
Filomat 30:8 (2016), 2091–2099
DOI 10.2298/FIL1608091C

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Remarks on Upper and Lower Bounds

for Matching Sequencibility of Graphs

Shuya Chibaa, Yuji Nakano

aDepartment of Mathematics and Engineering, Kumamoto University, 2-39-1, Kurokami, Kumamoto 860-8555, Japan

Abstract. In 2008, Alspach [The Wonderful Walecki Construction, Bull. Inst. Combin. Appl. 52 (2008)
7–20] defined the matching sequencibility of a graph G to be the largest integer k such that there exists a
linear ordering of its edges so that every k consecutive edges in the linear ordering form a matching of G,
which is denoted by ms(G). In this paper, we show that every graph G of size q and maximum degree ∆

satisfies 1
2

⌊

q

∆+1

⌋

≤ ms(G) ≤
⌊

q−1

∆−1

⌋

by using the edge-coloring of G, and we also improve this lower bound
for some particular graphs. We further discuss the relationship between the matching sequencibility and a
conjecture of Seymour about the existence of the kth power of a Hamilton cycle.

1. Introduction

In this paper, we consider only finite graphs having at least one edge. For terminology and notation not
defined in this paper, we refer the readers to [3]. Unless stated otherwise, “graph” means simple graph.
A multigraph may contain multiple edges but no loops. Let G be a graph. We denote by V(G) and E(G)
the vertex set and the edge set of G, respectively, and |V(G)| and |E(G)| is called the order and the size of G,
respectively. A vertex-degree, or simply a degree, of a vertex in G is the number of edges incident to it, and we
denote by ∆(G) the maximum degree of G. For X ⊆ V(G), we denote by G[X] a subgraph of G induced by
X. An independent edge set, also called a matching, of G is a subset of E(G) such that no two edges in the set
have a vertex in common. We call a matching of cardinality m an m-matching. A maximum matching of G is
a matching of largest possible cardinality, and by m(G) we denote the cardinality of a maximum matching
of G. Let X be a finite set. We denote by X(2) the set of unordered pairs of distinct elements of X. For a
positive integer k, let Nk = {1, 2, . . . , k}. For a map f : Nk → X, we often denote by [ l ] the image of l ∈ Nk

instead of f (l) if there is no danger of confusion.

In 2008, Alspach [1] introduced a new graph invariant for matchings, which comes from the problem
of how to schedule a round-robin tournament in which the minimum amount of time any participant has
between games is maximized. Let G be a graph. For an integer k, we call a bijection f : N|E(G)| → E(G) a

map with sequential k-matching of G if
{

[ l ], [ l + 1 ], . . . , [ l + k − 1 ]
}

forms a k-matching of G for each l with

l ∈ N|E(G)|−k+1. We define

ms(G) = max{k : G has a map with sequential k-matching},
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which is called a matching sequencibility of G. In [1], Alspach determined the matching sequencibility of
the complete graph by using the Walecki decomposition of it into Hamilton cycles (or Hamilton paths).

He actually proved that the complete graph Kn (n ≥ 2) satisfies ms(Kn) =
⌊

n−1
2

⌋

. In 2012, Brualdi, Kiernan,

Meyer and Schroeder [2] pointed out that it is not so difficult to determine the matching sequencibility of
the complete bipartite graph Km,n (m ≥ n ≥ 2) by using the biadjacency matrix, and they remarked that if
m > n, then ms(Km,n) = n; if m = n, then ms(Km,n) = n − 1.

In this note, we give the upper and lower bounds for matching sequencibility of graphs as follows. (We
can actually obtain the better lower bound for some particulars class of graphs, see Remark 2.2 in Section 2
and also Section 3.)

Theorem 1.1. Every graph G of size q and maximum degree ∆ (≥ 2) satisfies

1

2

⌊ q

∆ + 1

⌋

≤ ms(G) ≤
⌊ q − 1

∆ − 1

⌋

.

In particular, in order to show the left side inequality in Theorem 1.1, we use the edge-coloring of graphs
(i.e., the decomposition of the graph into matchings), and the essential part of the proof is the following.
Here for a multigraph G and X ⊆ V(G)(2), G + X means the graph with the vertex set V(G) and the edge set
E(G) ∪ X.

Theorem 1.2. Let G be a multigraph and M be a subset of V(G)(2) such that M is a matching, and let k be an integer

with k ≤
⌈

|M|
2

⌉

. If ms(G) ≥ k, then the multigraph G +M satisfies ms(G +M) ≥ k.

The paper is organized as follows. In Section 2, we give the proof of Theorem 1.1 after proving Theorem
1.2. In Section 3, we discuss the relation between the matching sequencibility and the matching number
of regular graphs, and we improve the lower bound of the matching sequencibility in Theorem 1.1 for
2-regular graphs and 3-regular graphs with an additional condition. In the last section (Section 4), we
discuss the relationship between the matching sequencibility and Seymour’s conjecture [13] concerning the
existence of the kth power of a Hamilton cycle, and we give conjectures for matching sequencibility.

2. Proof of Theorem 1.1

As mentioned in Section 1, we first prove Theorem 1.2.

Proof of Theorem 1.2. Let G be a multigraph of order n and write V(G) = {v1, v2, . . . , vn}, and let M be a subset

of V(G)(2) such that M is a matching. Let m = |M| for convenience, and let k be an integer with k ≤
⌈

m
2

⌉

.

Suppose that ms(G) ≥ k, and we show that G∗ = G+M also satisfies ms(G∗) ≥ k. We may assume that k ≥ 2.
Since ms(G) ≥ k, it follows that G has a map 1with sequential k-matching. Note that

{

1(1), 1(2), . . . , 1(k)
}

is a matching of G. (1)

So, without loss of generality, we may assume that

1(s) = v2s−1v2s for 1 ≤ s ≤ k. (2)

For each edge e = viv j ∈M, we further define imin(e) = min{i, j}.
We now define the map f : N|E(G∗)| → E(G∗) by the following procedure.

(I) Assign integers 1, 2, . . . ,m to edges of M so that (1 ≤ ) imin([ 1 ]) < imin([ 2 ]) < · · · < imin([ m − 1 ]) <
imin([ m ]) (note that we can actually assign integers to M in this way because M is a matching).

(II) Assign integers m + 1,m + 2, . . . ,m + |E(G)| to edges of G∗ − M (= G) so that [ m + r ] = 1(r) for
1 ≤ r ≤ |E(G)|.
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Since 1 is a bijection from N|E(G)| to E(G), it follows from (I) and (II) that f is also bijective. Thus, it suffices

to show that the set
{

[ l ], [ l + 1 ], . . . , [ l + k − 1 ]
}

forms a matching of G∗ for each l with l ∈ N|E(G∗)|−k+1.

Since 1 is a map with sequential k-matching of G, the set
{

1(r), 1(r + 1), . . . , 1(r + k − 1)
}

is a matching of G

for r ∈ N|E(G)|−k+1. Hence by (II), we see that
{

[ l ], [ l + 1 ], . . . , [ l + k − 1 ]
}

also forms a matching of G∗ for

m + 1 ≤ l ≤ |E(G∗)| − k + 1.

We next show that
{

[ l ], [ l+ 1 ], . . . , [ l+ k− 1 ]
}

forms a matching of G∗ for 1 ≤ l ≤ m. Let l be an arbitrary

integer with 1 ≤ l ≤ m. Since M =
{

[ 1 ], [ 2 ], . . . , [ m ]
}

by (I), if l ≤ m− k+ 1, then
{

[ l ], [ l+ 1 ], . . . , [ l+ k− 1 ]
}

is clearly a matching of G∗. Thus we may assume that l ≥ m − k + 2. Since l ≤ imin([ l ]) < · · · < imin([ m ]) by
(I) (recall that imin(e) = min{i, j} for e = viv j ∈M), it follows that

{

[ l ], [ l + 1 ], . . . , [ m ]
}

is a matching of G∗
[

{vi : l ≤ i ≤ n}
]

.

On the other hand, by (1), (2) and (II), it follows that

{

[ m + 1 ], [ m + 2 ], . . . , [ m + ε ]
}

is a matching of G∗
[

{vi : 1 ≤ i ≤ l − 1}
]

,

where we let ε = min
{

k,
⌊

l−1
2

⌋}

. So, if we can show that (m − l + 1) + ε ≥ k, our result follows. Hence it is

sufficient to show that ε+m− l+ 1− k ≥ 0. If ε = k, then obviously ε+m− l+ 1− k ≥ 0 holds because l ≤ m.

Thus we may assume that ε =
⌊

l−1
2

⌋

. If l ≤ m − 1, then

⌊ l − 1

2

⌋

+m − l + 1 − k ≥
⌊ l − 1

2

⌋

+m − l + 1 −
⌈m

2

⌉

≥
l − 2

2
+m − l + 1 −

m + 1

2
=

m − l − 1

2
≥ 0;

if l = m and l is even, then

⌊ l − 1

2

⌋

+m − l + 1 − k =
l − 2

2
+ 1 − k ≥

l − 2

2
+ 1 −

⌈ l

2

⌉

=
l − 2

2
+ 1 −

l

2
= 0;

if l = m and l is odd, then

⌊ l − 1

2

⌋

+m − l + 1 − k =
l − 1

2
+ 1 − k ≥

l − 1

2
+ 1 −

⌈ l

2

⌉

=
l − 1

2
+ 1 −

l + 1

2
= 0.

Thus the inequality ε +m − l + 1 − k ≥ 0 holds.
This completes the proof of Theorem 1.2.

To complete the proof of Theorem 1.1, we further use the lemma concerning the equitable edge-coloring.
Werra [15] and independently, McDiarmid [11] proved that if a multigraph G has an l-edge-coloring, then G

also has an equitable l-edge-coloring, i.e., l-edge-coloring such that each color class has size
⌊

|E(G)|
l

⌋

or
⌈

|E(G)|
l

⌉

.

(Note that “edge-coloring (vertex-)” always means “proper edge-coloring (proper vertex-)” in this paper.)
On the other hand, Vizing [14] proved that every graph G has a (∆(G) + 1)-edge-coloring, which is a well
known theorem in Graph Theory. Combining this two results, we can get the following. (We actually use
only the fact that every graph G has a (∆(G) + 1)-edge-coloring in which each color class has size at least
⌊

|E(G)|
∆(G)+1

⌋

, see the proof of Theorem 1.1.)

Lemma 2.1. Every graph G of maximum degree ∆ has an equitable (∆ + 1)-edge-coloring.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let G be a graph of size q and maximum degree ∆ ≥ 2. We first show the right side
inequality.
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Let f be a map with sequential ms(G)-matching in G, and let e1, . . . , e∆ be distinct ∆ edges which are
incident to the vertex with maximum degree of G. We may assume that [ e1 ]−1 < [ e2 ]−1 < · · · < [ e∆ ]−1, where

[ ei ]−1 = f−1(ei) for 1 ≤ i ≤ ∆. Since
{

[ l ], [ l+1 ], . . . , [ l+ms(G)−1 ]
}

forms a matching of G for l ∈ Nq−ms(G)+1, it

follows that [ ei+1 ]−1−[ ei ]−1 ≥ ms(G) for 1 ≤ i ≤ ∆−1. Thus q ≥
∑

1≤i≤∆−1([ ei+1 ]−1−[ ei ]−1)+1 ≥ ms(G)(∆−1)+1,

that is, ms(G) ≤
⌊

q−1

∆−1

⌋

.

We next show the left side inequality. By Lemma 2.1, there exists a partition {M1, . . . ,M∆+1} of E(G) such

that each Mi is a matching of cardinality at least
⌊

q

∆+1

⌋

. We may assume that |M1| ≥ |M2| ≥ · · · ≥ |M∆+1|.

Let G1 be a graph such that V(G1) = V(G) and E(G1) = M1, and let Gi = Gi−1 +Mi for 2 ≤ i ≤ ∆ + 1. Since
|M1| ≥ |M2| ≥ · · · ≥ |M∆+1|, we easily see that the following holds.

(I) If ms(Gi−1) ≥ 1
2 |Mi−1|, then ms(Gi−1) ≥ 1

2 |Mi| (2 ≤ i ≤ ∆ + 1).

Since M1, . . . ,M∆+1 are matchings of G, it follows from the definition of G1, . . . ,G∆+1 and Theorem 1.2 that
the following hold.

(II) ms(G1) = |M1| ≥
1
2 |M1|.

(III) If ms(Gi−1) ≥ 1
2 |Mi|, then ms(Gi) = ms(Gi−1 +Mi) ≥

1
2 |Mi| (2 ≤ i ≤ ∆ + 1).

Thus, by applying (II), and (I), (III) inductively, we can get (ms(G) =) ms(G∆+1) ≥ 1
2 |M∆+1|. Since |M∆+1| ≥

⌊

q

∆+1

⌋

, we have ms(G) ≥ 1
2

⌊

q

∆+1

⌋

.

This completes the proof of Theorem 1.1.

Remark 2.2. Note that by a theorem of Vizing [14], the edge chromatic number of a graph G, denoted by χ′(G), is
∆(G) or ∆(G) + 1. Hence by the same argument as in the proof of Theorem 1.1, we can actually show that if a graph

G is Class 1 (i.e., χ′(G) = ∆(G)), then ms(G) ≥ 1
2

⌊

|E(G)|
∆(G)

⌋

; if a graph G is Class 2 (i.e., χ′(G) = ∆(G) + 1), then

ms(G) ≥ 1
2

⌊

|E(G)|
∆(G)+1

⌋

. (However, determining whether a graph is Class 1 or Class 2 is NP-complete [9].) For example,

if G is a 1-factorizable graph, that is, G is a regular Class 1 graph, then ms(G) ≥ 1
2

⌊

|E(G)|
∆(G)

⌋

= 1
2 ×

|V(G)|
2 = 1

2 m(G)

holds (recall that m(G) denotes the matching number of G). In the next section, we focus on the relation between the
matching sequencibility and the matching number for regular graphs.

3. The Matching Sequencibility and the Matching Number of Regular Graphs

In this section, we improve Theorem 1.1 for 2-regular graphs and 3-regular graphs with an additional
condition.

A perfect matching of a graph G is a matching whose edges cover all the vertices of G. A graph is even
(resp., odd) if it has even order (resp., odd order). A graph is said to be d-regular if every vertex has degree d.

As a corollary of Theorem 1.1, we can easily obtain the relationship between ms(G) and m(G) for a
regular graph G.

Corollary 3.1. For d ≥ 2, every d-regular graph G of order n satisfies

ms(G) ≥
1

2

⌊

d

d + 1
×

n

2

⌋ (

≥
1

2

⌊

d

d + 1
×m(G)

⌋)

.

Note that, in 2007, Henning and Yeo gave a tight lower bound on the matching number for d-regular
graphs on n vertices (see [8]).

In fact, we can completely determine the matching sequencibility of 2-regular graphs. Here, for a graph
G, if G contains an even component of order at least 4, then we let γ(G) = 1; otherwise, let γ(G) = 0.

Proposition 3.2. If G is a 2-regular multigraph, then G satisfies ms(G) = m(G) − γ(G).
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Using Theorem 1.2 and Proposition 3.2, we can also obtain the better lower bound than the one of
Corollary 3.1 for 3-regular graphs having perfect matchings (we can obtain the same relation as the case of
1-factorizable graphs, see Remark 2.2 in Section 2).

Corollary 3.3. If G is a 3-regular multigraph which has a perfect matching, then the graph G satisfies ms(G) ≥
1
2 m(G).

By Corollary 3.3 and the well known theorem of Petersen [12] concerning the existence of a perfect
matching in 3-regular graphs, every bridgeless 3-regular graph satisfies ms(G) ≥ 1

2 m(G).

In the rest of this section, we prove Proposition 3.2 and Corollary 3.3. To do that, we prepare the
following notation. Let C be a cycle with a fixed orientation. For an edge e in C, we denote by e+ and e− the
successor and the predecessor of e on C, and we let e+2 = (e+)+.

Proof of Proposition 3.2. Let G be a 2-regular multigraph. In this proof, we consider that every component
(cycle) has a fixed orientation. Note that every maximum matching of G covers all the vertices of each even
cycle of order at least 4 (if G contains it), and this implies that ms(G) ≤ m(G)−γ(G). Thus it suffices to show
that ms(G) ≥ m(G) − γ(G).

Let M be a maximum matching of G, and let m = |M|. Let mo (resp., me) be the number of edges
which belong to M in odd cycles (resp., even cycles). Moreover, let M1,M2, . . . ,Mo(G) be pairwise disjoint
subsets of M such that each Mi is a maximum matching of some odd cycle (here for a graph H, o(H)
denotes the number of odd components of H) and we denote each edge of Mi by the following ordered pair:
Mi = {(1, i), (2, i), (3, i), . . . , (|Mi|, i)}, where ( j, i)+2 = ( j + 1, i) for 1 ≤ j ≤ |Mi| − 1. Now we define the bijection
f : N|E(G)| → E(G) by the following procedure.

(I) Assign integers 1, 2, . . . ,mo to M in odd cycles so that {[ 1 ], [ 2 ], . . . , [ mo ]} = M1 ∪ · · · ∪Mo(G) and
[ 1 ], [ 2 ], . . . , [ mo ] appear in lexicographic order.

(II) Take any edge which belongs to M in any even cycle, and go around the cycle assigning integers to
edges of M, and repeat this until integers have been assigned to all edges of M in each even cycle.
(Note that we assigned integers 1, 2, . . . ,m to all edges of M at this stage.)

(III) Assign integers m + 1,m + 2, . . . ,m + mo to edges of E(G) \M in odd cycles so that [ m + r ] =
(

[ r ]
)−

for 1 ≤ r ≤ mo.
(IV) Assign integers m+mo+ 1,m+mo+ 2, . . . , 2m to edges of E(G) \M in even cycles so that [ m+mo+ r ] =

(

[ mo + r ]
)+

for 1 ≤ r ≤ me.

(V) Assign integers 2m+1, 2m+2, . . . , 2m+o(G) to edges of E(G)\M in odd cycles so that [ 2m+r ] =
(

[ m+r ]
)−

for 1 ≤ r ≤ o(G).

This is illustrated in Figure 1. Let e ∈ E(G), and suppose first that e is an edge of M in some odd cycle. Then
by (I), (III) and (V), we have

∣

∣

∣[ e+ ]−1 − [ e ]−1
∣

∣

∣ >
∣

∣

∣[ e− ]−1 − [ e ]−1
∣

∣

∣ = m ≥ m(G) − γ(G).

Suppose next that e is an edge of M in some even cycle. Then by (II) and (IV), if e is the first edge in the
even cycle, then

∣

∣

∣[ e− ]−1 − [ e ]−1
∣

∣

∣ ≥
∣

∣

∣[ e+ ]−1 − [ e ]−1
∣

∣

∣ = m ≥ m(G) − γ(G);

otherwise (note that, in this case, γ(G) = 1),
∣

∣

∣[ e+ ]−1 − [ e ]−1
∣

∣

∣ >
∣

∣

∣[ e− ]−1 − [ e ]−1
∣

∣

∣ = m − 1 = m(G) − γ(G).

Suppose finally that e is an edge in some odd cycle such that e, e+ < M (i.e., [ e ]−1 = 2m + r for some r with
1 ≤ r ≤ o(G)). Then by (I) and (V), we have

∣

∣

∣[ e− ]−1 − [ e ]−1
∣

∣

∣ >
∣

∣

∣[ e+ ]−1 − [ e ]−1
∣

∣

∣ = m ≥ m(G) − γ(G).



S. Chiba, Y. Nakano / Filomat 30:8 (2016), 2091–2099 2096

[ 3 ] = (1, 3)
[ 2 ] = (1, 2)

[ 4 ] = (2, 1) [ 5 ] = (2, 2)

[ 6 ] = (2, 3)

[ 7 ] = (3, 3)

[ 8 ] [ 9 ] [ 10 ] [ 11 ]

[ 12 ]

[ 15 ]
[ 17 ] [ 18 ]

[ 19 ]

[ 20 ]

[ 14 ]

[ 21 ]

[ 22 ]

M

M1

(I), (II)

M2

M3

(III), (IV)

[ 13 ]

[ 16 ]

[ 23 ]

[ 25 ]
(V)

[ 24 ]

[ 1 ] = (1, 1)

Figure 1: The definition of the map in the 2-regular graph G

This implies that for any two adjacent edges e1 and e2 in G, the inequality
∣

∣

∣[ e1 ]−1 − [ e2 ]−1
∣

∣

∣ ≥ m(G) − γ(G)
holds. Thus f is a map with sequential (m(G) − γ(G))-matching of G.

Proof of Corollary 3.3. Let G be a 3-regular multigraph of order 2n which has a perfect matching M. Then, since
H = G−M is a spanning 2-regular subgraph of G, it follows from Proposition 3.2 that ms(H) = m(H)−γ(H) =
2n−o(H)−2γ(H)

2 . Hence by Theorem 1.2, it suffices to show that
2n−o(H)−2γ(H)

2 ≥ n
2 (because if it is true, then by

Theorem 1.2, ms(G) = ms(H +M) ≥ n
2 =

1
2 |M|). Suppose first that γ(H) = 0 (i.e., H contains no even cycle of

order at least 4). Then, since o(H) ≤ 2n
3 , it follows that

2n−o(H)−2γ(H)

2 − n
2 =

n−o(H)
2 ≥

n−(2n/3)
2 > 0. Suppose next

that γ(H) = 1 (i.e., H contains an even cycle of order at least 4). Then, since o(H) ≤ 2n−4
3 and n ≥ 2, it follows

that
2n−o(H)−2γ(H)

2 − n
2 =

n−o(H)−2
2 ≥

n−

(

(2n−4)/3

)

−2

2 = n−2
6 ≥ 0. Thus the inequality

2n−o(H)−2γ(H)

2 ≥ n
2 holds.

4. The Matching Sequencibility and the kth Power of Hamilton Paths in Graphs

In this section, we discuss the relationship between the matching sequencibility and Seymour’s conjec-
ture [13] concerning the existence of the kth power of a Hamilton cycle.

Let P be a path (or a cycle). The kth power of P is the graph obtained from P by joining every pair of
vertices with distance at most k in P. We call the 2nd power of P a square-path (-cycle).

A well known theorem of Dirac [4] states that if H is a graph on n vertices with δ(H) ≥ n
2 , then G contains

a Hamilton cycle, where δ(H) denotes the minimum degree of H. In 1963, Posá conjectured that if H is
a graph on n vertices with δ(H) ≥ 2

3 n, then H contains a Hamilton square-cycle (see Erdős [5]). In 1973,
Seymour [13] proposed the more general conjecture as follows.

Conjecture 4.1 (Seymour [13]). Let k, n be integers with k ≥ 2 and n ≥ 3. If H is a graph of order n such that

δ(H) ≥
(k−1)n

k , then H contains the (k − 1)th power of a Hamilton cycle.

The motivation for Conjecture 4.1 comes from the conjecture of Erdős [5] stating that every graph G on
n vertices with ∆(G) ≤ r has an equitable (r + 1)-vertex-coloring. This Erdős’ conjecture has been already
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settled by Hajnal and Szemerédi [7]. In fact, Hajnal and Szemerédi showed that the minimum degree
condition of Conjecture 4.1 guarantees the existence of a spanning subgraph in which each component is
isomorphic to the complete graph Kk for graphs of order divisible by k, and it follows from the result that
Erdős’ conjecture is true (see [7] for more details). However, Conjecture 4.1 is still open (it is known that
Conjecture 4.1 is true for sufficiently large graphs, see [10] for more details).

On the other hand, by the definitions of the matching sequencibility and the k-th power of a Hamilton

path, we can easily get the following relation. Here, for a graph G, we denote by L(G) and G a line graph
and a complement of G, respectively. A vertex subset of a graph G is called an independent vertex set of G if
no two vertices in the set are adjacent.

Lemma 4.2. Let G be a graph. Then ms(G) ≥ k if and only if L(G) contains the (k − 1)th power of a Hamilton path.

Proof of Lemma 4.2. Since E(G) = V(L(G)), it follows from the definition of the matching sequencibility that

ms(G) ≥ k if and only if there exists a bijection f ′ : N|V(L(G))| → V(L(G)) such that
{

f ′(l), . . . , f ′(l+ k− 1)
}

is an

independent vertex set of L(G) for 1 ≤ l ≤ |V(L(G))| − k+ 1, that is, L(G)
[

{ f ′(l), . . . , f ′(l+ k− 1)}
]

is isomorphic

to a complete graph of order k for 1 ≤ l ≤ |V(L(G))| − k + 1, which is true if and only if the (k− 1)th power of

f ′(1) f ′(2) . . . f ′(|V(L(G))|) is contained in L(G).

Now we propose the following conjecture, which is a sufficient condition to guarantee that the graph G
satisfies ms(G) ≥ k. An edge-degree of an edge e in a graph G is defined as the number of edges adjacent with
e in G. Hence the edge-degree of e in G corresponds to the vertex-degree of e in its line graph. We denote
by ∆′(G) the maximum edge-degree of G.

Conjecture 4.3. Let k, q be integers with q ≥ k ≥ 2. If G is a graph of size q such that ∆′(G) ≤
q+1

k − 1, then
ms(G) ≥ k.

By using Lemma 4.2, we show that the above conjecture is related to the following “Hamilton path
version” of Conjecture 4.1 (Conjectures 4.4 and 4.5). Note that Conjecture 4.4 implies Conjecture 4.5. Note

also that Conjecture 4.1 implies Conjecture 4.4 because if H is a graph of order n such that δ(H) ≥
(k−1)n−1

k ,
then the graph H∗ obtained from H by adding a new vertex v and joining v to all vertices in H satisfies

|V(H∗)| = n+ 1 and δ(H∗) ≥
(k−1)(n+1)

k , and further if H∗ contains the (k− 1)th power of a Hamilton cycle, then
H∗ − v contains the (k − 1)th power of a Hamilton path.

Conjecture 4.4. Let k, n be integers with n ≥ k ≥ 2. If H is a graph of order n such that δ(H) ≥
(k−1)n−1

k , then H
contains the (k − 1)th power of a Hamilton path.

Conjecture 4.5. Let k, n be integers with n ≥ k ≥ 2. If H is a graph of order n such that H = L(G) for some graph

G, and δ(H) ≥
(k−1)n−1

k , then H contains the (k − 1)th power of a Hamilton path.

Proposition 4.6. Conjectures 4.3 and 4.5 are equivalent.

Proof of Proposition 4.6. By the relationship between a graph and its line graph, |E(G)| = |V(L(G))| (= |V(L(G))|)
and∆′(G) = ∆(L(G)) hold for a graph G. Moreover, by the relationship between a graph and its complement,

δ(G)+∆(G)+ 1 = |V(G)| holds for a graph G. This in particular implies that for a graph G, ∆′(G) ≤
|E(G)|+1

k − 1

if and only if δ(L(G)) ≥
(k−1)|V(L(G))|−1

k . Combining this with Lemma 4.2, we can easily see that Conjectures
4.3 and 4.5 are equivalent.

We now see the following situation:

Conjecture 4.1 ==⇒ Conjecture 4.4 ==⇒ Conjecture 4.5
Proposition 4.6
⇐========⇒ Conjecture 4.3
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It is known that Conjecture 4.4 is true for k = 3 by Fan and Kierstead [6]. Combining this with Dirac’s
result [4] (every graph on n vertices with minimum degree at least n−1

2 has a Hamilton path), we see that
Conjecture 4.3 is also true for k = 2, 3. Moreover, as mentioned in the paragraph following Conjecture 4.1,
Komlós, Sárközy and Szemerédi [10] proved that for any integer k ≥ 2 and a real number ε > 0, there is a

constant n0 = n0(k, ε) such that, if H is a graph of order n ≥ n0 with δ(H) ≥
(

k−1
k + ε

)

n, then H contains the

(k− 1)th power of a Hamilton cycle. Hence by the same argument as in the proof of Proposition 4.6, we see
that the following holds.

Corollary 4.7. For any integer k ≥ 2 and a real number ε > 0, there is a constant q0 = q0(k, ε) such that, if G is a

graph of size q ≥ q0 such that ∆′(G) ≤
(

1
k − ε

)

q − 1, then ms(G) ≥ k.

Proof of Corollary 4.7. Let k be an integer with k ≥ 2 and ε be a real number with ε > 0. Then by the result of
Komlós et al. [10], there is a constant q0 = q0(k, ε) such that,

if H is a graph of order q ≥ q0 such that δ(H) ≥
(

k−1
k + ε

)

q,

then H contains the (k − 1)th power of a Hamilton cycle.
(3)

Let G be a graph of size q ≥ q0 such that ∆′(G) ≤
(

1
k − ε

)

q − 1. Then H = L(G) is a graph of order q such that

δ(H) = δ(L(G)) = |V(L(G))| − (∆(L(G)) + 1) = q − (∆′(G) + 1) ≥ q −
(

1
k − ε

)

q =
(

k−1
k + ε

)

q. Therefore by (3), H

contains the (k − 1)th power of a Hamilton cycle, and hence by Lemma 4.2, we have ms(G) ≥ k.

Finally, we state Conjecture 4.3 in the version of analogue of Theorem 1.1.

Conjecture 4.8. Every graph G of size q and maximum edge-degree ∆′ (≥ 1) satisfies

ms(G) ≥
⌊ q + 1

∆′ + 1

⌋

.

Note that for any positive integers ∆′ and q, ∆′ =
(

∆′+1
q+1

)

(q + 1) − 1 ≤
q+1

⌊
q+1

∆′+1
⌋
− 1 holds, and this implies

that any graph G of size q and maximum edge-degree ∆′ satisfies ms(G) ≥
⌊

q+1

∆′+1

⌋

if Conjecture 4.3 is true.

Therefore, Conjecture 4.3 implies Conjecture 4.8. On the other hand, if ∆′ ≤
q+1

k − 1, then q + 1 ≥ k(∆′ + 1)
holds, and hence it is easy to see that Conjecture 4.8 implies Conjecture 4.3. Combining this with Proposition
4.6, we get the following relation.

Proposition 4.9. Conjectures 4.3, 4.5 and 4.8 are all equivalent.

In Conjecture 4.8, the lower bound is best possible in the following sense if it’s true. Let k, t be integers
with k ≥ 2 and t ≥ 1, and let G = kK1,t+1, i.e., G is the union of k vertex-disjoint copies of the complete bipartite

graph K1,t+1. Then ∆′(G) = t and |E(G)| = k(t + 1), and it is easy to see that ms(G) = k =
⌊

k(t+1)+1
t+1

⌋

=
⌊

|E(G)|+1
∆′(G)+1

⌋

.

Since ∆(G) − 1 ≤ ∆′(G) ≤ 2∆(G) − 2 for a graph G, the lower bound of Theorem 1.1 is close to that of
Conjecture 4.8 as ∆′(G) approaches to 2∆(G) − 2 (e.g., it is closest for regular graphs), and see also Table 1.

∆′ = ∆ − 1 ∆′ = ∆ · · · ∆′ = 2∆ − 3 ∆′ = 2∆ − 2

Theorem 1.1 ms(G) ≥ 1
2

⌊

q
∆+1

⌋

ms(G) ≥ 1
2

⌊

q
∆+1

⌋

· · · ms(G) ≥ 1
2

⌊

q
∆+1

⌋

ms(G) ≥ 1
2

⌊

q
∆+1

⌋

Conjecture 4.8 ms(G) ≥
⌊

q+1
∆

⌋

ms(G) ≥
⌊

q+1
∆+1

⌋

· · · ms(G) ≥
⌊

q+1
2∆−2

⌋

ms(G) ≥
⌊

q+1
2∆−1

⌋

Table 1: Comparison of Theorem 1.1 and Conjecture 4.8
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