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Abstract. The aim of this paper is to lay a foundation for providing a soft algebraic tool in considering many
problems that contains uncertainties. In order to provide these soft algebraic structures, we introduce the
concepts of SI-h-bi-ideals and SI-h-quasi-ideals of hemirings. The relationships between these kinds of soft
intersection h-ideals are established. Finally, some characterizations of h-hemiregular, h-intra-hemiregular
and h-quasi-hemiregular hemirings are investigated by these kinds of soft intersection h-ideals.

1. Introduction

In order to model vagueness and uncertainty, Molodtsov [23] introduced soft set theory and it has
received much attention since its inception. Since then, especially soft set operations, have undergone
tremendous studies. Maji [20] presented some definitions or soft sets. Ali [2, 3] proposed some new
operations on soft sets. Sezgin [25] also gave some operations on soft sets. Majumdar [22] investigated
some soft mapping. In the same time, this theory has been proven useful in many different fields such
as decision making [6, 7, 10, 12, 21], data analysis [32], forecasting and so on. Recently, the algebraic
structures of soft sets have been studied increasingly, such as, soft groups [1], soft semigroups [11], soft
BCK/BCI-algebras [13], soft hyperstructures [4, 28].

We note that the ideals of semirings play a crucial role in the structure theory, ideals in semirings do not
in general coincide with the ideals of a ring. For this reason, the usage of ideals in semirings is somewhat
limited. By a hemiring, we mean a special semiring with a zero and with a commutative addition. The
properties of h-ideals of hemirings were thoroughly investigated by Torre [27] and by using h-ideals, Torre
established some analogous ring theorems for hemirings. In particular, Jun [14] discussed some properties
of hemirings. Zhan et al. [31] discussed h-hemiregular hemirings. Some characterizations of h-semisimple
and h-intra-hemiregular hemirings were investigated by Yin et al. [29, 30]. Further, some generalized fuzzy
h-ideals of hemirings were investigated by Davvaz, Dudek and Ma, for examples, see [8, 9, 15, 17, 18, 24].

Recently, Çaǧman and Sezgin discussed some important properties on soft intersection groups and soft
intersection near-rings, see [5, 26]. By this new idea, Ma et al. [16, 19] introduced the concepts of soft
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intersection hemirings and soft intersection h-ideals(soft intersection h-interior ideals) of hemirings. By
soft intersection h-ideals, Ma et al. investigated some characterizations of h-hemiregular hemirings. As
a continuation of these two papers, we introduce the concepts of SI-h-bi-ideals and SI-h-quasi-ideals of
hemirings. In the same time, we give some characterizations of h-hemiregular, h-intra-hemiregular and
h-quasi-hemiregular hemirings.

2. Preliminaries

A semiring is an algebraic system (S,+, ·) consisting of a non-empty set S together with two binary
operations on S called addition and multiplication (denoted in the usual manner) such that (S,+) and (S, ·)
are semigroups and the following distributive laws:

a(b + c) = ab + ac and (a + b)c = ac + bc
are satisfied for all a, b, c ∈ S.

By zero of a semiring (S,+, ·) we mean an element 0 ∈ S such that 0 · x = x · 0 = 0 and 0 + x = x + 0 = x for
all x ∈ S. A semiring with zero and a commutative semigroup (S,+) is called a hemiring. A one unit 1 on
S, we means that 1 · x = x · 1 = x for all x ∈ S. For the sake of simplicity, we shall write ab for a · b(a, b ∈ S).

A subhemiring of S is a subset A of S closed under addition and multiplication. A subset A of S is called
a left(right) ideal of S if A is closed under addition and SA ⊆ A(AS ⊆ A). A subset B of S is called a bi
ideal of S if B is closed under addition and multiplication such that BSB ⊆ B. A subset Q of S is called a
quasi-ideal of S if Q is closed under addition and SQ ∩QS ⊆ Q.

A subhemiring(left ideal, right ideal, ideal, bi-ideal) A of S is called an h-subhemiring(left h-ideal, right
h-ideal, h-ideal, h-bi-ideal), respectively, if for any x, z ∈ S and a, b ∈ A, x + a + z = b + z→ x ∈ A.

The h-closure A of a subset A of S is defined as

A = {x ∈ S|x + a + z = b + z for some a, b ∈ A, z ∈ S}.

A quasi-ideal Q of S is called an h-quasi-ideal of S if SQ ∩QS ⊆ Q and for any x, z ∈ S and a, b ∈ Q from
x + a + z = b + z, it follows x ∈ Q.

From now on, S is a hemiring, U is an initial universe, E is a set of parameters, P(U) is the power set of
U and A,B,C ∈ E.

Definition 2.1. [23] A soft set fA over U is a set defined by fA : E→ P(U) such that fA(x) = ∅ if x < A. Here
fA is also called an approximate function. A soft set over U can be represented by the set of ordered pairs
fA = {(x, fA(x))|x ∈ E, fA(x) ∈ P(U)}. It is clear to see that a soft set is a parameterized family of subsets of the
set U. Note that the set of all soft sets over U will be denoted by S(U).

Definition 2.2. [6] Let fA, fB ∈ S(U). Then,
(1) fA is said to be a soft subset of fB and denoted by fA⊆̃ fB if fA(x) ⊆ fB(x), for all x ∈ E. fA and fB are said to be

soft equal, denoted by fA = fB, if fA⊆̃ fB and fA⊇̃ fB.
(2) The union of fA and fB, denoted by fA∪̃ fB, is defined as fA∪̃ fB = fA∪B, where fA∪B(x) = fA(x) ∪ fB(x),

for all x ∈ E;
(3) the intersection of fA and fB, denoted by fA∩̃ fB, is defined as fA∩̃ fB = fA∩B, where fA∩B(x) =

fA(x) ∩ fB(x), for all x ∈ E.

Definition 2.3. [5] Let fA ∈ S(U) and α ⊆ U. Then, upper α-inclusion of fA, denoted by U( fA;α), is defined
as U( fA;α) = {x ∈ A| fA(x) ⊇ α}.

Definition 2.4. [5] Let A ⊆ S. We denote by SA the soft characteristic function of A and define as

SA(x) =

{
U if x ∈ A,
∅ if x < A.
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Definition 2.5. [19] Let fS, 1S ∈ S(U). Then,
(1) The soft union-intersection product fSF1S is defined by

( fSF1S)(x) =
⋃

x+
m∑

i=1
aibi+z=

n∑
j=1

a′jb
′

j+z

( fS(ai) ∩ fS(a′j) ∩ 1S(bi) ∩ 1S(b′j))

for all ai, a′j, bi, b′j, x, z ∈ S, i = 1, 2, ...,m; j = 1, 2, ...,n.

and ( fSF1S)(x) = ∅ if x cannot be expressed as x +
m∑

i=1
aibi + z =

n∑
j=1

a′jb
′

j + z;

(2) The soft union-intersection sum fS � 1S is defined by

( fS � 1S)(x) =
⋃

x+a1+b1+z=a2+b2+z

( fS(a1) ∩ fS(a2) ∩ 1S(b1) ∩ 1S(b2))

for all a1, a2, b1, b2, x, z ∈ S,i = 1, 2, ...,m; j = 1, 2, ...,n.
and ( fS � 1S)(x) = ∅ if x cannot be expressed as x + a1 + b1 + z = a2 + b2 + z.

The following proposition is obvious.

Proposition 2.6. [19] Let A,B ⊆ S. Then,
(1) A ⊆ B⇒ SA⊆̃SB,
(2) SA∩̃SB = SA∩B,
(3) SAFSB = SAB,
(4) SA � SB = SA+B.

Definition 2.7. [19]
(1) A soft set fS over U is called a soft intersection hemiring (briefly, SI-hemiring) if it satisfies:
(SI1) fS(x + y) ⊇ fS(x) ∩ fS(y) for all x, y ∈ S;
(SI2) fS(xy) ⊇ fS(x) ∩ fS(y) for all x, y ∈ S;
(SI3) fS(x) ⊇ fS(a) ∩ fS(b) with x + a + z = b + z for all x, a, b, z ∈ S.

(2) A soft set fS over U is called a soft intersection left(right) h-ideal(briefly, SI-left(right) h-ideal) of S
over U if satisfies (SI1), (SI3) and

(SI4) fS(xy) ⊇ fS(y)( fS(xy) ⊇ fS(x)) for all x, y ∈ S.
It is easy to see that if fS(x) = U for all x ∈ S, then fS is an SI-hemiring(SI-left h-ideal, SI-right

h-ideal,SI-h-ideal) denoted by S̃[19].

Proposition 2.8. [19] Let A ⊆ S. Then, A is an h-subhemiring(left h-ideal, right h-ideal, h-ideal) of S if and
only if SA is an SI-hemiring(SI-left h-ideal, SI-right h-ideal, SI-h-ideal) of S over U.

3. SI-h-Bi-Ideals

In this section, we introduce the concept of SI-h-bi-ideals of hemirings and investigate some characteri-
zations.

Definition 3.1. A soft set fS over U is called a soft intersection h-bi-ideal(briefly, SI-h-bi-ideal) of S over U
if it satisfies (SI1), (SI2), (SI3) and

(SI5) fS(xyz) ⊇ fS(x) ∩ fS(z) for all x, y, z ∈ S.

Remark 3.2. If fS is an SI-h-bi-ideal of S over U, the fS(0) ⊇ fS(x) for all x ∈ S.
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Example 3.3. Let U = {< x, y > |x2 = y2 = e, xy = yx} = {e, x, y, yx}, Dihedral group, be the universal set.
Consider the hemiring S = Z4 = {0, 1, 2, 3}, non-negative integers module 4, as the set of paramenters.

Define a soft set fS over U by

fS(0) = {e, x, y}, fS(1) = fS(3) = {x} and fS(2) = {e, x}.
Then, one can easily check that fS is an SI-h-bi-ideal of S over U.

Theorem 3.4. Let fS ∈ S(U). Then, fS is an SI-h-bi-ideal of S over U if and only if it satisfies(SI3) and

(SI6) fS � fS⊆̃ fS;

(SI7) fSF fS⊆̃ fS;

(SI8) fSFS̃F fS⊆̃ fS.

Proof. Assume that fS is an SI-h-bi-ideal of S over U.

(1) Let x ∈ S. If ( fS � fS)(x) = ∅. Then, it is clear that ( fS � fS)(x) ⊆ fS(x). Otherwise, let a1, a2, b1, b2, z ∈ S
such that x + a1 + b1 + z = a2 + b2 + z.
Then,

( fS � fS)(x) =
⋃

x+a1+b1+z=a2+b2+z
( fS(a1) ∩ fS(a2) ∩ fS(b1) ∩ fS(b2))

⊆
⋃

x+a1+b1+z=a2+b2+z
( fS(a1 + b1) ∩ fS(a2 + b2))

⊆
⋃

x+a1+b1+z=a2+b2+z
fS(x)

= fS(x),
which implies, fS � fS⊆̃ fS. Thus, (SI6) holds.

(2) Let x ∈ S. If ( fSF fS)(x) = ∅. Then, it is clear that ( fSF fS)(x) ⊆ fS(x). Otherwise, let x +
m∑

i=1
aibi + z =

n∑
j=1

a′jb
′

j + z with ai, a′j ∈ S and bi, b′j ∈ S for all i = 1, 2, ...,m; j = 1, 2, ...,n. Thus,

( fSF fS)(x) =
⋃

x+
m∑

i=1
aibi+z=

n∑
j=1

a′jb
′

j+z

( fS(ai) ∩ fS(bi) ∩ fS(a′j) ∩ fS(b′j))

⊆
⋃

x+
m∑

i=1
aibi+z=

n∑
j=1

a′jb
′

j+z

( fS(ai) ∩ fS(bi) ∩ S̃(a′j) ∩ S̃(b
′

j))

= fS(x),
which implies, fSF fS⊆̃ fS. Thus, (SI7) holds.

(3) Let x ∈ S, if ( fSFS̃F fS)(x) = ∅. Then, it is clear that ( fSFS̃F fS)(x) ⊆ fS(x). Otherwise,
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( fSFS̃F fS)(x) = (( fSFS̃)F fS)(x)
=

⋃
x+

m∑
i=1

aibi+z=
n∑

j=1
a′jb
′

j+z

(( fSFS̃)(ai) ∩ ( fSFS̃)(a′j) ∩ fS(bi) ∩ fS(b′j))

=
⋃

x+
m∑

i=1
aibi+z=

n∑
j=1

a′jb
′

j+z

(
⋃

ai+
mi∑
k=1

aikbik+zi=
ni∑

l=1
a′jlb
′

jl+zi

( fS(aik) ∩ fS(a′jl) ∩ S̃(b jk) ∩ S̃(b′jl))

∩(
⋃

a′j+
m′j∑
p=1

aipbip+z′j=
n′j∑

q=1
a′jqb′jq+z′j

( fS(aip) ∩ fS(a′jq) ∩ S̃(bip) ∩ S̃(b′jq)) ∩ fS(bi) ∩ fS(b′j))

=
⋃

x+
m∑

i=1
aibi+z=

n∑
j=1

a′jb
′

j+z

⋃
ai+

mi∑
k=1

aikbik+zi=
ni∑

l=1
a′jlb
′

jl+zi

⋃
a′j+

m′j∑
p=1

aipbip+z′j=
n′j∑

q=1
a′jqb′jq+z′j

(( fS(aik)

∩ fS(a′jl) ∩ S̃(b jk) ∩ S̃(b′jl)) ∩ (( fS(aip) ∩ fS(a′jq) ∩ S̃(bip) ∩ S̃(b′jq)) ∩ fS(bi) ∩ fS(b′j))
⊆

⋃
x+

m′∑
i=1

ãi c̃i b̃i+z̃=
n′∑
j=1

ã′j c̃
′

j b̃
′

j+z̃

( fS(ai) ∩ fS(a′j) ∩ fS(bi) ∩ fS(b′j)) (Please refer to Appendix)

⊆
⋃

x+
m∑

i=1
aicibi+z=

n∑
j=1

a′jc
′

jb
′

j+z

( fS(
m′∑
i=1

aicibi) ∩ fS(
n′∑
j=1

a′jc
′

jb
′

j))

⊆ fS(x),

which implies, fSFS̃F fS⊆̃ fS. Thus, (SI8) holds.
Conversely, assume that (SI3), (SI6), (SI7) and (SI8) hold.

(1) fS(x + y) ⊇ ( fS � fS)(x + y)
=

⋃
x+y+a1+b1+z=a2+b2+z

( fS(a1) ∩ fS(a2) ∩ fS(b1) ∩ fS(b2))

⊇ fS(x) ∩ fS(y) ∩ fS(0)
= fS(x) ∩ fS(y).

Thus, (SI1) holds.
(2) fS(xy) ⊇ ( fSF fS)(xy)

=
⋃

xy+
m∑

i=1
aibi+z=

n∑
j=1

a′jb
′

j+z

( fS(ai) ∩ fS(a′j) ∩ fS(bi) ∩ fS(b′j))

⊇ fS(x) ∩ fS(y) ∩ fS(0)
= fS(x) ∩ fS(y).

Thus, (SI2) holds.
(3) Let x, y, z ∈ S. Then,
fS(xyz) ⊇ ( fSFS̃F fS)(xyz)

= ( fSF(̃SF fS))(xyz)
=

⋃
xyz+

m∑
i=1

aibi+z′=
n∑

j=1
a′jb
′

j+z′

( fS(ai) ∩ fS(a′j) ∩ (̃SF fS)(bi) ∩ (̃SF fS)(b′j))

⊇ fS(0) ∩ fS(x) ∩ (̃SF fS)(0) ∩ (̃SF fS)(yz)
= fS(x) ∩ (̃SF fS)(yz)
= fS(x) ∩ (

⋃
yz+

m∑
i=1

cidi+z′=
n∑

j=1
c′jd
′

j+z′

S̃(ci) ∩ S̃(c′j) ∩ fS(di) ∩ fS(d′j))

= fS(x) ∩ fS(z).
Thus, (SI5) holds. Hence, fS is an SI-h-bi-ideal of S over U. �

The following proposition is obvious.

Proposition 3.5. Every SI-le f t h-ideal(ri1ht h-ideal, h-ideal) of S over U is an SI-h-bi-ideal of S over U.
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Theorem 3.6. Let fS, 1S ∈ S(U). If fS and 1S are an SI-h-bi-ideal of S over U, then fSF1S and 1SF fS are
SI-h-bi-ideals of S over U.

Proof. For all x, y ∈ S, we have
(1) ( fSF1S)(x) ∩ ( fSF1S)(y)
=

⋃
x+

m∑
i=1

aibi+z1=
n∑

j=1
a′jb
′

j+z1

( fS(ai) ∩ fS(a′j) ∩ 1S(bi) ∩ 1S(b′j)

∩
⋃

y+
p∑

i=1
cidi+z2=

q∑
j=1

c′jd
′

j+z2

( fS(ci) ∩ fS(c′j) ∩ 1S(di) ∩ 1S(d′j))

=
⋃

x+
m∑

i=1
aibi+z1=

n∑
j=1

a′jb
′

j+z1⋃
y+

p∑
i=1

cidi+z2=
q∑

j=1
c′jd
′

j+z2

( fS(ai) ∩ fS(ci) ∩ fS(a′j) ∩ fS(c′j) ∩ 1S(bi) ∩ 1S(di) ∩ 1S(b′j) ∩ 1S(d′j))

⊆
⋃

x+y+
k∑

i=1
xi yi+z1+z2=

l∑
j=1

x′j y
′

j+z1+z2

( fS(xi) ∩ fS(x′j) ∩ 1S(yi) ∩ 1S(y′j))

= ( fSF1S)(x + y).
This proves that (SI1) holds, that is, (SI6) holds.
(2) Similar to (1), we can show that (SI3) holds.
(3) ( fSF1S)F( fSF1S)

= fSF(1SF( fSF1S))
⊆̃ fSF(1SF(̃SF1S)) (since fS⊆̃S̃)
= fSF(1SFS̃F1S)
⊆̃ fSF1S. (since 1SFS̃F1S⊆̃1S)

This proves that (SI7) holds.
(4) ( fSF1S)FS̃F( fSF1S)

= fSF(1SF(̃SF fS)F1S) (since S̃F fS⊆̃S̃)
⊆̃ fSF(1SFS̃F1S)
⊆̃ fSF1S. (since 1SFS̃F1S⊆̃1S)

This proves that (SI8) holds.
It follows from 3.4 that fSF1S is an SI-h-bi-ideal of S over U. Similarly, we can prove that 1SF fS is also

an SI-h-bi-ideal of S over U. �
The following proposition is similar to Proposition 2.8.

Proposition 3.7. Let A ∈ S. Then, A is an h-bi-ideal of S if an only if SA is an SI-h-bi-ideal of S over U.

Theorem 3.8. If fS and hS are two SI-h-bi-ideals of S over U, then so is fS∩̃hS.

Proof. Let x, y ∈ S. Then,
(1) ( fS∩̃hS)(x + y) = fS(x + y) ∩ hS(x + y)

⊇ ( fS(x) ∩ fS(y)) ∩ (hS(x) ∩ hS(y))
= ( fS(x) ∩ hS(x)) ∩ ( fS(y) ∩ hS(y))
= ( fS∩̃hS)(x) ∩ ( fS∩̃hS)(y).

(2) ( fS∩̃hS)(xy) = fS(xy) ∩ hS(xy)
⊇ ( fS(x) ∩ fS(y)) ∩ (hS(x) ∩ hS(y))
= ( fS(x) ∩ hS(x)) ∩ ( fS(y) ∩ hS(y))
= ( fS∩̃hS)(x) ∩ ( fS∩̃hS)(y).

(3) Now, let x, z, a, b ∈ S with x + a + z = b + z. Then,
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( fS∩̃hS)(x) = fS(x) ∩ hS(x)
⊇ ( fS(a) ∩ fS(b)) ∩ (hS(a) ∩ hS(b))
= ( fS(a) ∩ hS(a)) ∩ ( fS(b) ∩ hS(b))
= ( fS∩̃hS)(a) ∩ ( fS∩̃hS)(b).

(4) ( fS∩̃hS)(xyz) = fS(xyz) ∩ hS(xyz)
⊇ ( fS(x) ∩ fS(z)) ∩ (hS(x) ∩ hS(z))
= ( fS(x) ∩ hS(x)) ∩ ( fS(z) ∩ hS(z))
= ( fS∩̃hS)(x) ∩ ( fS∩̃hS)(z).

Hence, fS∩̃hS is an SI-h-bi-ideal of S over U. �

Remark 3.9. fS∪̃hS may not be an SI-h-bi-ideal of S over U.

Example 3.10. Assume that U = Z+, the set of positive integers, is the universal set. Consider two parameter
sets S1 = Z4 = {0, 1, 2, 3}, non-negative integers module 4, and

S2 =

{[
x x
y y

] ∣∣∣x, y ∈ Z2 = {0, 1}
}
,

where Z2 is the set of non-negative integers module 2. Define two soft sets fS1 and fS2 over U by
fS1 (0) = Z+, fS1 (1) = fS1 (3) = {2, 3} and fS1 (2) = {1, 2, 3, 5}.

fS2

([
0 0
0 0

])
= Z+, fS2

([
0 0
1 1

])
= {2, 3, 5},

fS2

([
1 1
0 0

])
= {1, 2, 3, 5, 7} and fS2

([
1 1
1 1

])
= {1, 2, 3, 5, 7, 8}.

Then, one can easily check that fS1 and fS2 are both SI-h-bi-ideals of S over U.

fS1∪S2

((
3,

[
1 1
0 0

])
+

(
2,

[
1 1
1 1

]))
= fS1∪S2

(
1,

[
0 0
1 1

])
= fS1 (1) ∪ fS2

([
1 1
0 0

])
= {2, 3} ∪ {1, 2, 3, 5, 7}
= {1, 2, 3, 5, 7},

but fS1∪S2

(
3,

[
1 1
0 0

])
= fS1 (3) ∪ fS2

([
1 1
0 0

])
= {2, 3} ∪ {1, 2, 3, 5, 7}
= {1, 2, 3, 5, 7},

and fS1∪S2

(
2,

[
1 1
1 1

])
= fS1 (2) ∪ fS2

([
1 1
1 1

])
= {1, 2, 3, 5} ∪ {1, 2, 3, 5, 7, 8}
= {1, 2, 3, 5, 7, 8},

which implies, fS1∪S2

(
3,

[
1 1
0 0

])
∪ fS1∪S2

(
2,

[
1 1
1 1

])
= {1, 2, 3, 5, 7, 8}.
This implies that

fS1∪S2

((
3,

[
1 1
0 0

])
+

(
2,

[
1 1
1 1

]))
+ fS1∪S2

(
3,

[
1 1
0 0

])
∩ fS1∪S2

(
2,

[
1 1
1 1

])
.

Hence, fS1∪̃ fS2 is not an SI-h-bi-ideal over U.
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4. SI-h-Quasi-Ideals

In this section, we introduce the concept of SI-h-quasi-ideals and investigate some related properties.

Definition 4.1. A soft set over U is called a soft intersection h-quasi-ideal (briefly, SI-h-quasi-ideal) of S over
U if it satisfies (SI1), (SI3) and
(SI9) ( fSFS̃)∩̃(̃SF fS)⊆̃ fS.

Example 4.2. Assume that U = Z+, the set of positive integers, is the universal set and S = Z6 =
{0, 1, 2, 3, 4, 5}, non-negative positive integers module 6, is the set of parameters. Define a soft set fS of
S over U by
fS(0) = Z+, fS(1) = fS(5) = {6n|n ∈ Z+

}, fS(2) = fS(4) = {2n|n ∈ Z+
} and fS(3) = {3n|n ∈ Z+

}.
Then, one can easily check that fS is an SI-h-quasi-ideal of S over U.

The following proposition is obvious.

Proposition 4.3. (1) Every SI-h-quasi-ideal of S over U is an SI-hemiring of S.
(2) Every SI-h-ideal of S over U is an SI-h-quasi-ideal of S.
(3) Every SI-h-quasi-ideal of S over U is an SI-h-bi-ideal of S.

Proof. We only prove (3) and the others are obvious. We only need to show that (SI7) and (SI8) hold. By
(SI9), we have
fSF fS = ( fSF fS)∩̃( fSF fS)⊆̃( fSFS̃)∩̃(̃SF f̃S)⊆̃ fS.
Thus, (SI7) holds.

Moveover, we have
fSFS̃F fS⊆̃S̃FS̃F fS⊆̃S̃F fS and fSFS̃F fS⊆̃ fSFS̃FS̃⊆̃ fSFS̃, and so
fSFS̃F fS⊆̃( fSFS̃) ∩ (̃SF fS)⊆̃ fS.

This proves that (SI8) holds. Hence, fS is an SI-h-bi-ideal of S over U.
Now, we give an important result of uni-int product fSF1S. �

Theorem 4.4. Let fS and 1S be any SI-h-quasi-ideals of S over U. Then, fSF1S is an SI-h-bi-ideal of S over
U.

Proof. Let fS be an SI-h-quasi-ideal of S over U. Then, by Proposition 4.3(3), fS is an SI-h-bi-ideal of S over
U. Hence, fSFS̃F fS⊆̃ fS.

For any x, y ∈ S, if x or y cannot be expressed x +
m∑

i=1
aibi + z =

n∑
j=1

a′jb
′

j + z or y +
p∑

i=1
cidi + z′ =

q∑
j=1

c′jd
′

j + z′, then

( fSFhS)(x) = ∅ or ( fSFhS)(y) = ∅, and so ( fSFhS)(x) ∩ ( fSFhS)(y) ⊆ ( fSFhS)(x + y). Otherwise, we have
( fSFhS)(x) ∩ ( fSFhS)(y)

=
⋃

x+
m∑

i=1
aibi+z=

n∑
j=i

a′jb
′

j+z

( fS(ai) ∩ fS(a′j) ∩ hS(bi) ∩ hS(b′i ))

∩
⋃

y+
p∑

i=1
cidi+z′=

q∑
j=i

c′jd
′

j+z′

( fS(ci) ∩ fS(c′j) ∩ hS(di) ∩ hS(d′i ))

=
⋃

x+
m∑

i=1
aibi+z=

n∑
j=i

a′jb
′

j+z⋃
y+

p∑
i=1

cidi+z′=
q∑

j=i
c′jd
′

j+z′

( fS(ai) ∩ fS(a′j) ∩ fS(ci) ∩ fS(c′j) ∩ hS(bi) ∩ hS(b′j) ∩ hS(di) ∩ hS(d′j))

⊆
⋃

x+y+
k∑

i=1
xi yi+z+z′=

l∑
j=1

x′j y
′

j+z+z′

( fS(xi) ∩ fS(x′j) ∩ hS(yi) ∩ hS(y′j))

= ( fSFhS)(x + y).
Thus, (SI1) holds, that is (SI6) holds.
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Similarly, we can prove that (SI3) holds.
( fSFhS)F( fSFhS)

= ( fSFhSF fS)FhS

⊆̃( fSFS̃F fS)FhS (since hS⊆̃S̃)
⊆̃ fSFhS. (since fSFS̃F fS⊆̃ fS)

Thus, (SI7) holds.
Finally,

( fSFhS)FS̃F( fSFhS)
= ( fSF(hSFS̃)F fS)FhS

(since hS⊆̃S̃)
⊆̃( fSF(̃SFS̃)F fS)FhS

⊆̃( fSFS̃F fS)FhS⊆̃ fSFhS. (since fSFS̃F fS⊆̃ fS)
Thus, (SI8) holds. It follows from Theorem 3.4 that fSF1S is an SI-h-bi-ideal of S over U. �

Proposition 4.5. (1) Let fS and 1S be any SI-ri1ht h-ideal and SI-le f t h-ideal of S over U, respectively. Then,
fS∩̃1S is an SI-h-quasi-ideal of S over U.
(2) Let fS and 1S be two SI-h-quasi-ideals of S over U. Then, so is fS∩̃1S.

Proof. By similar proof of Theorem 3.8, we can prove that (SI1) and (SI3) hold.
(1) If fS and 1S are any SI-ri1ht h-ideal and SI-le f t h-ideal of S over U, respectively, then

(( fS∩̃1S)FS̃)∩̃(̃SF( fS∩̃1S))⊆̃( fSFS̃)∩̃(̃SF1S)⊆̃ fS∩̃1S.

Thus, (SI9) holds. Hence, fS∩̃1S is an SI-h-quasi-ideal of S over U.
(2) If fS and 1S are two SI-h-quasi-ideals of S over U,

(( fS∩̃1S)FS̃)∩̃(̃SF( fS∩̃1S))⊆̃( fSFS̃)∩̃(̃SF fS)⊆̃ fS,
and

(( fS∩̃1S)FS̃)∩̃(̃SF( fS∩̃1S))⊆̃(1SFS̃)∩̃(̃SF1S)⊆̃1S,
and so

(( fS∩̃1S)FS̃)∩̃(̃SF( fS∩̃1S))⊆̃ fS∩̃1S.

Then, fS∩̃1S is an SI-h-quasi-ideal of S over U. �
Similar to Proposition 2.8, we can get the following proposition.

Proposition 4.6. Let A ⊆ S. Then, A is an h-quasi-ideal of S if and only if SA is an SI-h-quasi-ideal of S over
U.

Finally, we give the following important result:

Theorem 4.7. (1) Let fS ∈ S(U) and α ⊆ U such that α ∈ Im( fS). If fS is an SI-h-quasi-ideal of S over U, then
U( fS;α) is an h-quasi-ideal of S.

(2) Let fS ∈ S(U). If U( fS;α) is an h-quasi-ideal of fS for each α ⊆ U and Im( fS) is a totally ordered set by
inclusion fS is an SI-h-quasi-ideal of S over U.

Proof. (1) Since fS(x) = α for some x ∈ S, then ∅ , U( fS;α) ⊆ α.
(i) Let x, y ∈ U( fS;α). Then, fS(x) ⊇ α and fS(y) ⊇ α. Since fS is an SI-h-quasi-ideal of S over U, then

fS(x + y) ⊇ fS(x) ∩ fS(y) ⊇ α ∩ α = α, and so x + y ∈ U( fS;α).
(ii) Let a, b ∈ U( fS;α) and x, z ∈ S such that x + a + z = b + z. Then, fS(a) ⊇ α and fS(b) ⊇ α. Since fS is an

SI-h-quasi-ideal of S over U, then fS(x) ⊇ fS(a) ∩ fS(b) ⊇ α ∩ α = α, and so x ∈ U( fS;α).
(iii) Let a ∈ S ·U( fS;α) ∩ U( fS;α) · S. Then, there exist x1, x2, y1, y2 ∈ U( fS;α) and s1, s2, t1, t2, z1, z2 ∈ S

such that a + s1x1 + z1 = s2x2 + z1 and a + y1t1 + z2 = y2t2 + z2. Hence, fS(x1) ⊇ α, fS(x2) ⊇ α, fS(y1) ⊇ α and
fS(y2) ⊇ α.

Moreover, we have
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(̃SF fS)(a) =
⋃

a+
m∑

i=1
aibi+z=

n∑
j=1

a′jb
′

j+z

(̃S(ai) ∩ S̃(a′j) ∩ fS(bi) ∩ fS(b′j))

⊇ S̃(s1) ∩ S̃(s2) ∩ fS(x1) ∩ fS(x2)
= fS(x1) ∩ fS(x2)
⊇ α ∩ α
= α,

and
( fSFS̃)(a) =

⋃
a+

m∑
i=1

cidi+z′=
n∑

j=1
c′jd
′

j+z′

( fS(ci) ∩ fS(c′j) ∩ S̃(di) ∩ S̃(d′j))

⊇ fS(y1) ∩ fS(y2) ∩ S̃(t1) ∩ S̃(t2)
= fS(y1) ∩ fS(y2)
⊇ α ∩ α
= α.

Since fS is an SI-h-quasi-ideal of S over U, then fS(a) ⊇ (̃SF fS)(a)∩ ( fSFS̃)(a) ⊇ α∩ α = α, which implies
that a ∈ U( fS;α). This proves that U( fS;α) is an h-quasi-ideal of S.

(2) Let fS ∈ S(U). Then,
(i) Let x, y ∈ S be such that fS(x) = α1 and fS(y) = α2, where it may be assumed α1 ⊆ α2. Then,

x ∈ U( fS;α1) and y ∈ U( fS;α2). Since α1 ⊆ α2, then y ∈ U( fS;α1). Since U( fS;α) is an h-quasi-ideal of fS for
each α ⊆ U, then x + y ∈ U( fS;α1). Hence, fS(x + y) ⊇ α1 = α1 ∩ α2 = fS(x) ∩ fS(y).

(ii) Let x, a, b, z ∈ S with x + a + z = b + z such that fS(a) = α1 and fS(b) = α2, where α1 ⊆ α2. Then,
a ∈ U( fS;α1) and b ∈ U( fS;α2). Since α1 ⊆ α2, then b ∈ U( fS;α1). Since U( fS;α) is an h-quasi-ideal of fS for
each α ⊆ U. Then, x ∈ U( fS;α1). Hence,

fS(x) ⊇ α1 = α1 ∩ α2 = fS(a) ∩ fS(b).
(iii) Let x ∈ S be such that (̃SF fS)(x) = α1 and ( fSFS̃)(x) = α2, where α1 ⊆ α2. Then, x ∈ U(̃SF fS;α1)

and x ∈ U( fSFS̃;α2). Since α1 ⊆ α2, x ∈ U( fSFS̃;α1). From (̃SF fS)(x) = α1, then there exist s1, s2, z1 ∈ S
and k1, k2 ∈ U( fS;α1) such that x + s1k1 + z1 = s2k2 + z1, that is, x ∈ S ·U( fS;α1). Similarly, we can prove
that x ∈ U( fS;α1) · S. Hence, x ∈ S ·U( fS;α1) ∩ U( fS;α1) · S. Since U( fS;α1) is an h-quasi-ideal of fS, then
x ∈ U( fS;α1). Thus, we have

fS(x) ⊇ α1 = α1 ∩ α2 = (̃SF fS)(x) ∩ ( fSFS̃)(x).
Hence, fS is an SI-h-quasi-ideal of S over U. �

5. h-Hemiregular Hemirings

In this section, we investigate some characterizations by means of SI-h-ideals, SI-h-bi-ideals and SI-h-
quasi-ideals.

Definition 5.1. [31] A hemiring S is called h-hemiregular if for each a ∈ S, there exist x1, x2, z ∈ S such that
a + ax1a + z = ax2a + z.

Lemma 5.2. [31] If A and B, are respectively, a right h-ideal and a left h-ideal of S, then AB ⊆ A ∩ B.

Lemma 5.3. [31] A hemiring S is h-hemiregular if and only if for any right h-ideal A and left h-ideal B, we
have AB = A ∩ B.

Theorem 5.4. [19] For any hemiring S, the following conditions are equivalent:
(1) S is h-hemiregular;
(2) fSF1S = fS∩̃1S for any SI-right h-ideal fS and any SI-left h-ideal 1S of S over U.

Lemma 5.5. [30] Let S be a hemiring. Then, the following conditions are equivalent:
(1) S is h-hemiregular;
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(2) B = BSB for every h-bi-ideal B of S;
(3) Q = QSQ for every h-quasi-ideal Q of S.

Theorem 5.6. For any hemiring S, the following conditions are equivalent:
(1) S is h-hemiregular;
(2) fS = fSFS̃F fS for every SI-h-bi-ideal fS of S over U;
(3) fS = fSFS̃F fS for every SI-h-quasi-ideal fS of S over U.

Proof. (1)⇒(2) Let S be an h-hemiregular hemiring, fS an SI-h-bi-ideal of S over U. For any x ∈ S. There
exist a, a′, z ∈ S such that x + xax + z = xa′x + z since S is h-hemiregular. Thus, we have

( fSFS̃F fS)(x)
= (( fSFS̃)F fS)(x)
=

⋃
x+

m∑
i=1

aibi+z=
n∑

j=1
a′jb
′

j+z

(( fSFS̃)(ai) ∩ ( fSFS̃)(a′j) ∩ fS(bi) ∩ fS(b′j))

⊇ ( fSFS̃)(xa) ∩ ( fSFS̃)(xa′) ∩ fS(x)
=

⋃
xa+

m∑
i=1

aibi+z=
n∑

j=1
a′jb
′

j+z

( fS(ai) ∩ fS(a′j) ∩ S̃(bi) ∩ S̃(b′j))

∩
⋃

xa′+
m∑

i=1
aibi+z=

n∑
j=i

a′jb
′

j+z

( fS(ai) ∩ fS(a′j) ∩ S̃(bi) ∩ S̃(b′j)) ∩ fS(x)

⊇ ( fS(xax) ∩ fS(xa′x)) ∩ ( fS(xax) ∩ fS(xa′x)) ∩ fS(x)
(Since xa + xaxa + za = xa′xa + za and xa′ + xaxa′ + za′ = xa′xa′ + za′)

⊇ fS(x) ∩ fS(x) ∩ fS(x)
= fS(x),

which implies, fSFS̃F fS⊇̃ fS. Since fS is an SI-h-bi-ideal of S over U, then fSFS̃F fS⊆̃ fS. Thus, we have
fSFS̃F fS = fS.

(2)⇒(3) This is straightforward by Proposition 4.3.
(3)⇒(1) Let Q be any h-quasi-ideal of S. Then, by Proposition 4.6, the soft characteristic function SA of

A is an SI-h-quasi-ideal of S over U.
Thus, by the assumption and Proposition 2.6(3), we have
SA = SAFS̃FSA = SAFSSFSA = SASA.

It follows from Proposition 2.6(1), we have A = ASA. Thus, by Lemma 5.5, S is h-hemiregular. �

Theorem 5.7. Let fS be a soft set of an h-hemiregular hemiring S. Then, the following conditions are
equivalent:

(1) fS may be presented in the form fS = 1SFhS, where 1S is an SI-ri1ht h-ideal and hS is an SI-le f t h-ideal
of S over U;

(2) fS is an SI-h-bi-ideal of S over U;
(3) fS is an SI-h-quasi-ideal of S over U.

Proof. (1)⇒(2) If there exist an SI-ri1ht h-ideal 1S and an SI-le f t h-ideal hS of S such that fS = 1SFhS, then
by Proposition 4.3, every SI-le f t(ri1ht) h-ideal of S is an SI-h-bi-ideal of S. Thus, 1S and hS are SI-h-bi-ideals
of S over U. It follows from Theorem 3.6 that 1SFhS = fS is an SI-h-bi-ideal of S.

(2)⇒(3) This is straightforward by Proposition 4.3.
(3)⇒(1) Since S is h-hemiregular, then by Theorem 5.6, fS = fSFS̃F fS, where fS is an SI-h-quasi-ideal of

S over U. Thus,
fS = fSFS̃F fS = fSF(̃SFS̃)F fS = ( fSFS̃)F(̃SF fS).

Hence, we can easily show that fSFS̃ and S̃F fS are an SI-ri1ht h-ideal and an SI-le f t h-ideal of S over U,
respectively. In fact,

( fSFS̃)FS̃ = fSF(̃SFS̃)⊆̃ fSFS̃ and S̃F(̃SF fS) = (̃SFS̃)F fS⊆̃S̃F fS. �
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Theorem 5.8. For any hemiring S, the following conditions are equivalent:
(1) S is h-hemiregular;
(2) fS∩̃1S = fSF1SF fS for every SI-h-bi-ideal fS and every SI-h-ideal 1S of S over U;
(3) fS∩̃1S = fSF1SF fS for every SI-h-quasi-ideal fS and every SI-h-ideal 1S of S over U.

Proof. (1)⇒(2) Let fS and 1S be any SI-h-bi-ideal and SI-h-ideal of S over U, respectively. Then,
fSF1SF fS⊆̃ fSFS̃F fS⊆̃ fS and fSF1SF fS⊆̃S̃F(1SFS̃)⊆̃S̃F1S⊆̃1S.

Then, fSF1SF fS⊆̃ fS∩̃1S.
For any x ∈ S, there exist a, a′, z ∈ S such that x + xax + z = xa′x + z since S is h-hemiregular.
Thus, we have

( fSF1SF fS)(x)
= (( fSF1S)F fS)(x)
=

⋃
x+

m∑
i=1

aibi+z=
n∑

j=1
a′jb
′

j+z

(( fSF1S)(ai) ∩ ( fSF1S)(a′j) ∩ fS(bi) ∩ fS(b′j))

⊇ ( fSF1S)(xa) ∩ ( fSF1S)(xa′) ∩ fS(x)
=

⋃
xa+

m∑
i=1

aibi+z=
n∑

j=1
a′jb
′

j+z

( fS(ai) ∩ fS(a′j) ∩ 1S(bi) ∩ 1S(b′j))

∩
⋃

xa′+
m∑

i=1
aibi+z=

n∑
j=1

a′jb
′

j+z

( fS(ai) ∩ fS(a′j) ∩ 1S(bi) ∩ 1S(b′j)) ∩ fS(x)

⊇ ( fS(x) ∩ 1S(axa) ∩ 1S(a′xa)) ∩ ( fS(x) ∩ 1S(axa′) ∩ 1S(a′xa′)) ∩ fS(x)
(xa + xaxa + za = xa′xa + za and xa′ + xaxa′ + za′ = xa′xa′ + za′)

⊇ fS(x) ∩ 1S(x)
= ( fS∩̃1S)(x),

which implies, fS ∩ 1S⊆̃ fSF1SF fS. Thus, we have
fSF1SF fS = fS∩̃1S.
(2)⇒(3) This is straightforward by Proposition 4.3.
(3)⇒(1) Since S̃ is an SI-h-ideal of S over U, then by the assumption, we have
fS = fS∩̃S̃ = fSFS̃F fS.

It follows from Theorem 5.6 that S is h-hemiregular. �

Theorem 5.9. Let S be a hemiring. Then, the following conditions are equivalent:
(1) S is h-hemiregular;
(2) fS∩̃1S⊆̃ fSF1S for every SI-h-bi-ideal fS and every SI-le f t h-ideal 1S of S over U;
(3) fS∩̃1S⊆̃ fSF1S for every SI-h-quasi-ideal fS and every SI-le f t h-ideal 1S of S over U;
(4) fS∩̃1S⊆̃ fSF1S for every SI-ri1ht h-ideal fS and every SI-h-bi-ideal of S over U;
(5) fS∩̃1S⊆̃ fSF1S for every SI-ri1ht h-ideal fS and every SI-h-quasi-ideal of S over U;
(6) fS∩̃1S∩̃hS⊆̃ fSF1SFhS for every SI-ri1ht h-ideal fS, every SI-h-bi-ideal 1S and every SI-le f t h-ideal hS

of S over U;
(7) fS∩̃1S∩̃hS⊆̃ fSF1SFhS for every SI-ri1ht h-ideal fS, every SI-h-quasi-ideal 1S and every SI-le f t h-ideal

hS of S over U.

Proof. (1)⇒(2) Let fS and 1S be any SI-h-bi-ideal and any SI-le f t h ideal of S over U, respectively. For any
x ∈ S, there exist a, a′, z ∈ S such that x + xax + z = xa′x + z since S is h-hemiregular. Then,

( fSF1S)(x)
=

⋃
x+

m∑
i=1

aibi+z=
n∑

j=1
a′jb
′

j+z

( fS(ai) ∩ fS(a′j) ∩ 1S(bi) ∩ 1S(b′j))

⊇ fS(x) ∩ 1S(ax) ∩ 1S(a′x)
⊇ fS(x) ∩ 1S(x)
= ( fS ∩ 1S)(x),
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which implies, fS∩̃1S⊆̃ fSF1S.
(2)⇒(1) Let fS and 1S be any SI-ri1ht h-ideal and any SI-le f t h-ideal of S over U, respectively. Then, it is

easy to see that fS is an SI-h-bi-ideal of S over U. By the assumption, we have
fS∩̃1S⊆̃ fSF1S⊆̃( fSFS̃)∩̃(̃SF1S)⊆̃ fS∩̃1S. Hence, fS∩̃1S = fSF1S. It follows from Theorem 5.4 that S is

h-hemiregular.
Similarly, we can show that (1)⇒(3), (1)⇒(4), (1)⇒(5).
(1)⇒(6) Let fS, 1S and hS be any SI-ri1ht h-ideal, any SI-h-bi-ideal and any SI-le f t h-ideal of S over U,

respectively. For any x ∈ S, there exist a, a′, z ∈ S such that x + xax + z = xa′x + z since S is h-hemiregular.
Then, we have

( fSF1SFhS)(x)
=

⋃
x+

m∑
i=1

aibi+z=
n∑

j=1
a′jb
′

j+z

(( fSF1S)(ai) ∩ ( fSF1S)(a′j) ∩ hS(bi) ∩ hS(b′j))

⊇ ( fSF1S)(x) ∩ hS(ax) ∩ hS(a′x)
=

⋃
x+

m∑
i=1

aibi+z=
n∑

j=1
a′jb
′

j+z

( fS(ai) ∩ fS(a′j) ∩ 1S(bi) ∩ 1S(b′j)) ∩ hS(ax) ∩ hS(a′x)

⊇ fS(xa) ∩ fS(xa′) ∩ 1S(x) ∩ hS(ax) ∩ hS(a′x)
⊇ fS(x) ∩ 1S(x) ∩ hS(x)
= ( fS∩̃1S∩̃hS)(x),

which implies, fS∩̃1S∩̃hS⊆̃ fSF1SFhS.
(6)⇒(7) This is straightforward by Proposition 4.3.
(7)⇒(1) Let fS and hS be any SI-ri1ht h-ideal and any SI-le f t h-ideal of S over U, respectively. Since S̃ is an
SI-h-quasi-ideal of S over U, then by the assumption, we have

fS∩̃hS = fS∩̃S̃∩̃hS⊆̃ fSFS̃FhS⊆̃ fSFhS⊆̃( fSFS̃)∩̃(̃SFhS) ⊆ fS∩̃hS.
Then, fS∩̃hS = fSFhS. It follows from Theorem 5.4 that S is h-hemiregular. �

6. h-intra-Hemiregular Hemirings

In this section, we investigate some characterizations by means of SI-h-ideals, SI-h-bi-ideal and SI-h-
quasi-ideals.

Definition 6.1. [30] A hemiring S is called h-intra-hemiregular if for each x ∈ S, there exist ai, a′i , b j, b′j, z ∈ S

such that x +
m∑

i=1
aix2a′i + z =

n∑
j=1

b jx2b′j + z. Equivalent definitions:

(1) x ∈ Sx2S,∀x ∈ S; (2) A ⊆ SA2S,∀A ⊆ S.

Lemma 6.2. [30] Let S be a hemiring. Then, the following conditions are equivalent:
(1) S is h-intra-hemiregular;
(2) L ∩ R ⊆ LR for every left h-ideal L and every right h-ideal R of S.

Theorem 6.3. Let S be a hemiring. Then, the following conditions are equivalent:
(1) S is h-intra-hemiregular;
(2) fS∩̃1S⊆̃ fSF1S for every SI-le f t h-ideal fS and every SI-ri1ht h-ideal of S over U.

Proof. (1)⇒(2) Let fS and 1S be any SI-le f t h-ideal and any SI-ri1ht h-ideal of S over U, respectively.For
any x ∈ S. Then, there exist ai, a′i , b j, b′j, z ∈ S such that

x +
m∑

i=1
aix2a′i + z =

n∑
j=1

b jx2b′j + z.

Then, we have
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( fSF1S)(x)
=

⋃
x+

m∑
i=1

aibi+z=
n∑

j=1
a′jb
′

j+z

( fS(ai) ∩ fS(a′j) ∩ 1S(bi) ∩ 1S(b′j))

⊇ fS(aix) ∩ fS(b jx) ∩ 1S(xa′i ) ∩ 1S(xb′j)
⊇ fS(x) ∩ 1S(x)
= fS∩̃1S(x),

which implies, fS∩̃1S⊆̃ fSF1S.
(2)⇒(1) Let L and R be any left h-ideal and any ri1ht h-ideal of S, respectively. Then, by Proposition 2.8, SL
and SR are an SI-le f t h-ideal and an SI-ri1ht h-ideal of S over U, respectively. Now, by Proposition 2.6 and
assumption, we have
SL∩R = SL∩̃SR ⊆ SLFSL = SLR.

By Proposition 2.6, we have L ∩ R ⊆ LR. Thus, it follows from Lemma 6.2 that S is h-intra-hemiregular. �

Lemma 6.4. [30] Let S be a hemiring. Then, the following are equivalent:
(1) S is both h-hemiregular and h-intra-hemiregular.
(2) B = B2 for every h-bi-ideal B of S.
(3) Q = Q2 for every h-quasi-ideal Q of S.

Theorem 6.5. Let S be a hemiring. Then, the following conditions are equivalent:
(1) S is both h-hemiregular and h-intra-hemiregular;
(2) fS = fSF fS for every SI-h-bi-ideal fS of S over U(that is, every SI-h-bi-ideal of S is idempotent);
(3) fS = fSF fS for every SI-h-quasi-ideal fS of S over U(that is, every SI-h-quasi-ideal of S is idempotent).

Proof. (1)⇒(2) Let fS be any SI-h-bi-ideal of S over U. Then, it is clear that fSF fS⊆̃ fS. For any x ∈ S, there
exist a1, a2, pi, p′i , q j, q′j, z ∈ S such that

x +
n∑

j=1
(xa2q jx)(xq′ja1x) +

n∑
j=1

(xa1q jx)(xq′ja2x) +
m∑

i=1
(xa1pix)(xp′i a1x) +

m∑
i=1

(xa2pix)(xp′i a2x) + z

=
m∑

i=1
(xa2pix)(xp′i a1x) +

m∑
i=1

(xa1pix)(xp′i a2x) +
n∑

j=1
(xa1q jx)(xq′ja1x) +

n∑
j=1

(xa2q jx)(xq′ja2x) + z.

Then, we have
( fSF fS)(x)

=
⋃

x+
m∑

i=1
aibi+z=

n∑
j=1

a′jb
′

j+z

( fS(ai) ∩ fS(a′j) ∩ fS(bi) ∩ fS(b′j))

⊇ fS(xa2q jx) ∩ fS(xq′ja1x) ∩ fS(xa1q jx) ∩ fS(xq′ja2x) ∩ fS(xa1pix) ∩ fS(xp′i a1x) ∩ fS(xaipix)
∩ fS(xp′i a2x)
⊇ fS(x),

which implies, fS⊆̃ fSF fS. Thus, fS = fSF fS.
(2)⇒(3) This is straightforward by Proposition 4.3.
(3)⇒(1) Let Q be any h-quasi-ideal of S. Then, by Proposition 2.8, SQ is an SI-h-quasi-ideal of S over U.

Now, by the assumption and Proposition 2.6, we have
SQ = SQFSQ = SQ2 .

Then, by Proposition 2.6, Q = Q2. It follows from Lemma 6.4 that S is both h-hemiregular and h-intra-
hemiregular. �

Similarly, we can get the following theorem:

Theorem 6.6. Let S be a hemiring. Then, the following conditions are equivalent:
(1) S is both h-hemiregular and h-intra-hemiregular;
(2) fS∩̃1S⊆̃ fSF1S for all SI-h-bi-ideals fS and 1S of S over U;
(3) fS∩̃1S⊆̃ fSF1S for all SI-h-quasi-ideals fS and 1S of S over U;
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(4) fS∩̃1S⊆̃ fSF1S for every SI-h-bi-ideal fS and every SI-h-quasi-ideal 1S of S over U;
(5) fS∩̃1S⊆̃ fSF1S for every SI-h-quasi-ideal fS and every SI-h-bi-ideal 1S of S over U;
(6) fS∩̃1S⊆̃ fSF1S for all SI-h-quasi-ideals fS and 1S of S over U.

7. h-Quasi-Hemiregular Hemirings

In this section, we investigate some characterizations of h-quasi-hemiregular hemirings by means of
three SI-h-ideals.

Definition 7.1. [15] A subset A of S is called idempotent if A = A2. A hemiring S is called le f t(ri1ht) h-
quasi-hemiregular if every left(right) h-ideal is idempotent and is called h-quasi-hemiregular if every left
h-ideal and every ri1ht h-ideal is idempotent.

Lemma 7.2. [15] A hemiring S is le f t h-quasi-hemiregular if and only if one of the following conditions
holds:

(1) There exist ci, di, c′j, d
′

j, z ∈ S such that

x +
m∑

i=1
cixdix + z =

n∑
j=1

c′jxd′jx + z for all x ∈ S;

(2) x ∈ SxSx for all x ∈ S;
(3) A ⊆ SASA for all A ∈ S;
(4) I ∩ L = IL for every h-ideal I an every le f t h-ideal L of S.

Theorem 7.3. A hemiring is le f t(ri1ht) h-quasi-hemiregular if and only if every SI-le f t(ri1ht) h-ideal of S is
idempotent.

Proof. Let S be a le f t h-quasi-hemiregular hemiring, fS any SI-le f t h-ideal of S over U. For any x ∈ S, there
exist ci, c′j, di, d′j, z ∈ S such that

x +
m∑

i=1
cixdix + z =

n∑
j=1

c′jxd′jx + z.

Then, we have
( fSF fS)(x)

=
⋃

x+
m∑

i=1
aibi+z′=

n∑
j=1

a′jb
′

j+z′

( fS(ai) ∩ fS(a′j) ∩ fS(bi) ∩ fS(b′j))

⊇ fS(cix) ∩ fS(c′jx) ∩ fS(dix) ∩ fS(d′jx)
⊇ fS(x),

which implies, fS⊆̃ fSF fS. Since fS is an SI-le f t h-ideal of S over U, then fSF fS⊆̃ fS. Thus, we have
fSF fS = fS.

Conversely, let L be any le f t h-ideal of S. Then, SL is an SI-le f t h-ideal of S over U by Proposition 2.8.
Then, by Proposition 2.6, we have
SL = SLFSL = SL2 ,

which implies, L = L2. Hence, S is le f t h-quasi-hemiregular. Similarly, we can prove the case for SI-ri1ht h-
ideals. �

Theorem 7.4. Let S be a hemiring. Then, the following conditions are equivalent:
(1) S is le f t h-quasi-hemiregular;
(2) fS∩̃1S = fSF1S for every SI-h-ideal fS and every SI-le f t h-ideal 1S of S over U;
(3) fS∩̃1S⊆̃ fSF1S for every SI-h-ideal fS and every SI-h-bi-ideal 1S of S over U;
(4) fS∩̃1S⊆̃ fSF1S for every SI-h-ideal fS and every SI-h-quasi-ideal 1S of S over U.
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Proof. (1)⇒(3) Let fS and 1S be any SI-h-ideal and SI-h-bi-ideal of S over U, respectively. For x ∈ S,

by Lemma 7.2, we have x ∈ SxSx ⊆ SSxSxSx ⊆ SxSxSx, and so there exist ci, c′j, di, d′j, ei, e′j, z ∈ S such that

x +
m′∑
j=1

cixdixeix + z =
n′∑
j=1

c′jxd′jxe′jx + z.

Then, we have
( fSF fS)(x)

=
⋃

x+
m∑

i=1
aibi+z=

n∑
j=1

a′jb
′

j+z

( fS(ai) ∩ fS(a′j) ∩ 1S(bi) ∩ 1S(b′j))

⊇ fS(cixdi) ∩ fS(c′jxd′j) ∩ 1S(xeix) ∩ 1S(xe′jx)
⊇ fS(x) ∩ 1S(x)
= fS∩̃1S(x),

which implies, fS∩̃1S⊆̃ fSF fS.
(3)⇒(4)⇒(2) It is clear.
(2)⇒(1) Let I and L be any h-ideal and any le f t h-ideal of S, respectively. Then,SI andSL are an SI-h-ideal

and SI-le f t h-ideal of S, respectively. Then,
SI∩L = SI∩̃SL = SIFSL = SIL,

which implies, I ∩ L = IL. It follows from Lemma 7.2 that S is h-quasi-hemiregular. �
Similarly, we can get the following theorem.

Theorem 7.5. Let S be a hemiring. Then, the following conditions are equivalent:
(1) S is le f t h-quasi-hemiregular;
(2) fS∩̃1S∩̃hS⊆̃ fSF1SFhS for every SI-h-ideal fS, every SI-ri1ht h-ideal 1S and every SI-h-bi-ideal hS of S

over U;
(3) fS∩̃1S∩̃hS⊆̃ fSF1SFhS for every SI-h-ideal fS, every SI-ri1ht h-ideal 1S and every SI-h-quasi-ideal hS

of S over U.

Now, we can describe the characterization of h-quasi-hemiregular hemirings.

Theorem 7.6. A hemiring S is h-quasi-hemiregular if and only if fS = (̃SF fS)2
∩̃( fSFS̃)2 for every SI-h-

quasi-ideal of S over U.

Proof. Let S be an h-quasi-hemiregular hemiring, fS an SI-h-quasi-ideal of S over U. we know that S̃F fS
and fSFS̃ are an SI-le f t h-ideal and an SI-ri1ht h-ideal of S over U, respectively, and so both S̃F fS and fSFS̃
are idempotent by Theorem 7.3. Hence, we have

(̃SF fS)2
∩̃( fSFS̃)2 = (̃SF fS)∩̃( fSFS̃)⊆̃ fS.

For any x ∈ S, there exist ci, c′j, di, d′j, z ∈ S such that x +
m′∑
i=1

cixdix + z =
n′∑
j=1

c′jxd′jx + z since S is le f t h-quasi-

hemiregular. Then, we have
(̃SF fS)2(x)

=
⋃

x+
m∑

i=1
aibi+z=

n∑
j=1

a′jb
′

j+z

((̃SF fS)(ai) ∩ (̃SF fS)(a′j) ∩ (̃SF fS)(bi) ∩ (̃SF fS)(b′j))

⊇ (̃SF fS)(cix) ∩ (̃SF fS)(c′jx) ∩ (̃SF fS)(dix) ∩ (̃SF fS)(d′jx)
⊇ fS(x),

which implies, fS⊆̃(̃SF fS)2. Similarly, we can prove fS⊆̃( fSFS̃)2, and so, fS⊆̃(̃SF fS)2
∩̃( fSFS̃)2. Thus,

fS = (̃SF fS)2
∩̃( fSFS̃)2.

Conversely, let fS be any SI-le f t h-ideal of S over U. Then, by Proposition 4.3, we have fS is an SI-h-
quasi-ideal of S over U. Then,
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fS = (̃SF fS)2
∩̃( fSFS̃)2

⊆̃(̃SF fS)2
⊆̃ fSF fS⊆̃S̃F fS⊆̃ fS.

Thus, fS = fSF fS. Then, by Theorem 4.3, S is le f t h-quasi-hemiregular. Similarly, we can prove S is a
ri1ht h-quasi-hemiregular. Therefore, S is h-quasi-hemiregular. �

Lemma 7.7. [15] A hemiring S is both le f t h-quasi-hemiregular and h-intra-hemiregular if and only if for

any x ∈ S, there exist ci, di, c′j, d
′

j, z ∈ S such that x +
m∑

i=1
cix2dix + z =

n∑
j=1

c′jx
2d′jx + z.

Similar to Theorems 7.4 and 7.5, we can get the following theorem.

Theorem 7.8. Let S be a hemiring. Then, the following conditions are equivalent:
(1) S is both le f t h-hemiregular and h-intra-hemiregular;
(2) fS∩̃1S⊆̃ fSF1S for every SI-le f t h-ideal fS and every SI-h-bi-ideal 1S of S over U;
(3) fS∩̃1S⊆̃ fSF1S for every SI-le f t h-ideal fS and every SI-h-quasi-ideal 1S of S over U.

8. Conclusions

The aim of this article is to lay a foundation for providing a soft algebraic tool in considering many
problems that contain uncertainties. In order to provide these soft algebraic structures, we make a new
approach to hemirings by means of soft set theory, with the concepts of SI-hemirings, SI-h-ideals, SI-h-
bi-ideals and SI-h-quasi-ideals. Finally, we investigate the characterizations of h-hemiregular hemirings,
h-intra-hemiregular hemirings and h-quasi-hemiregular hemirings.

We believe that the research along this direction can be continued, and in fact, some results in this
paper have already constituted a foundation for further investigation concerning the further development
of hemirings. In the future study of soft hemirings, we can consider to apply this kind of new soft hemirings
to some applied fields, such as decision making, data analysis and forecasting and so on.
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Appendix

It suffices to show that when x +
m∑

i=1
aibi + z =

n∑
j=1

a′jb
′

j + z and for each i = 1, · · · ,m and j = 1, · · · ,n,

ai +
mi∑

k=1
aikbik + zi =

ni∑
l=1

a′jlb
′

jl + zi and a′j +
m′j∑

p=1
aipbip + z′j =

n′j∑
q=1

a′jqb′jq + z′j, we have x +
m′∑
i=1

ãic̃ib̃i + z̃ =
n′∑
j=1

ã′jc̃
′

jb̃
′

j + z̃

for some m′,n′, ãi, b̃i, c̃i, ã′j, b̃
′

j and c̃′j.
For each i, we have

ai +

mi∑
k=1

aikbik + zi =

ni∑
l=1

a′jlb
′

jl + zi (1)

Multiplying two side of Eq. (1) by bi, we have

aibi +

mi∑
k=1

aikbikbi + zibi =

ni∑
l=1

a′jlb
′

jlbi + zibi (2)
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Summing for all i ranging from 1 to m, we have

m∑
i=1

aibi +

m∑
i=1

mi∑
k=1

aikbikbi +

m∑
i=1

zibi =

m∑
i=1

ni∑
l=1

a′jlb
′

jlbi +

m∑
i=1

zibi (3)

Similarly, we have

n∑
j=1

n′j∑
q=1

a′jqb′jqb′j +

n∑
j=1

z′jb
′

j =

n∑
j=1

a′jb
′

j +

n∑
j=1

m′j∑
p=1

aipbipb′j +

n∑
j=1

z′jb
′

j (4)

Adding Eqs. (3) and (4), we have

m∑
i=1

aibi +

m∑
i=1

mi∑
k=1

aikbikbi +

m∑
i=1

zibi +

n∑
j=1

n′j∑
q=1

a′jqb′jqb′j +

n∑
j=1

z′jb
′

j =

n∑
j=1

a′jb
′

j +

n∑
j=1

m′j∑
p=1

aipbipb′j +

n∑
j=1

z′jb
′

j (5)

+

m∑
i=1

ni∑
l=1

a′jlb
′

jlbi +

m∑
i=1

zibi

Adding two side of Eq. (1) by x + z, we have

(x +

m∑
i=1

aibi + z) +

m∑
i=1

mi∑
k=1

aikbikbi +

m∑
i=1

zibi +

n∑
j=1

n′j∑
q=1

a′jqb′jqb′j +

n∑
j=1

z′jb
′

j =x +

n∑
j=1

a′jb
′

j + z (6)

+

n∑
j=1

m′j∑
p=1

aipbipb′j +

n∑
j=1

z′jb
′

j +

m∑
i=1

ni∑
l=1

a′jlb
′

jlbi +

m∑
i=1

zibi

By x +
m∑

i=1
aibi + z =

n∑
j=1

a′jb
′

j + z, we have

n∑
j=1

a′jb
′

j + z +

m∑
i=1

mi∑
k=1

aikbikbi +

m∑
i=1

zibi +

n∑
j=1

n′j∑
q=1

a′jqb′jqb′j +

n∑
j=1

z′jb
′

j =x +

n∑
j=1

a′jb
′

j + z (7)

+

n∑
j=1

m′j∑
p=1

aipbipb′j +

n∑
j=1

z′jb
′

j +

m∑
i=1

ni∑
l=1

a′jlb
′

jlbi +

m∑
i=1

zibi

Hence, Eq. (7) can be reformulated as the following form:

m∑
i=1

mi∑
k=1

aikbikbi +

n∑
j=1

n′j∑
q=1

a′jqb′jqb′j + z′ =x +

n∑
j=1

m′j∑
p=1

aipbipb′j +

m∑
i=1

ni∑
l=1

a′jlb
′

jlbi + z′, (8)

where z′ =
n∑

j=1
a′jb
′

j + z +
m∑

i=1
zibi +

n∑
j=1

z′jb
′

j.
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