Filomat 30:8 (2016), 2289–2294 DOI 10.2298/FIL1608289L

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

New Additive Results for the Generalized Drazin Inverse in a Banach Algebra

Xiaoji Liu^a, Xiaolan Qin^b, Julio Benítez^c

^a Corresponding author. Tel. +86-0771-3265356. Faculty of Science, Guangxi. University for Nationalities, Nanning 530006, P.R. China. ^b Faculty of Science, Guangxi University for Nationalities, Nanning 530006, P.R. China. ^cInstituto de Matemática Multidisciplinar, Universidad Politécnica de Valencia, Valencia, camino de Vera s/n, 46022, Spain.

Abstract. In this paper, we investigate additive properties of the generalized Drazin inverse in a Banach algebra \mathcal{A} . We find explicit expressions for the generalized Drazin inverse of the sum a + b, under new conditions on $a, b \in \mathcal{A}$.

1. Introduction

Let \mathcal{A} be a complex Banach algebra with the unit 1. By \mathcal{A}^{-1} and \mathcal{A}^{qnil} , we denote the sets of all invertible and quasinilpotent elements in \mathcal{A} , respectively. In a Banach algebra \mathcal{A} , an element $a \in \mathcal{A}$ is quasinilpotent when $\lim_{n\to\infty} ||a^n||^{1/n} = 0$. Let us recall that the spectral radius of $b \in \mathcal{A}$ is given by $r(b) = \lim_{n\to\infty} ||b^n||^{1/n}$ (see e.g. [1, Ch. 1]) and it is satisfied that $r(b) = \max\{|\lambda| : \lambda \in \sigma(b)\}$, where $\sigma(b)$ is the spectrum of b, i.e., the set composed of complex numbers λ such that $b - \lambda 1$ is not invertible.

Let us recall that a generalized Drazin inverse of $a \in \mathcal{A}$ (introduced by Koliha in [8]) is an element $x \in \mathcal{A}$ which satisfies

$$xax = x, \qquad ax = xa, \qquad a - a^2 x \in \mathcal{A}^{qnil}.$$
(1)

It can be proved that for $a \in \mathcal{A}$ the set of $x \in \mathcal{A}$ satisfying (1) is empty or a singleton ([8]). If this set is a singleton, then we say that *a* is generalized Drazin invertible and *x* is denoted by a^d . The set \mathcal{A}^d consits of all $a \in \mathcal{A}$ such that a^d exists. For interesting properties of the generalized Drazin inverse see [2, 4, 9–11]. For a complete treatment of the generalized Drazin inverse, see [7, Ch. 2].

Let $a \in \mathcal{A}$ and let $p \in \mathcal{A}$ be an idempotent. We denote $\overline{p} = \mathbb{1} - p$. Then we can write

 $a = pap + pa\overline{p} + \overline{p}ap + \overline{p}a\overline{p}.$

Every idempotent $p \in \mathcal{A}$ induces a representation of an arbitrary element $a \in \mathcal{A}$ given by the following matrix:

 $a = \left[\begin{array}{cc} pap & pa\overline{p} \\ \overline{p}ap & \overline{p}a\overline{p} \end{array} \right]_p.$

²⁰¹⁰ Mathematics Subject Classification. Primary 46H05; Secondary 15A09

Keywords. Banach algebra, Generalized Drazin inverse, Additive result

Received: 10 June 2014; Accepted: 02 May 2015 Communicated by Dragan S. Djordjević

Communicated by Dragan 5. Djordjevic

Email addresses: xiaojiliu72@126.com (Xiaoji Liu), qinxiaolan18@163.com (Xiaolan Qin), jbenitez@mat.upv.es (Julio Benítez)

Let $a \in \mathcal{A}^d$ and $a^{\pi} = 1 - aa^d$ be the spectral idempotent of *a* corresponding to 0. It is well known that $a \in \mathcal{A}$ can be represented in the following matrix form ([7, Ch. 2])

$$a = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}_p,$$
(2)

where $p = aa^d$, a_1 is invertible in the algebra $p\mathcal{A}p$, a^d is its inverse in $p\mathcal{A}p$, and a_2 is quasinilpotent in the algebra $\overline{p}\mathcal{A}\overline{p}$. Thus, the generalized Drazin inverse of a can be expressed as

$$a^d = \left[\begin{array}{cc} a^d & 0\\ 0 & 0 \end{array} \right]_p.$$

Obviously, if $a \in \mathcal{A}^{qnil}$, then *a* is generalized Drazin invertible and $a^d = 0$.

The motivation for this article is [3, 5, 6]. In these papers, the authors considered some conditions on $a, b \in \mathcal{A}$ that allowed them to express $(a + b)^d$ in terms of a, a^d, b, b^d . Our aim in this paper is to investigate the existence of the generalized Drazin inverse of the sum a + b and to give explicit expression for $(a + b)^d$ under new conditions.

2. Main Results

A preliminary result witch will be used is the following:

Theorem 2.1. [3, Theorem 2.3] Let \mathcal{A} be a Banach algebra, $x, y \in \mathcal{A}$, and $p \in \mathcal{A}$ be an idempotent. Assume that x and y are represented as

$$x = \left[\begin{array}{cc} a & 0 \\ c & b \end{array} \right]_{p}, \qquad y = \left[\begin{array}{cc} b & c \\ 0 & a \end{array} \right]_{\overline{p}}.$$

(i) If $a \in (pAp)^d$ and $b \in (\overline{p}A\overline{p})^d$, then x and y are generalized Drazin invertible, and

$$x^{d} = \begin{bmatrix} a^{d} & 0 \\ u & b^{d} \end{bmatrix}_{p}, \qquad y^{d} = \begin{bmatrix} b^{d} & u \\ 0 & a^{d} \end{bmatrix}_{\overline{p}}, \tag{3}$$

where

$$u = \sum_{n=0}^{\infty} (b^d)^{n+2} c a^n a^n + \sum_{n=0}^{\infty} b^n b^n c (a^d)^{n+2} - b^d c a^d.$$
(4)

(ii) If $x \in \mathcal{A}^d$ and $a \in (p\mathcal{A}p)^d$, then $b \in (\overline{p}\mathcal{A}\overline{p})^d$, and x^d and y^d are given by (3) and (4).

Theorem 2.2. [3, Corollary 3.4] Let \mathcal{A} be a Banach algebra, $b \in \mathcal{A}^d$, $a \in \mathcal{A}^{qnil}$, and let ab = 0. Then $a + b \in \mathcal{A}^d$ and

$$(a+b)^d = \sum_{n=0}^{\infty} (b^d)^{n+1} a^n.$$

The conditions $a^{\pi}b = b$ and $aba^{\pi} = 0$ were used in [3, Theorem 4.1] to derive an expression of $(a + b)^d$. In Theorem 2.3, we will only use the condition $aba^{\pi} = 0$.

Theorem 2.3. Let \mathcal{A} be a Banach algebra and let $a, b \in \mathcal{A}^d$ such that $aba^{\pi} = 0$ and $aa^dbaa^d \in \mathcal{A}^d$. Then $a + b \in \mathcal{A}^d$ if and only if $w = aa^d(a + b) \in \mathcal{A}^d$. In this case,

$$(a+b)^{d} = w^{d} + \sum_{n=0}^{\infty} (b^{d})^{n+1} a^{n} a^{\pi} - \sum_{n=0}^{\infty} (b^{d})^{n+1} a^{n} a^{\pi} b w^{d} + \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} (b^{d})^{n+k+2} a^{k} \right) a^{\pi} b w^{n} w^{\pi} + b^{\pi} \sum_{n=0}^{\infty} (a+b)^{n} a^{\pi} b (w^{d})^{n+2} - \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} (b^{d})^{k+1} a^{k+1} (a+b)^{n} a^{\pi} b (w^{d})^{n+2}.$$

Proof. Let $p = aa^d$. We can represent *a* as in (2), where a_1 is invertible in the subalgebra $p\mathcal{A}p$ and a_2 is quasinilpotent. Hence,

$$a^d = \begin{bmatrix} a^d & 0\\ 0 & 0 \end{bmatrix}_p.$$
(5)

Let us write

$$b = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}_p.$$
(6)

From $aba^{\pi} = 0$ we have

$$0 = aba^{\pi} = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}_p \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}_p \begin{bmatrix} 0 & 0 \\ 0 & a^{\pi} \end{bmatrix}_p = \begin{bmatrix} 0 & a_1b_2 \\ 0 & a_2b_4 \end{bmatrix}_p.$$

Therefore, $a_1b_2 = 0$ and $a_2b_4 = 0$. Since a_1 is invertible in $p\mathcal{A}p$ and $b_2 \in p\mathcal{A}$, we get $b_2 = 0$. Hence

$$b = \begin{bmatrix} b_1 & 0 \\ b_3 & b_4 \end{bmatrix}_p, \qquad a+b = \begin{bmatrix} a_1+b_1 & 0 \\ b_3 & a_2+b_4 \end{bmatrix}_p$$

Observe that $w = aa^d(a + b) = a_1 + b_1$.

Since $b \in \mathcal{A}^d$ and the hypothesis on $b_1 = aa^d baa^d$, by Theorem 2.1 we get that $b_4 \in \mathcal{A}^d$. By using the quasinilpotency of a_2 and $a_2b_4 = 0$, Theorem 2.2 leads to $a_2 + b_4 \in \mathcal{A}^d$ and

.

$$(a_2 + b_4)^d = \sum_{n=0}^{\infty} (b_4^d)^{n+1} a_2^n.$$

Thus, by Theorem 2.1, a + b is generalized Drazin invertible if and only if $w = a_1 + b_1$ is generalized Drazin invertible. In this situation, we obtain

$$(a+b)^{d} = \begin{bmatrix} w^{d} & 0\\ u & (a_{2}+b_{4})^{d} \end{bmatrix}_{p} = w^{d} + u + (a_{2}+b_{4})^{d}.$$

and

$$u = \sum_{n=0}^{\infty} ((a_2 + b_4)^d)^{n+2} b_3 w^n w^\pi + \sum_{n=0}^{\infty} (a_2 + b_4)^\pi (a_2 + b_4)^n b_3 (w^d)^{n+2} - (a_2 + b_4)^d b_3 w^d.$$

We have

$$(b^{d})^{n+1}a^{n}a^{\pi} = \begin{bmatrix} (b_{1}^{d})^{n+1} & 0\\ * & (b_{4}^{d})^{n+1} \end{bmatrix}_{p} \begin{bmatrix} a_{1}^{n} & 0\\ 0 & a_{2}^{n} \end{bmatrix}_{p} \begin{bmatrix} 0 & 0\\ 0 & a^{\pi} \end{bmatrix}_{p} = \begin{bmatrix} 0 & 0\\ 0 & (b_{4}^{d})^{n+1}a_{2}^{n} \end{bmatrix}_{p} = (b_{4}^{d})^{n+1}a_{2}^{n}.$$

Also,

$$\begin{split} \sum_{n=0}^{\infty} (b^d)^{n+1} a^n a^n b w^d &= \sum_{n=0}^{\infty} (b_4^d)^{n+1} a_2^n b w^d = (a_2 + b_4)^d b w^d \\ &= \begin{bmatrix} 0 & 0 \\ 0 & (a_2 + b_4)^d \end{bmatrix}_p \begin{bmatrix} b_1 & 0 \\ b_3 & b_4 \end{bmatrix}_p \begin{bmatrix} w^d & 0 \\ 0 & 0 \end{bmatrix}_p = (a_2 + b_4)^d b_3 w^d. \end{split}$$

In a similar way, we get

$$a^{\pi}bw^{n}w^{\pi} = b_{3}w^{n}w^{\pi}.$$
(7)

Now, we will find an expression for $(a_2 + b_4)^{\pi}$. To this end, we use $a_2b_4 = 0$. Let us recall that a_2, b_4 are elements in the subalgebra $\overline{p}\mathcal{A}\overline{p}$, where $\overline{p} = \mathbb{1} - p = \mathbb{1} - aa^d = a^{\pi}$.

$$(a_{2} + b_{4})^{\pi} = a^{\pi} - (a_{2} + b_{4})(a_{2} + b_{4})^{d} = a^{\pi} - (a_{2} + b_{4})\left[b_{4}^{d} + (b_{4}^{d})^{2}a_{2} + (b_{4}^{d})^{3}a_{2}^{2} + \cdots\right]$$
$$= a^{\pi} - \left[b_{4}b_{4}^{d} + b_{4}(b_{4}^{d})^{2}a_{2} + b_{4}(b_{4}^{d})^{3}a_{2}^{2} + \cdots\right] = b_{4}^{\pi} - \left[b_{4}^{d}a_{2} + (b_{4}^{d})^{2}a_{2}^{2} + \cdots\right],$$

and so,

$$\sum_{n=0}^{\infty} (a_2 + b_4)^{\pi} (a_2 + b_4)^n b_3 (w^d)^{n+2}$$

= $b_4^{\pi} \sum_{n=0}^{\infty} (a_2 + b_4)^n b_3 (w^d)^{n+2} - \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} (b_4^d)^{k+1} a_2^{k+1} (a_2 + b_4)^n b_3 (w^d)^{n+2}.$

One gets

$$(a_2 + b_4)^n b_3(w^d)^{n+2} = (a+b)^n a^\pi b(w^d)^{n+2}$$

and

$$(b_4^d)^{k+1}a_2^{k+1}(a_2+b_4)^n b_3(w^d)^{n+2} = (b^d)^{k+1}a^{k+1}(a+b)^n a^{\pi}b(w^d)^{n+2}$$

Finally, let us observe that the expression $\left(\sum_{k=0}^{\infty} (b^d)^{k+1} a^k\right)^{n+2}$ can be simplified. In effect, since

$$\left((a_2+b_4)^d\right)^{n+2} = \sum_{k=0}^{\infty} (b_4^d)^{n+k+2} a_2^k,$$

we have that

$$\left(\sum_{k=0}^{\infty} (b^d)^{k+1} a^k\right)^{n+2} = \sum_{k=0}^{\infty} (b^d)^{n+k+2} a^k a^{\pi}.$$

The proof is finished. \Box

If \mathcal{A} is a Banach algebra, then we can define another multiplication in \mathcal{A} by $a \odot b = ba$. It is trivial that (\mathcal{A}, \odot) is a Banach algebra. If we apply Theorem 2.3 to this new algebra, we can immediately establish the following result.

Theorem 2.4. Let \mathcal{A} be a Banach algebra and let $a, b \in \mathcal{A}^d$ such that $a^{\pi}ba = 0$ and $a^{\pi}ba^{\pi} \in \mathcal{A}^d$. Then a + b is generalized Drazin invertible if and only if $v = (a + b)aa^d$ is generalized Drazin invertible. In this case,

$$(a+b)^{d} = v^{d} + \sum_{n=0}^{\infty} a^{\pi} a^{n} (b^{d})^{n+1} - \sum_{n=0}^{\infty} v^{d} b a^{\pi} a^{n} (b^{d})^{n+1} + \sum_{n=0}^{\infty} v^{\pi} v^{n} b a^{\pi} \left(\sum_{k=0}^{\infty} a^{k} (b^{d})^{n+k+2} \right) + \sum_{n=0}^{\infty} (v^{d})^{n+2} b a^{\pi} (a+b)^{n} b^{\pi} - \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} (v^{d})^{n+2} b a^{\pi} (a+b)^{n} a^{k+1} (b^{d})^{k+1}.$$

The condition $a^{\pi}b = 0$ is less general than $a^{\pi}ba = 0$. But if $a, b \in \mathcal{A}$ satisfy $a^{\pi}b = 0$, then the expression for $(a + b)^d$ is simpler than the preceding theorems,

Theorem 2.5. Let \mathcal{A} be a Banach algebra and let $a, b \in \mathcal{A}^d$ be such $a^{\pi}b = 0$. If $w = aa^d(a+b) \in \mathcal{A}^d$, then $a+b \in \mathcal{A}^d$ and

$$(a+b)^d = w^d a a^d + \sum_{n=0}^{\infty} (w^d)^{n+2} b a^n a^{\pi}.$$

If $v = (a + b)aa^d \in \mathcal{A}^d$, then $a + b \in \mathcal{A}^d$ and

$$(a+b)^d = v^d + \sum_{n=0}^{\infty} (v^d)^{n+2} b a^n a^n$$

Proof. Let us consider the matrix representations of *a*, a^d , and *b* given in (2), (5), and (6) relative to the idempotent $p = aa^d$. We will use the condition $a^{\pi}b = 0$. Since

$$a^{\pi}b = \begin{bmatrix} 0 & 0 \\ 0 & \overline{p} \end{bmatrix}_p \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ b_3 & b_4 \end{bmatrix}_p = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_p,$$

we obtain $b_3 = b_4 = 0$. Hence we have

$$a+b = \left[\begin{array}{cc} a_1+b_1 & b_2 \\ 0 & a_2 \end{array} \right]_p$$

and

$$w = aa^{d}(a+b) = \begin{bmatrix} p & 0\\ 0 & 0 \end{bmatrix}_{p} \begin{bmatrix} a_{1}+b_{1} & b_{2}\\ 0 & a_{2} \end{bmatrix}_{p} = \begin{bmatrix} a_{1}+b_{1} & b_{2}\\ 0 & 0 \end{bmatrix}_{p}.$$
(8)

Assume that $w \in \mathcal{A}^d$. By Theorem 2.1, it follows that $(a + b)^d$ exists and

$$(a+b)^{d} = \begin{bmatrix} (a_{1}+b_{1})^{d} & u \\ 0 & 0 \end{bmatrix}_{p} \quad \text{and} \quad u = \sum_{n=0}^{\infty} ((a_{1}+b_{1})^{d})^{n+2} b_{2} a_{2}^{n}.$$
(9)

From (8) we have $w^d a a^d = (a_1 + b_1)^d$ and

$$(w^d)^{n+2}ba^n a^{\pi} = \begin{bmatrix} \left((a_1 + b_1)^d \right)^{n+2} & * \\ 0 & 0 \end{bmatrix}_p \begin{bmatrix} b_1 & b_2 \\ 0 & 0 \end{bmatrix}_p \begin{bmatrix} a_1^n & 0 \\ 0 & a_2^n \end{bmatrix}_p \begin{bmatrix} 0 & 0 \\ 0 & 1-p \end{bmatrix}_p$$
$$= \begin{bmatrix} 0 & \left((a_1 + b_1)^d \right)^{n+2} b_2 a_2^n \\ 0 & 0 \end{bmatrix}_p$$
$$= \left((a_1 + b_1)^d \right)^{n+2} b_2 a_2^n.$$

Hence the first part of the theorem follows. To prove the second part, observe that

$$v = (a+b)aa^{d} = \begin{bmatrix} a_{1}+b_{1} & b_{2} \\ 0 & a_{2} \end{bmatrix}_{p} \begin{bmatrix} p & 0 \\ 0 & 0 \end{bmatrix}_{p} = \begin{bmatrix} a_{1}+b_{1} & 0 \\ 0 & 0 \end{bmatrix}_{p} = a_{1}+b_{1}$$

and $(v^d)^{n+2}ba^na^\pi = ((a_1 + b_1)^d)^{n+2}b_2a_2^n$. Now, the second part of the theorem can be proved by using (9). \Box

As we have commented before, we can obtain a paired result by considering the Banach algebra \mathcal{A} with the product $a \odot b = ba$. The key hypothesis of this new result will be $ba^{\pi} = 0$.

Theorem 2.6. Let \mathcal{A} be a Banach algebra and let $a, b \in \mathcal{A}^d$ be such $ba^{\pi} = 0$. If $v = (a + b)aa^d \in \mathcal{A}^d$, then $a + b \in \mathcal{A}^d$ and

$$(a+b)^d = aa^d v^d + \sum_{n=0}^{\infty} a^n a^n b (v^d)^{n+2}.$$

If $w = (a + b)aa^d \in \mathcal{A}^d$, then $a + b \in \mathcal{A}^d$ and

$$(a+b)^d = w^d + \sum_{n=0}^{\infty} a^n a^n b (w^d)^{n+2}.$$

Acknowledgments

The authors would thank the referee. His/her review has been very useful to improve the quality of the manuscript. This work was supported by the National Natural Science Foundation of China (11361009).

References

- [1] F.F. Bonsall, J. Duncan, Complete Normed Algebras, Springer Verlag, New York, 1973.
- [2] N. Castro-González, J.J. Koliha, Additive perturbation results for the Drazin inverse, Linear Algebra and its Applications 397 (2005) 279–297.
- [3] N. Castro-González, J.J. Koliha, New additive results for the Drazin inverse, Proceedings of the Royal Society of Edinburgh, Section A 134 (2004) 1085–1097.
- [4] N. Castro-González, J.J. Koliha, V. Rakočević, Continuity and general perturbation of the Drazin inverse for closed linear operators, Abstract and Applied Analysis 7 (2002) 335–347.
- [5] N. Castro-González, M.F. Martínez-Serrano, Expressions for the g-Drazin inverse of additive perturbed elements in a Banach algebra, Linear Algebra and its Applications 432 (2010) 1885–1895.
- [6] D. S. Cvetković-Ilić, D.S. Djordjević, Y. Wei, Additive results for the generalized Drazin inverse in a Banach algebra, Linear Algebra and its Applications 418 (2006) 53–61.
- [7] D. Djordjević, V. Rakočević, Lectures on Generalized inverses, University of Niš, Niš, 2008.
- [8] J.J. Koliha, A generalized Drazin inverse, Glasgow Mathematical Journal (1991) 367-381.
- [9] J.J. Koliha, V. Rakočević, Differentiability of the g-Drazin inverse, Studia Mathematica 168 (2005) 193–201.
- [10] J.J. Koliha, V. Rakočević, Holomorphic and meromorphic properties of the g-Drazin inverse, Demonstratio Mathematica 38 (2005) 657–666.
- [11] X. Liu, L. Xu, Y.M. Yu, The representations of the Drazin inverse of differences of two matrices, Applied Mathematics and Computation 216 (2010) 3652–3661.