New Additive Results for the Generalized Drazin Inverse in a Banach Algebra

Xiaoji Liu ${ }^{\text {a }}$, Xiaolan Qin ${ }^{\text {b }}$, Julio Benítez ${ }^{\text {c }}$
${ }^{a}$ Corresponding author. Tel. +86-0771-3265356. Faculty of Science, Guangxi. University for Nationalities, Nanning 530006, P.R. China.
${ }^{b}$ Faculty of Science, Guangxi University for Nationalities, Nanning 530006, P.R. China.
${ }^{c}$ Instituto de Matemática Multidisciplinar, Universidad Politécnica de Valencia, Valencia, camino de Vera s/n, 46022, Spain.

Abstract

In this paper, we investigate additive properties of the generalized Drazin inverse in a Banach algebra \mathcal{A}. We find explicit expressions for the generalized Drazin inverse of the sum $a+b$, under new conditions on $a, b \in \mathcal{A}$.

1. Introduction

Let \mathcal{A} be a complex Banach algebra with the unit $\mathbb{1}$. By \mathcal{A}^{-1} and $\mathcal{A}^{\text {qnil }}$, we denote the sets of all invertible and quasinilpotent elements in \mathcal{A}, respectively. In a Banach algebra \mathcal{A}, an element $a \in \mathcal{A}$ is quasinilpotent when $\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{1 / n}=0$. Let us recall that the spectral radius of $b \in \mathcal{A}$ is given by $r(b)=\lim _{n \rightarrow \infty}\left\|b^{n}\right\|^{1 / n}$ (see e.g. [1, Ch. 1]) and it is satisfied that $r(b)=\max \{|\lambda|: \lambda \in \sigma(b)\}$, where $\sigma(b)$ is the spectrum of b, i.e., the set composed of complex numbers λ such that $b-\lambda \mathbb{1}$ is not invertible.

Let us recall that a generalized Drazin inverse of $a \in \mathcal{A}$ (introduced by Koliha in [8]) is an element $x \in \mathcal{A}$ which satisfies

$$
\begin{equation*}
x a x=x, \quad a x=x a, \quad a-a^{2} x \in \mathcal{A}^{\text {qnil }} \tag{1}
\end{equation*}
$$

It can be proved that for $a \in \mathcal{A}$ the set of $x \in \mathcal{A}$ satisfying (1) is empty or a singleton ([8]). If this set is a singleton, then we say that a is generalized Drazin invertible and x is denoted by a^{d}. The set \mathcal{A}^{d} consits of all $a \in \mathcal{A}$ such that a^{d} exists. For interesting properties of the generalized Drazin inverse see [2,4,9-11]. For a complete treatment of the generalized Drazin inverse, see [7, Ch. 2].

Let $a \in \mathcal{A}$ and let $p \in \mathcal{A}$ be an idempotent. We denote $\bar{p}=\mathbb{1}-p$. Then we can write

$$
a=p a p+p a \bar{p}+\bar{p} a p+\bar{p} a \bar{p}
$$

Every idempotent $p \in \mathcal{A}$ induces a representation of an arbitrary element $a \in \mathcal{A}$ given by the following matrix:

$$
a=\left[\begin{array}{cc}
p a p & p a \bar{p} \\
\bar{p} a p & \bar{p} a \bar{p}
\end{array}\right]_{p} .
$$

[^0]Let $a \in \mathcal{A}^{d}$ and $a^{\pi}=\mathbb{1}-a a^{d}$ be the spectral idempotent of a corresponding to 0 . It is well known that $a \in \mathcal{A}$ can be represented in the following matrix form ([7, Ch. 2])

$$
a=\left[\begin{array}{cc}
a_{1} & 0 \tag{2}\\
0 & a_{2}
\end{array}\right]_{p},
$$

where $p=a a^{d}, a_{1}$ is invertible in the algebra $p \mathcal{A} p, a^{d}$ is its inverse in $p \mathcal{A} p$, and a_{2} is quasinilpotent in the algebra $\bar{p} \mathcal{A} \bar{p}$. Thus, the generalized Drazin inverse of a can be expressed as

$$
a^{d}=\left[\begin{array}{cc}
a^{d} & 0 \\
0 & 0
\end{array}\right]_{p} .
$$

Obviously, if $a \in \mathcal{A}^{q n i l}$, then a is generalized Drazin invertible and $a^{d}=0$.
The motivation for this article is $[3,5,6]$. In these papers, the authors considered some conditions on $a, b \in \mathcal{A}$ that allowed them to express $(a+b)^{d}$ in terms of a, a^{d}, b, b^{d}. Our aim in this paper is to investigate the existence of the generalized Drazin inverse of the sum $a+b$ and to give explicit expression for $(a+b)^{d}$ under new conditions.

2. Main Results

A preliminary result witch will be used is the following:
Theorem 2.1. [3, Theorem 2.3] Let \mathcal{A} be a Banach algebra, $x, y \in \mathcal{A}$, and $p \in \mathcal{A}$ be an idempotent. Assume that x and y are represented as

$$
x=\left[\begin{array}{ll}
a & 0 \\
c & b
\end{array}\right]_{p}, \quad y=\left[\begin{array}{ll}
b & c \\
0 & a
\end{array}\right]_{\bar{p}} .
$$

(i) If $a \in(p \mathcal{A} p)^{d}$ and $b \in(\bar{p} \mathcal{A} \bar{p})^{d}$, then x and y are generalized Drazin invertible, and

$$
x^{d}=\left[\begin{array}{cc}
a^{d} & 0 \tag{3}\\
u & b^{d}
\end{array}\right]_{p}, \quad y^{d}=\left[\begin{array}{cc}
b^{d} & u \\
0 & a^{d}
\end{array}\right]_{\bar{p}},
$$

where

$$
\begin{equation*}
u=\sum_{n=0}^{\infty}\left(b^{d}\right)^{n+2} c a^{n} a^{\pi}+\sum_{n=0}^{\infty} b^{\pi} b^{n} c\left(a^{d}\right)^{n+2}-b^{d} c a^{d} \tag{4}
\end{equation*}
$$

(ii) If $x \in \mathcal{A}^{d}$ and $a \in(p \mathcal{A} p)^{d}$, then $b \in(\bar{p} \mathcal{A} \bar{p})^{d}$, and x^{d} and y^{d} are given by (3) and (4).

Theorem 2.2. [3, Corollary 3.4] Let \mathcal{A} be a Banach algebra, $b \in \mathcal{A}^{d}, a \in \mathcal{A}^{\text {qnil }}$, and let $a b=0$. Then $a+b \in \mathcal{A}^{d}$ and

$$
(a+b)^{d}=\sum_{n=0}^{\infty}\left(b^{d}\right)^{n+1} a^{n}
$$

The conditions $a^{\pi} b=b$ and $a b a^{\pi}=0$ were used in [3, Theorem 4.1] to derive an expression of $(a+b)^{d}$. In Theorem 2.3, we will only use the condition $a b a^{\pi}=0$.

Theorem 2.3. Let \mathcal{A} be a Banach algebra and let $a, b \in \mathcal{A}^{d}$ such that $a b a^{\pi}=0$ and $a a^{d} b a a^{d} \in \mathcal{A}^{d}$. Then $a+b \in \mathcal{A}^{d}$ if and only if $w=a a^{d}(a+b) \in \mathcal{A}^{d}$. In this case,

$$
\begin{aligned}
(a+b)^{d}= & w^{d}+\sum_{n=0}^{\infty}\left(b^{d}\right)^{n+1} a^{n} a^{\pi}-\sum_{n=0}^{\infty}\left(b^{d}\right)^{n+1} a^{n} a^{\pi} b w^{d} \\
& +\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\infty}\left(b^{d}\right)^{n+k+2} a^{k}\right) a^{\pi} b w^{n} w^{\pi}+b^{\pi} \sum_{n=0}^{\infty}(a+b)^{n} a^{\pi} b\left(w^{d}\right)^{n+2} \\
& -\sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left(b^{d}\right)^{k+1} a^{k+1}(a+b)^{n} a^{\pi} b\left(w^{d}\right)^{n+2} .
\end{aligned}
$$

Proof. Let $p=a a^{d}$. We can represent a as in (2), where a_{1} is invertible in the subalgebra $p \mathcal{A} p$ and a_{2} is quasinilpotent. Hence,

$$
a^{d}=\left[\begin{array}{cc}
a^{d} & 0 \tag{5}\\
0 & 0
\end{array}\right]_{p} .
$$

Let us write

$$
b=\left[\begin{array}{ll}
b_{1} & b_{2} \tag{6}\\
b_{3} & b_{4}
\end{array}\right]_{p}
$$

From $a b a^{\pi}=0$ we have

$$
0=a b a^{\pi}=\left[\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right]_{p}\left[\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right]_{p}\left[\begin{array}{cc}
0 & 0 \\
0 & a^{\pi}
\end{array}\right]_{p}=\left[\begin{array}{cc}
0 & a_{1} b_{2} \\
0 & a_{2} b_{4}
\end{array}\right]_{p}
$$

Therefore, $a_{1} b_{2}=0$ and $a_{2} b_{4}=0$. Since a_{1} is invertible in $p \mathcal{A} p$ and $b_{2} \in p \mathcal{A}$, we get $b_{2}=0$. Hence

$$
b=\left[\begin{array}{cc}
b_{1} & 0 \\
b_{3} & b_{4}
\end{array}\right]_{p}, \quad a+b=\left[\begin{array}{cc}
a_{1}+b_{1} & 0 \\
b_{3} & a_{2}+b_{4}
\end{array}\right]_{p}
$$

Observe that $w=a a^{d}(a+b)=a_{1}+b_{1}$.
Since $b \in \mathcal{A}^{d}$ and the hypothesis on $b_{1}=a a^{d} b a a^{d}$, by Theorem 2.1 we get that $b_{4} \in \mathcal{A}^{d}$. By using the quasinilpotency of a_{2} and $a_{2} b_{4}=0$, Theorem 2.2 leads to $a_{2}+b_{4} \in \mathcal{A}^{d}$ and

$$
\left(a_{2}+b_{4}\right)^{d}=\sum_{n=0}^{\infty}\left(b_{4}^{d}\right)^{n+1} a_{2}^{n}
$$

Thus, by Theorem 2.1, $a+b$ is generalized Drazin invertible if and only if $w=a_{1}+b_{1}$ is generalized Drazin invertible. In this situation, we obtain

$$
(a+b)^{d}=\left[\begin{array}{cc}
w^{d} & 0 \\
u & \left(a_{2}+b_{4}\right)^{d}
\end{array}\right]_{p}=w^{d}+u+\left(a_{2}+b_{4}\right)^{d} .
$$

and

$$
u=\sum_{n=0}^{\infty}\left(\left(a_{2}+b_{4}\right)^{d}\right)^{n+2} b_{3} w^{n} w^{\pi}+\sum_{n=0}^{\infty}\left(a_{2}+b_{4}\right)^{\pi}\left(a_{2}+b_{4}\right)^{n} b_{3}\left(w^{d}\right)^{n+2}-\left(a_{2}+b_{4}\right)^{d} b_{3} w^{d}
$$

We have

$$
\left(b^{d}\right)^{n+1} a^{n} a^{\pi}=\left[\begin{array}{cc}
\left(b_{1}^{d}\right)^{n+1} & 0 \\
* & \left(b_{4}^{d}\right)^{n+1}
\end{array}\right]_{p}\left[\begin{array}{cc}
a_{1}^{n} & 0 \\
0 & a_{2}^{n}
\end{array}\right]_{p}\left[\begin{array}{cc}
0 & 0 \\
0 & a^{\pi}
\end{array}\right]_{p}=\left[\begin{array}{cc}
0 & 0 \\
0 & \left(b_{4}^{d}\right)^{n+1} a_{2}^{n}
\end{array}\right]_{p}=\left(b_{4}^{d}\right)^{n+1} a_{2}^{n}
$$

Also,

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(b^{d}\right)^{n+1} a^{n} a^{\pi} b w^{d} & =\sum_{n=0}^{\infty}\left(b_{4}^{d}\right)^{n+1} a_{2}^{n} b w^{d}=\left(a_{2}+b_{4}\right)^{d} b w^{d} \\
& =\left[\begin{array}{cc}
0 & 0 \\
0 & \left(a_{2}+b_{4}\right)^{d}
\end{array}\right]_{p}\left[\begin{array}{cc}
b_{1} & 0 \\
b_{3} & b_{4}
\end{array}\right]_{p}\left[\begin{array}{cc}
w^{d} & 0 \\
0 & 0
\end{array}\right]_{p}=\left(a_{2}+b_{4}\right)^{d} b_{3} w^{d}
\end{aligned}
$$

In a similar way, we get

$$
\begin{equation*}
a^{\pi} b w^{n} w^{\pi}=b_{3} w^{n} w^{\pi} \tag{7}
\end{equation*}
$$

Now, we will find an expression for $\left(a_{2}+b_{4}\right)^{\pi}$. To this end, we use $a_{2} b_{4}=0$. Let us recall that a_{2}, b_{4} are elements in the subalgebra $\bar{p} \mathcal{A} \bar{p}$, where $\bar{p}=\mathbb{1}-p=\mathbb{1}-a a^{d}=a^{\pi}$.

$$
\begin{aligned}
\left(a_{2}+b_{4}\right)^{\pi} & =a^{\pi}-\left(a_{2}+b_{4}\right)\left(a_{2}+b_{4}\right)^{d}=a^{\pi}-\left(a_{2}+b_{4}\right)\left[b_{4}^{d}+\left(b_{4}^{d}\right)^{2} a_{2}+\left(b_{4}^{d}\right)^{3} a_{2}^{2}+\cdots\right] \\
& =a^{\pi}-\left[b_{4} b_{4}^{d}+b_{4}\left(b_{4}^{d}\right)^{2} a_{2}+b_{4}\left(b_{4}^{d}\right)^{3} a_{2}^{2}+\cdots\right]=b_{4}^{\pi}-\left[b_{4}^{d} a_{2}+\left(b_{4}^{d}\right)^{2} a_{2}^{2}+\cdots\right]
\end{aligned}
$$

and so,

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(a_{2}+b_{4}\right)^{\pi}\left(a_{2}+b_{4}\right)^{n} b_{3}\left(w^{d}\right)^{n+2} \\
& \quad=b_{4}^{\pi} \sum_{n=0}^{\infty}\left(a_{2}+b_{4}\right)^{n} b_{3}\left(w^{d}\right)^{n+2}-\sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left(b_{4}^{d}\right)^{k+1} a_{2}^{k+1}\left(a_{2}+b_{4}\right)^{n} b_{3}\left(w^{d}\right)^{n+2}
\end{aligned}
$$

One gets

$$
\left(a_{2}+b_{4}\right)^{n} b_{3}\left(w^{d}\right)^{n+2}=(a+b)^{n} a^{\pi} b\left(w^{d}\right)^{n+2}
$$

and

$$
\left(b_{4}^{d}\right)^{k+1} a_{2}^{k+1}\left(a_{2}+b_{4}\right)^{n} b_{3}\left(w^{d}\right)^{n+2}=\left(b^{d}\right)^{k+1} a^{k+1}(a+b)^{n} a^{\pi} b\left(w^{d}\right)^{n+2}
$$

Finally, let us observe that the expression $\left(\sum_{k=0}^{\infty}\left(b^{d}\right)^{k+1} a^{k}\right)^{n+2}$ can be simplified. In effect, since

$$
\left(\left(a_{2}+b_{4}\right)^{d}\right)^{n+2}=\sum_{k=0}^{\infty}\left(b_{4}^{d}\right)^{n+k+2} a_{2}^{k}
$$

we have that

$$
\left(\sum_{k=0}^{\infty}\left(b^{d}\right)^{k+1} a^{k}\right)^{n+2}=\sum_{k=0}^{\infty}\left(b^{d}\right)^{n+k+2} a^{k} a^{\pi}
$$

The proof is finished.
If \mathcal{A} is a Banach algebra, then we can define another multiplication in \mathcal{A} by $a \odot b=b a$. It is trivial that (\mathcal{A}, \odot) is a Banach algebra. If we apply Theorem 2.3 to this new algebra, we can immediately establish the following result.

Theorem 2.4. Let \mathcal{A} be a Banach algebra and let $a, b \in \mathcal{A}^{d}$ such that $a^{\pi} b a=0$ and $a^{\pi} b a^{\pi} \in \mathcal{A}^{d}$. Then $a+b$ is generalized Drazin invertible if and only if $v=(a+b) a a^{d}$ is generalized Drazin invertible. In this case,

$$
\begin{aligned}
(a+b)^{d}= & v^{d}+\sum_{n=0}^{\infty} a^{\pi} a^{n}\left(b^{d}\right)^{n+1}-\sum_{n=0}^{\infty} v^{d} b a^{\pi} a^{n}\left(b^{d}\right)^{n+1} \\
& +\sum_{n=0}^{\infty} v^{\pi} v^{n} b a^{\pi}\left(\sum_{k=0}^{\infty} a^{k}\left(b^{d}\right)^{n+k+2}\right)+\sum_{n=0}^{\infty}\left(v^{d}\right)^{n+2} b a^{\pi}(a+b)^{n} b^{\pi} \\
& -\sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left(v^{d}\right)^{n+2} b a^{\pi}(a+b)^{n} a^{k+1}\left(b^{d}\right)^{k+1} .
\end{aligned}
$$

The condition $a^{\pi} b=0$ is less general than $a^{\pi} b a=0$. But if $a, b \in \mathcal{A}$ satisfy $a^{\pi} b=0$, then the expression for $(a+b)^{d}$ is simpler than the preceding theorems,
Theorem 2.5. Let \mathcal{A} be a Banach algebra and let $a, b \in \mathcal{A}^{d}$ be such $a^{\pi} b=0$. If $w=a a^{d}(a+b) \in \mathcal{A}^{d}$, then $a+b \in \mathcal{A}^{d}$ and

$$
(a+b)^{d}=w^{d} a a^{d}+\sum_{n=0}^{\infty}\left(w^{d}\right)^{n+2} b a^{n} a^{\pi}
$$

If $v=(a+b) a a^{d} \in \mathcal{A}^{d}$, then $a+b \in \mathcal{A}^{d}$ and

$$
(a+b)^{d}=v^{d}+\sum_{n=0}^{\infty}\left(v^{d}\right)^{n+2} b a^{n} a^{\pi}
$$

Proof. Let us consider the matrix representations of a, a^{d}, and b given in (2), (5), and (6) relative to the idempotent $p=a a^{d}$. We will use the condition $a^{\pi} b=0$. Since

$$
a^{\pi} b=\left[\begin{array}{cc}
0 & 0 \\
0 & \bar{p}
\end{array}\right]_{p}\left[\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right]_{p}=\left[\begin{array}{cc}
0 & 0 \\
b_{3} & b_{4}
\end{array}\right]_{p}=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right]_{p},
$$

we obtain $b_{3}=b_{4}=0$. Hence we have

$$
a+b=\left[\begin{array}{cc}
a_{1}+b_{1} & b_{2} \\
0 & a_{2}
\end{array}\right]_{p}
$$

and

$$
w=a a^{d}(a+b)=\left[\begin{array}{ll}
p & 0 \tag{8}\\
0 & 0
\end{array}\right]_{p}\left[\begin{array}{cc}
a_{1}+b_{1} & b_{2} \\
0 & a_{2}
\end{array}\right]_{p}=\left[\begin{array}{cc}
a_{1}+b_{1} & b_{2} \\
0 & 0
\end{array}\right]_{p} .
$$

Assume that $w \in \mathcal{A}^{d}$. By Theorem 2.1, it follows that $(a+b)^{d}$ exists and

$$
(a+b)^{d}=\left[\begin{array}{cc}
\left(a_{1}+b_{1}\right)^{d} & u \tag{9}\\
0 & 0
\end{array}\right]_{p} \quad \text { and } \quad u=\sum_{n=0}^{\infty}\left(\left(a_{1}+b_{1}\right)^{d}\right)^{n+2} b_{2} a_{2}^{n}
$$

From (8) we have $w^{d} a a^{d}=\left(a_{1}+b_{1}\right)^{d}$ and

$$
\begin{aligned}
\left(w^{d}\right)^{n+2} b a^{n} a^{\pi} & =\left[\begin{array}{cc}
\left(\left(a_{1}+b_{1}\right)^{d}\right)^{n+2} & * \\
0 & 0
\end{array}\right]_{p}\left[\begin{array}{cc}
b_{1} & b_{2} \\
0 & 0
\end{array}\right]_{p}\left[\begin{array}{cc}
a_{1}^{n} & 0 \\
0 & a_{2}^{n}
\end{array}\right]_{p}\left[\begin{array}{cc}
0 & 0 \\
0 & \mathbb{1}-p
\end{array}\right]_{p} \\
& =\left[\begin{array}{cc}
0 & \left(\left(a_{1}+b_{1}\right)^{d}\right)^{n+2} \\
0 & b_{2} a_{2}^{n} \\
0 & 0
\end{array}\right]_{p} \\
& =\left(\left(a_{1}+b_{1}\right)^{d}\right)^{n+2} b_{2} a_{2}^{n} .
\end{aligned}
$$

Hence the first part of the theorem follows. To prove the second part, observe that

$$
v=(a+b) a a^{d}=\left[\begin{array}{cc}
a_{1}+b_{1} & b_{2} \\
0 & a_{2}
\end{array}\right]_{p}\left[\begin{array}{ll}
p & 0 \\
0 & 0
\end{array}\right]_{p}=\left[\begin{array}{cc}
a_{1}+b_{1} & 0 \\
0 & 0
\end{array}\right]_{p}=a_{1}+b_{1}
$$

and $\left(v^{d}\right)^{n+2} b a^{n} a^{\pi}=\left(\left(a_{1}+b_{1}\right)^{d}\right)^{n+2} b_{2} a_{2}^{n}$. Now, the second part of the theorem can be proved by using (9).
As we have commented before, we can obtain a paired result by considering the Banach algebra \mathcal{A} with the product $a \odot b=b a$. The key hypothesis of this new result will be $b a^{\pi}=0$.

Theorem 2.6. Let \mathcal{A} be a Banach algebra and let $a, b \in \mathcal{F}^{d}$ be such $b a^{\pi}=0$. If $v=(a+b) a a^{d} \in \mathcal{F}^{d}$, then $a+b \in \mathcal{A}^{d}$ and

$$
(a+b)^{d}=a a^{d} v^{d}+\sum_{n=0}^{\infty} a^{\pi} a^{n} b\left(v^{d}\right)^{n+2}
$$

If $w=(a+b) a a^{d} \in \mathcal{A}^{d}$, then $a+b \in \mathcal{A}^{d}$ and

$$
(a+b)^{d}=w^{d}+\sum_{n=0}^{\infty} a^{\pi} a^{n} b\left(w^{d}\right)^{n+2}
$$

Acknowledgments

The authors would thank the referee. His/her review has been very useful to improve the quality of the manuscript. This work was supported by the National Natural Science Foundation of China (11361009).

References

[1] F.F. Bonsall, J. Duncan, Complete Normed Algebras, Springer Verlag, New York, 1973.
[2] N. Castro-González, J.J. Koliha, Additive perturbation results for the Drazin inverse, Linear Algebra and its Applications 397 (2005) 279-297.
[3] N. Castro-González, J.J. Koliha, New additive results for the Drazin inverse, Proceedings of the Royal Society of Edinburgh, Section A 134 (2004) 1085-1097.
[4] N. Castro-González, J.J. Koliha, V. Rakočević, Continuity and general perturbation of the Drazin inverse for closed linear operators, Abstract and Applied Analysis 7 (2002) 335-347.
[5] N. Castro-González, M.F. Martínez-Serrano, Expressions for the g-Drazin inverse of additive perturbed elements in a Banach algebra, Linear Algebra and its Applications 432 (2010) 1885-1895.
[6] D. S. Cvetković-Ilić, D.S. Djordjević, Y. Wei, Additive results for the generalized Drazin inverse in a Banach algebra, Linear Algebra and its Applications 418 (2006) 53-61.
[7] D. Djordjević, V. Rakočević, Lectures on Generalized inverses, University of Niš, Niš, 2008.
[8] J.J. Koliha, A generalized Drazin inverse, Glasgow Mathematical Journal (1991) 367-381.
[9] J.J. Koliha, V. Rakočević, Differentiability of the g-Drazin inverse, Studia Mathematica 168 (2005) 193-201.
[10] J.J. Koliha, V. Rakočević, Holomorphic and meromorphic properties of the g-Drazin inverse, Demonstratio Mathematica 38 (2005) 657-666.
[11] X. Liu, L. Xu, Y.M. Yu, The representations of the Drazin inverse of differences of two matrices, Applied Mathematics and Computation 216 (2010) 3652-3661.

[^0]: 2010 Mathematics Subject Classification. Primary 46H05; Secondary 15A09
 Keywords. Banach algebra, Generalized Drazin inverse, Additive result
 Received: 10 June 2014; Accepted: 02 May 2015
 Communicated by Dragan S. Djordjević
 Email addresses: xiaojiliu72@126.com (Xiaoji Liu), qinxiaolan18@163.com (Xiaolan Qin), jbenitez@mat.upv.es (Julio Benítez)

