation from G to G′ is a branch-transformation on G from
vertex u to vertex v (see Figure 1).
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Figure 1. Branch-transformation on G from u to v

Lemma 2.1. Let G′ be the graph obtained from G by branch-transformation from u to v. Then irrt(G) > irrt(G′).

Proof. Let G = (V,E), V1 ={w|dG(w) ≥ dG(u),w ∈ V}, V2 ={w|dG(w) = 1,w ∈ V}, V3 = {w|2 ≤ dG(w) < dG(u),w ∈
V}. Clearly, u ∈ V1, v ∈ V2, and V1 ∪ V2 ∪ V3 = V. Let |V1| = s, |V2| = h, |V3| = r, then s ≥ 1, h ≥ 2 and
s + h + r = n.

Note that after banch-transformation, only the degrees of u and v have been changed, namely, dG′ (u) =
dG(u) − 1, dG′ (v) = dG(v) + 1 = 2 and dG′ (x) = dG(x) for any x ∈ V\{u, v}. Let U = V\{u, v}. Then

|dG′ (u) − dG′ (v)| − |dG(u) − dG(v)| = −2,∑
x∈U

(|dG′ (u) − dG′ (x)| − |dG(u) − dG(x)|) = (s − 1) − (r + h − 1) = s − r − h,∑
x∈U

(|dG′ (v) − dG′ (x)| − |dG(v) − dG(x)|) = −(s − 1) − r + (h − 1) = −s − r + h.
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Thus, we have
irrt(G′)−irrt(G)

= |dG′ (u) − dG′ (v)| +
∑

x∈U
|dG′ (u) − dG′ (x)| +

∑
x∈U
|dG′ (v) − dG′ (x)|

−(|dG(u) − dG(v)| +
∑

x∈U
|dG(u) − dG(x)| +

∑
x∈U
|dG(v) − dG(x)|)

= (|dG′ (u) − dG′ (v)| − |dG(u) − dG(v)|) +
∑

x∈U
(|dG′ (u) − dG′ (x)| − |dG(u) − dG(x)|)

+
∑

x∈U
(|dG′ (v) − dG′ (x)| − |dG(v) − dG(x)|)

= −2 + (s − r − h) + (−s − r + h)
= −2r − 2
< 0.

Remark 2.2. Let G′ be the graph obtained from G by branch-transformation from u to v. Then by branch-
transformation and Lemma 2.1, we have dG′ (u) = dG(u) − 1 ≥ 2 and dG′ (v) = dG(v) + 1 = 2, namely, |{w|dG′ (w) =
1,w ∈ V}| = |{w|dG(w) = 1,w ∈ V}|−1. If dG′ (u) ≥ 3, G′ has at least two pendent vertices, and there exists a hanging
tree of G′ connecting to the vertex u, we can repeat branch-transformation on G′ from the vertex u, till the degree of
u is equal to 2, or there is only one pendent vertex in the resulting graph, or there is not any hanging tree connecting
to the vertex u.

From the above arguments, we see that we can do branch-transformation on G if and only if the following
three conditions hold:

(1) there exists a vertex u with dG(u) ≥ 3;
(2) there exists a hanging tree of G connecting to the vertex u;
(3) G has at least two pendent vertices.

3. The Minimal Total Irregularity of Trees

In this section, we determine the minimal, the second minimal, the third minimal total irregularity of
trees on n vertices and characterize the extremal graphs.

Lemma 3.1. ([5]) Let G = (V,E) be a graph and |E| = m. Then
∑

v∈V
dG(v) = 2m.

Let G = (V,E) be a tree. Then for any vertex u ∈ V, dG(u) ≥ 2 implies there must exist a hanging tree of
G connecting to the vertex u, thus we can obtain the following results by branch-transformation.

Theorem 3.2. Let G = (V,E) be a tree on n vertices. Then irrt(G) ≥ 2n − 4, and the equality holds if and only if
G � Pn.

Proof. Clearly, 2(n−1) =
∑

v∈V
dG(v) by Lemma 3.1. Let s = |{w|dG(w) ≥ 3,w ∈ V}|, and h = |{w|dG(w) = 1,w ∈ V}|.

Then s ≥ 0 and h ≥ 2. Let 4(G) be the maximum degree of the vertices of G. Now we complete the proof by
the following two cases.
Case 1: s = 0.

Then h = 2 by 2(n − 1) =
∑

v∈V
dG(v) = 2(n − h) + h, and the degree sequence of G is (2, . . . , 2, 1, 1). Thus

G � Pn and irrt(G) = 2n − 4.
Case 2: s ≥ 1.

Then 4(G) ≥ 3 by s ≥ 1, and h ≥ 4(G) + s− 1 ≥ 3 by 2(n− 1) =
∑

v∈V
dG(v) ≥ 4(G) + 3(s− 1) + 2(n− s− h) + h.

So we can do branch-transformation h − 2 times on G till the degree sequence of the resulting graph is
(2, . . . , 2, 1, 1), denoted by H1, and thus irrt(G) >irrt(H1) = 2n − 4 by Lemma 2.1.

Theorem 3.3. Let n ≥ 5, G = (V,E) be a tree on n vertices and G � Pn. Then irrt(G) ≥ 4n − 10, and the equality
holds if and only if the degree sequence of G is (3, 2, . . . , 2, 1, 1, 1).
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Proof. It is obvious that 2(n−1) =
∑

v∈V
dG(v) by Lemma 3.1. Let s = |{w|dG(w) ≥ 3,w ∈ V}|, and h = |{w|dG(w) =

1,w ∈ V}|. Then 4(G) ≥ 3 and s ≥ 1 since G � Pn. Now we complete the proof by the following two cases.
Case 1: s + 4(G) = 4.

Clearly, s = 1,4(G) = 3. Then h = 3 by 2(n− 1) =
∑

v∈V
dG(v) = 3 + 2(n− 1− h) + h, and the degree sequence

of G is (3, 2, . . . , 2, 1, 1, 1). Thus irrt(G) = 4n − 10.
Case 2: s + 4(G) ≥ 5.

Then h ≥ 4(G) + s − 1 ≥ 4 by 2(n − 1) =
∑

v∈V
dG(v) ≥ 4(G) + 3(s − 1) + 2(n − s − h) + h. Now we can do

branch-transformation h − 3 times on G till the degree sequence of the resulting graph is (3, 2, . . . , 2, 1, 1, 1),
denoted by H2, and thus irrt(G) >irrt(H2) = 4n − 10 by Lemma 2.1.

Theorem 3.4. Let n ≥ 6, G = (V,E) be a tree on n vertices, G � Pn. If the sequence (3, 2, . . . , 2, 1, 1, 1) is not
the degree sequence of G, then irrt(G) ≥ 6n − 20, and the equality holds if and only if the degree sequence of G is
(3, 3, 2, . . . , 2, 1, 1, 1, 1).

Proof. Clearly, 2(n−1) =
∑

v∈V
dG(v) by Lemma 3.1. Let s = |{w|dG(w) ≥ 3,w ∈ V}|, and h = |{w|dG(w) = 1,w ∈ V}|.

Then s ≥ 1 and 4(G) ≥ 3 since G � Pn. Now we complete the proof by the following two cases.
Case 1: s = 1.

Then 4(G) ≥ 4 because sequence (3, 2, . . . , 2, 1, 1, 1) is not the degree sequence of G.
Subcase 1.1: 4(G) = 4.

Then h = 4 by 2(n−1) =
∑

v∈V
dG(v) = 4+2(n−1−h)+h, and the degree sequence of G is (4, 2, . . . , 2, 1, 1, 1, 1).

Thus irrt(G) = 6n − 18 > 6n − 20.
Subcase 1.2: 4(G) ≥ 5.

Then h = 4(G) ≥ 5 by 2(n−1) =
∑

v∈V
dG(v) = 4(G)+2(n−1−h)+h. Now we can do branch-transformation

h − 4 times on G till the degree sequence of the resulting graph is (4, 2, . . . , 2, 1, 1, 1, 1), denoted by H3, and
thus irrt(G) >irrt(H3) = 6n − 18 > 6n − 20 by Lemma 2.1.
Case 2: s ≥ 2.
Case 2.1: s + 4(G) = 5.

Then the degree sequence of G is (3, 3, 2, . . . , 2, 1, 1, 1, 1), and thus irrt(G) = 6n − 20.
Case 2.2: s + 4(G) ≥ 6.

Then h ≥ 4(G)+ s−1 ≥ 5 by 2(n−1) =
∑

v∈V
dG(v) ≥ 4(G)+3(s−1)+2(n− s−h)+h. Now we can do branch-

transformation h − 4 times on G till the degree sequence of the resulting graph is (3, 3, 2, . . . , 2, 1, 1, 1, 1),
denoted by H4, and thus irrt(G) >irrt(H4) = 6n − 20 by Lemma 2.1.

Remark 3.5. Let n ≥ 6, by Theorems 3.2-3.4, we know the minimal, the second minimal, the third minimal total
irregularity of trees on n vertices are 2n−4, 4n−10, 6n−20, respectively, and the degree sequences of the corresponding
extremal graphs are (2, . . . , 2, 1, 1), (3, 2, . . . , 2, 1, 1, 1), (3, 3, 2, . . . , 2, 1, 1, 1, 1), respectively.

4. The Minimal Total Irregularity of Unicyclic Graphs

In this section, we determine the minimal, the second minimal, the third minimal total irregularity of
unicyclic graphs on n vertices and characterize the extremal graphs.

An unicyclic graph is a simple connected graph in which the number of edges equals the number
of vertices. Let G = (V,E) be an unicyclic graph. Then for any vertex u ∈ V, dG(u) ≥ 3 implies there
must exist a hanging tree of G connecting to the vertex u, thus we can obtain the following results by
branch-transformation.

Theorem 4.1. Let n ≥ 3 and G = (V,E) be an unicyclic graph on n vertices.
(1) irrt(G) ≥ 0, and the equality holds if and only if G � Cn.
(2) Let n ≥ 4, and G � Cn. Then irrt(G) ≥ 2n − 2, and the equality holds if and only if the degree sequence of G

is (3, 2, . . . , 2, 1).
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Proof. (1) is obvious. Now we show (2) holds.
It is obvious that 2n =

∑
v∈V

dG(v) by Lemma 3.1. Let s = |{w|dG(w) ≥ 3,w ∈ V}|, and h = |{w|dG(w) = 1,w ∈

V}|. Then s ≥ 1, h ≥ 1, 4(G) ≥ 3 by G � Cn and 2n =
∑

v∈V
dG(v). Now we complete the proof by the following

two cases.
Case 1: s + 4(G) = 4.

Then (3, 2, . . . , 2, 1) is the degree sequence of G by 2n =
∑

v∈V
dG(v) = 3 + 2(n − 1 − h) + h, and thus

irrt(G) = 2n − 2.
Case 2: s + 4(G) ≥ 5.

Then h ≥ 4(G) + s − 3 ≥ 2 by 2n =
∑

v∈V
dG(v) ≥ 4(G) + 3(s − 1) + 2(n − s − h) + h, and we can do branch-

transformation h − 1 times on G till the degree sequence of the resulting graph is (3, 2, . . . , 2, 1), denoted by
H5, and thus irrt(G) >irrt(H5) = 2n − 2 by Lemma 2.1.

Theorem 4.2. Let n ≥ 5, G = (V,E) be an unicyclic graph on n vertices with G � Cn. If the sequence (3, 2, . . . , 2, 1)
is not the degree sequence of G, then irrt(G) ≥ 4n − 8, and the equality holds if and only if the degree sequence of G is
(3, 3, 2, . . . , 2, 1, 1).

Proof. Clearly, 2n =
∑

v∈V
dG(v) by Lemma 3.1. Let s = |{w|dG(w) ≥ 3,w ∈ V}|, and h = |{w|dG(w) = 1,w ∈ V}|.

Then s ≥ 1, h ≥ 1 by G � Cn and 2n =
∑

v∈V
dG(v). Now we complete the proof by the following two cases.

Case 1: s = 1.
Then 4(G) ≥ 4 because sequence (3, 2, . . . , 2, 1) is not the degree sequence of G.

Subcase 1.1: 4(G) = 4.
Then h = 2 and the degree sequence is (4, 2, . . . , 2, 1, 1) by 2n =

∑
v∈V

dG(v) = 4 + 2(n − 1 − h) + h, and thus

irrt(G) = 4n − 6 > 4n − 8.
Subcase 1.2: 4(G) ≥ 5.

Then h = 4(G) − 2 ≥ 3 by 2n =
∑

v∈V
dG(v) = 4(G) + 2(n − 1 − h) + h, and we can do branch-transformation

h − 2 times on G till the degree sequence of the resulting graph is (4, 2, . . . , 2, 1, 1), denoted by H6, and thus
irrt(G) >irrt(H6) = 4n − 6 by Lemma 2.1.
Case 2: s ≥ 2.
Subcase 2.1: s + 4(G) = 5.

Then h = 2 and the degree sequence is (3, 3, 2, . . . , 2, 1, 1) by 2n =
∑

v∈V
d(v) = 6 + 2(n − 2 − h) + h, and thus

irrt(G) = 4n − 8.
Subcase 2.2: s + 4(G) ≥ 6.

Then h ≥ 4(G) + s − 3 ≥ 3 by 2n =
∑

v∈V
dG(v) ≥ 4(G) + 3(s − 1) + 2(n − s − h) + h, and we can do branch-

transformation h− 2 times on G till the degree sequence of the resulting graph is (3, 3, 2, . . . , 2, 1, 1), denoted
by H7, and thus irrt(G) >irrt(H7) = 4n − 8 by Lemma 2.1.

Remark 4.3. Let n ≥ 5, by Theorems 4.1-4.2, we know the minimal, the second minimal, the third minimal total
irregularity of unicyclic graphs on n vertices are 0, 2n − 2, 4n − 8, respectively, and the degree sequences of the
corresponding extremal graphs are (2, . . . , 2), (3, 2, . . . , 2, 1), (3, 3, 2, . . . , 2, 1, 1), respectively.

5. The Minimal Total Irregularity of Bicyclic Graphs

In this section, we determine the minimal, the second minimal, the third minimal total irregularity of
bicyclic graphs on n vertices and characterize the extremal graphs.

A bicyclic graph is a simple connected graph in which the number of edges equals the number of vertices
plus one. There are two basic bicyclic graphs: ∞-graph and Θ-graph. An ∞-graph, denoted by ∞(p, q, l)
(see Figure 2), is obtained from two vertex-disjoint cycles Cp and Cq by connecting one vertex of Cp and one
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of Cq with a path Pl of length l − 1 (in the case of l = 1, identifying the above two vertices, see Figure 3)
where p, q ≥ 3 and l ≥ 1; and a Θ-graph, denoted by θ(p, q, l) (see Figure 4), is a graph on p + q − l vertices
with the two cycles Cp and Cq have l common vertices, where p, q ≥ 3 and l ≥ 2.

&%
'$q q · · · q q&%

'$
Cp Cq

Figure 2. The graph∞(p, q, l) with l ≥ 2
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Figure 3. The graph∞(p, q, 1)
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Figure 4. The graph θ(p, q, l)
Denoted by Bn is the set of all bicyclic graphs on n vertices. Obviously, Bn consists of three types of

graphs: first type denoted by B+
n , is the set of those graphs each of which is an∞-graph,∞(p, q, l), with trees

attached when l = 1; second type denoted by B++
n , is the set of those graphs each of which is an ∞-graph,

∞(p, q, l), with trees attached when l ≥ 2; third type denoted by Θn, is the set of those graphs each of which
is a Θ-graph, θ(p, q, l), with trees attached. Then Bn = B+

n ∪ B++
n ∪Θn.

5.1. The graph with minimal total irregularity in B+
n

In this subsection, the minimal, the second minimal total irregularity of the bicyclic graphs in B+
n are

determined.

Theorem 5.1. Let n ≥ 6, G = (V,E) ∈ B+
n .

(1) irrt(G) ≥ 2n − 2, and the equality holds if and only if the degree sequence of G is (4, 2, . . . , 2).
(2) If (4, 2, . . . , 2) is not the degree sequence of G, then irrt(G) ≥ 4n − 6, and the equality holds if and only if the

degree sequence of G is (4, 3, 2, . . . , 2, 1).

Proof. Clearly,
∑

v∈V
dG(v) = 2(n + 1) by Lemma 3.1. Let s = |{w|dG(w) ≥ 3,w ∈ V}|, h = |{w|dG(w) = 1,w ∈ V}|

and t = |{w|dG(w) = 4(G),w ∈ V}|. Then s ≥ 1, h ≥ 0, 1 ≤ t ≤ s and 4(G) ≥ 4 by G ∈ B+
n .

Note that G ∈ B+
n , if s = 1, 4(G) ≥ 5 or s ≥ 2, there must exist a vertex u with dG(u) ≥ 3 and there exists a

hanging tree of G connecting to u. Then we complete the proof by the following two cases.
Case 1: s = 1.
Subcase 1.1: 4(G) = 4.

Then h = 0 and the degree sequence of G is (4, 2, . . . , 2) by the fact 2(n+1) =
∑

v∈V
dG(v) = 4+2(n−1−h)+h,

and thus irrt(G) = 2n − 2.
Subcase 1.2: 4(G) = 5.



Y. Zhu et al. / Filomat 30:5 (2016), 1203–1211 1209

Then h = 1 and the degree sequence of G is (5, 2, . . . , 2, 1) by the fact 2(n+1) =
∑

v∈V
dG(v) = 5+2(n−1−h)+h,

and thus irrt(G) = 4n − 4 > 4n − 6.
Subcase 1.3: 4(G) ≥ 6.

Then h = 4(G) − 4 ≥ 2 by the fact 2(n + 1) =
∑

v∈V
dG(v) = 4(G) + 2(n − 1 − h) + h, and we can do branch-

transformation h − 1 times on G till the degree sequence of the resulting graph is (5, 2, . . . , 2, 1), denoted by
H8, and thus irrt(G) >irrt(H8) = 4n − 4 by Lemma 2.1.
Case 2: s ≥ 2.
Subcase 2.1: s + 4(G) = 6.

Then s = 2, 4(G) = 4 and 1 ≤ t ≤ 2.
If t = 1, then h = 1 and the degree sequence of G is (4, 3, 2, . . . , 2, 1) by the fact 2(n + 1) =

∑
v∈V

dG(v) =

4 + 3 + 2(n − 2 − h) + h, and thus irrt(G) = 4n − 6.
If t = 2, then h = 2 by the fact 2(n + 1) =

∑
v∈V

dG(v) = 4 + 4 + 2(n − 2 − h) + h, and we can do branch-

transformation once on G such that the degree sequence of the resulting graph is (4, 3, 2 . . . , 2, 1), denoted
by H9, and thus irrt(G) >irrt(H9) = 4n − 6 by Lemma 2.1.
Subcase 2.2: s + 4(G) ≥ 7.

Then h ≥ 4(G) + s − 5 ≥ 2 by the fact 2(n + 1) =
∑

v∈V
dG(v) ≥ 4(G) + 3(s − 1) + 2(n − s − h) + h, and we

can do branch-transformation h − 1 times on G such that the degree sequence of the resulting graph is
(4, 3, 2 . . . , 2, 1), denoted by H9, and thus irrt(G) >irrt(H9) = 4n − 6 by Lemma 2.1.

5.2. The graph with minimal total irregularity in B++
n

In this subsection, the minimal, the second minimal total irregularity of the bicyclic graphs in B++
n are

determined.

Theorem 5.2. Let n ≥ 7, G = (V,E) ∈ B++
n .

(1) irrt(G) ≥ 2n − 4, and the equality holds if and only if the degree sequence of G is (3, 3, 2, . . . , 2).
(2) If (3, 3, 2, . . . , 2) is not the degree sequence of G, then irrt(G) ≥ 4n − 10, and the equality holds if and only if

the degree sequence of G is (3, 3, 3, 2, . . . , 2, 1).

Proof. Clearly,
∑

v∈V
dG(v) = 2(n + 1) by Lemma 3.1. Let s = |{w|dG(w) ≥ 3,w ∈ V}|, h = |{w|dG(w) = 1,w ∈ V}|

and t = |{w|dG(w) = 4(G),w ∈ V}|. Then s ≥ 2, h ≥ 0, 1 ≤ t ≤ s and 4(G) ≥ 3 by G ∈ B++
n .

Note that G ∈ B++
n , if s = 2, 4(G) ≥ 4 or s ≥ 3, there must exist a vertex u with dG(u) ≥ 3 and there exists

a hanging tree of G connecting to u. Then we complete the proof by the following two cases.
Case 1: s = 2.
Subcase 1.1: 4(G) = 3.

Then h = 0 and the degree sequence of G is (3, 3, 2, . . . , 2) by the fact 2(n + 1) =
∑

v∈V
dG(v) = 3 + 3 + 2(n −

2 − h) + h, and thus irrt(G) = 2n − 4.
Subcase 1.2: 4(G) = 4.

Then t = 1 or t = 2 by 1 ≤ t ≤ s.
If t = 1, then h = 1 and the degree sequence of G is (4, 3, 2, . . . , 2, 1) by the fact 2(n + 1) =

∑
v∈V

dG(v) =

4 + 3 + 2(n − 2 − h) + h, and thus irrt(G) = 4n − 6 > 4n − 10.
If t = 2, then h = 2 by the fact 2(n + 1) =

∑
v∈V

dG(v) = 4 + 4 + 2(n − 2 − h) + h, and we can do branch-

transformation once on G such that the degree sequence of the resulting graph is (4, 3, 2 . . . , 2, 1), denoted
by H10, and thus irrt(G) >irrt(H10) = 4n − 6 by Lemma 2.1.
Subcase 1.3: 4(G) ≥ 5.

Then h ≥ 4(G)− 3 ≥ 2 by the fact 2(n + 1) =
∑

v∈V
dG(v) ≥ 4(G) + 3 + 2(n− 2− h) + h, and we can do branch-

transformation h − 1 times on G such that the degree sequence of the resulting graph is (4, 3, 2 . . . , 2, 1),
denoted by H10, and thus irrt(G) >irrt(H10) = 4n − 6 by Lemma 2.1.
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Case 2: s ≥ 3.
Subcase 2.1: s + 4(G) = 6.

Then h = 1 and the degree sequence of G is (3, 3, 3, 2, . . . , 2, 1) by the fact 2(n + 1) =
∑

v∈V
dG(v) = 3 + 3 + 3 +

2(n − 3 − h) + h, and thus irrt(G) = 4n − 10.
Subcase 2.2: s + 4(G) ≥ 7.

Then h ≥ 4(G) + s − 5 ≥ 2 by the fact 2(n + 1) =
∑

v∈V
dG(v) ≥ 4(G) + 3(s − 1) + 2(n − s − h) + h, and we

can do branch-transformation h − 1 times on G such that the degree sequence of the resulting graph is
(3, 3, 3, 2 . . . , 2, 1), denoted by H11, and thus irrt(G) >irrt(H11) = 4n − 10 by Lemma 2.1.

5.3. The graph with minimal total irregularity in Θn

By the same proof of Theorem 5.2, we can determine the minimal, the second minimal total irregularity
of the bicyclic graphs in Θn immediately.

Theorem 5.3. Let n ≥ 5, G = (V,E) ∈ Θn.
(1) irrt(G) ≥ 2n − 4, and the equality holds if and only if the degree sequence of G is (3, 3, 2, . . . , 2).
(2) If (3, 3, 2, . . . , 2) is not the degree sequence of G, then irrt(G) ≥ 4n − 10, and the equality holds if and only if

the degree sequence of G is (3, 3, 3, 2, . . . , 2, 1).

5.4. The graph with minimal total irregularity in Bn

By Theorems 5.1-5.3, we can determine the minimal, the second minimal, the third minimal total
irregularity of the bicyclic graphs on n vertices immediately.

Theorem 5.4. Let n ≥ 7, G ∈ Bn.
(1) irrt(G) ≥ 2n − 4, and the equality holds if and only if the degree sequence of G is (3, 3, 2, . . . , 2).
(2) If (3, 3, 2, . . . , 2) is not the degree sequence of G, then irrt(G) ≥ 2n − 2, and the equality holds if and only if

the degree sequence of G is (4, 2, . . . , 2).
(3) If (3, 3, 2, . . . , 2) and (4, 2, . . . , 2) are not the degree sequence of G, then irrt(G) ≥ 4n − 10, and the equality

holds if and only if the degree sequence of G is (3, 3, 3, 2, . . . , 2, 1).

6. Open Problem for Further Research

By the results of Sections 3-5, we know the minimal total irregularity of simple, undirected graphs on n
vertices is zero, and the corresponding extremal graphs are regular graphs. A nature question is to look for
the second minimal total irregularity of simple, undirected graphs on n vertices.

Let G be a simple, undirected graph on n vertices, if n, r are odd positive integers with 3 ≤ r < n, and
the degree sequence of G is (r, . . . , r, r − 1) or (r + 1, r, . . . , r), then irrt(G) = n − 1 < 2n − 4 when n ≥ 5.

On the other hand, it is well known that the number of vertices of odd degree in a graph G is always
even, if the order of G is even, then the number of vertices of even degree of G is also even. Let G be not
a regular graph on n vertices, the number of vertices of odd degree of G be n1, and the number of vertices
of even degree of G be n2, where n,n1,n2 are even nonnegative integers and n1 + n2 = n. Then we have
irrt(G) ≥ n1n2 ≥ 2(n − 2) > n − 1 when n ≥ 4 and n1,n2 > 0. Based on the above arguments, we propose the
following question.

Conjecture 6.1. Let G be a simple, undirected graph on n vertices. If G is not a regular graph, then

irrt(G) ≥
{

n − 1, if n is odd;
2n − 4, if n is even.
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