Applications of Soft Intersection Sets to Hemirings via $S I-h$-Bi-Ideals and SI-h-Quasi-Ideals

Xueling Ma ${ }^{\text {a }}$, Jianming Zhan ${ }^{\text {a }}$, Bijan Davvaz ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Hubei University for Nationalities, Enshi, Hubei Province 445000, China
${ }^{b}$ Department of Mathematics, Yazd University, Yazd, Iran

Abstract

The aim of this paper is to lay a foundation for providing a soft algebraic tool in considering many problems that contains uncertainties. In order to provide these soft algebraic structures, we introduce the concepts of $S I-h$-bi-ideals and SI- h-quasi-ideals of hemirings. The relationships between these kinds of soft intersection h-ideals are established. Finally, some characterizations of h-hemiregular, h-intra-hemiregular and h-quasi-hemiregular hemirings are investigated by these kinds of soft intersection h-ideals.

1. Introduction

In order to model vagueness and uncertainty, Molodtsov [23] introduced soft set theory and it has received much attention since its inception. Since then, especially soft set operations, have undergone tremendous studies. Maji [20] presented some definitions or soft sets. Ali [2, 3] proposed some new operations on soft sets. Sezgin [25] also gave some operations on soft sets. Majumdar [22] investigated some soft mapping. In the same time, this theory has been proven useful in many different fields such as decision making [$6,7,10,12,21$], data analysis [32], forecasting and so on. Recently, the algebraic structures of soft sets have been studied increasingly, such as, soft groups [1], soft semigroups [11], soft BCK/BCI-algebras [13], soft hyperstructures [4, 28].

We note that the ideals of semirings play a crucial role in the structure theory, ideals in semirings do not in general coincide with the ideals of a ring. For this reason, the usage of ideals in semirings is somewhat limited. By a hemiring, we mean a special semiring with a zero and with a commutative addition. The properties of h-ideals of hemirings were thoroughly investigated by Torre [27] and by using h-ideals, Torre established some analogous ring theorems for hemirings. In particular, Jun [14] discussed some properties of hemirings. Zhan et al. [31] discussed h-hemiregular hemirings. Some characterizations of h-semisimple and h-intra-hemiregular hemirings were investigated by Yin et al. [29,30]. Further, some generalized fuzzy h-ideals of hemirings were investigated by Davvaz, Dudek and Ma, for examples, see $[8,9,15,17,18,24]$.

Recently, Çaǧman and Sezgin discussed some important properties on soft intersection groups and soft intersection near-rings, see [5, 26]. By this new idea, Ma et al. [16, 19] introduced the concepts of soft

[^0]intersection hemirings and soft intersection h-ideals(soft intersection h-interior ideals) of hemirings. By soft intersection h-ideals, Ma et al. investigated some characterizations of h-hemiregular hemirings. As a continuation of these two papers, we introduce the concepts of SI-h-bi-ideals and SI-h-quasi-ideals of hemirings. In the same time, we give some characterizations of h-hemiregular, h-intra-hemiregular and h-quasi-hemiregular hemirings.

2. Preliminaries

A semiring is an algebraic system $(S,+, \cdot)$ consisting of a non-empty set S together with two binary operations on S called addition and multiplication (denoted in the usual manner) such that $(S,+)$ and (S, \cdot) are semigroups and the following distributive laws:
$a(b+c)=a b+a c$ and $(a+b) c=a c+b c$
are satisfied for all $a, b, c \in S$.
By zero of a semiring $(S,+, \cdot)$ we mean an element $0 \in S$ such that $0 \cdot x=x \cdot 0=0$ and $0+x=x+0=x$ for all $x \in S$. A semiring with zero and a commutative semigroup $(S,+)$ is called a hemiring. A one unit 1 on S, we means that $1 \cdot x=x \cdot 1=x$ for all $x \in S$. For the sake of simplicity, we shall write $a b$ for $a \cdot b(a, b \in S)$.

A subhemiring of S is a subset A of S closed under addition and multiplication. A subset A of S is called a left(right) ideal of S if A is closed under addition and $S A \subseteq A(A S \subseteq A)$. A subset B of S is called a bi ideal of S if B is closed under addition and multiplication such that $B S B \subseteq B$. A subset Q of S is called a quasi-ideal of S if Q is closed under addition and $S Q \cap Q S \subseteq Q$.

A subhemiring(left ideal, right ideal, ideal, bi-ideal) A of S is called an h-subhemiring(left h-ideal, right h-ideal, h-ideal, h-bi-ideal), respectively, if for any $x, z \in S$ and $a, b \in A, x+a+z=b+z \rightarrow x \in A$.

The h-closure \bar{A} of a subset A of S is defined as

$$
\bar{A}=\{x \in S \mid x+a+z=b+z \text { for some } a, b \in A, z \in S\} .
$$

A quasi-ideal Q of S is called an h-quasi-ideal of S if $\overline{S Q} \cap \overline{Q S} \subseteq Q$ and for any $x, z \in S$ and $a, b \in Q$ from $x+a+z=b+z$, it follows $x \in Q$.

From now on, S is a hemiring, U is an initial universe, E is a set of parameters, $P(U)$ is the power set of U and $A, B, C \in E$.

Definition 2.1. [23] A soft set f_{A} over U is a set defined by $f_{A}: E \rightarrow P(U)$ such that $f_{A}(x)=\emptyset$ if $x \notin A$. Here f_{A} is also called an approximate function. A soft set over U can be represented by the set of ordered pairs $f_{A}=\left\{\left(x, f_{A}(x)\right) \mid x \in E, f_{A}(x) \in P(U)\right\}$. It is clear to see that a soft set is a parameterized family of subsets of the set U. Note that the set of all soft sets over U will be denoted by $S(U)$.

Definition 2.2. [6] Let $f_{A}, f_{B} \in S(U)$. Then,
(1) f_{A} is said to be a soft subset of f_{B} and denoted by $f_{A} \widetilde{\subseteq} f_{B}$ if $f_{A}(x) \subseteq f_{B}(x)$, for all $x \in E$. f_{A} and f_{B} are said to be soft equal, denoted by $f_{A}=f_{B}$, if $f_{A} \widetilde{\subseteq} f_{B}$ and $f_{A} \widetilde{\supseteq} f_{B}$.
(2) The union of f_{A} and f_{B}, denoted by $f_{A} \widetilde{\cup} f_{B}$, is defined as $f_{A} \widetilde{\cup} f_{B}=f_{A \cup B}$, where $f_{A \cup B}(x)=f_{A}(x) \cup f_{B}(x)$, for all $x \in E$;
(3) the intersection of f_{A} and f_{B}, denoted by $f_{A} \widetilde{\cap} f_{B}$, is defined as $f_{A} \widetilde{\cap} f_{B}=f_{A \cap B}$, where $f_{A \cap B}(x)=$ $f_{A}(x) \cap f_{B}(x)$, for all $x \in E$.

Definition 2.3. [5] Let $f_{A} \in S(U)$ and $\alpha \subseteq U$. Then, upper α-inclusion of f_{A}, denoted by $U\left(f_{A} ; \alpha\right)$, is defined as $U\left(f_{A} ; \alpha\right)=\left\{x \in A \mid f_{A}(x) \supseteq \alpha\right\}$.

Definition 2.4. [5] Let $A \subseteq S$. We denote by \mathcal{S}_{A} the soft characteristic function of A and define as

$$
S_{A}(x)= \begin{cases}U & \text { if } x \in A \\ \emptyset & \text { if } x \notin A\end{cases}
$$

Definition 2.5. [19] Let $f_{S}, g_{S} \in S(U)$. Then,
(1) The soft union-intersection product $f_{S} \star g_{S}$ is defined by

$$
\left(f_{S} \star g_{S}\right)(x)=\bigcup_{x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}\left(f_{S}\left(a_{i}\right) \cap f_{S}\left(a_{j}^{\prime}\right) \cap g_{S}\left(b_{i}\right) \cap g_{S}\left(b_{j}^{\prime}\right)\right)
$$

for all $a_{i}, a_{j}^{\prime}, b_{i}, b_{j}^{\prime}, x, z \in S, i=1,2, \ldots, m ; j=1,2, \ldots, n$.
and $\left(f_{S} \star g_{S}\right)(x)=\emptyset$ if x cannot be expressed as $x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z$;
(2) The soft union-intersection sum $f_{S} \boxplus g_{S}$ is defined by

$$
\left(f_{S} \boxplus g_{S}\right)(x)=\bigcup_{x+a_{1}+b_{1}+z=a_{2}+b_{2}+z}\left(f_{S}\left(a_{1}\right) \cap f_{S}\left(a_{2}\right) \cap g_{S}\left(b_{1}\right) \cap g_{S}\left(b_{2}\right)\right)
$$

for all $a_{1}, a_{2}, b_{1}, b_{2}, x, z \in S, i=1,2, \ldots, m ; j=1,2, \ldots, n$.
and $\left(f_{S} \boxplus g_{S}\right)(x)=\emptyset$ if x cannot be expressed as $x+a_{1}+b_{1}+z=a_{2}+b_{2}+z$.
The following proposition is obvious.
Proposition 2.6. [19] Let $A, B \subseteq S$. Then,
(1) $A \subseteq B \Rightarrow \mathcal{S}_{A} \subseteq \mathcal{S}_{B}$,
(2) $\mathcal{S}_{A} \cap \mathcal{S}_{B}=\mathcal{S}_{A \cap B}$,
(3) $\mathcal{S}_{A} \star \mathcal{S}_{B}=\mathcal{S}_{\overline{A B}}$,
(4) $\mathcal{S}_{A} \boxplus \mathcal{S}_{B}=\mathcal{S}_{\overline{A+B}}$.

Definition 2.7. [19]

(1) A soft set f_{S} over U is called a soft intersection hemiring (briefly, SI-hemiring) if it satisfies:
(SI) $f_{S}(x+y) \supseteq f_{S}(x) \cap f_{S}(y)$ for all $x, y \in S$;
(SI $I^{\prime} f_{S}(x y) \supseteq f_{S}(x) \cap f_{S}(y)$ for all $x, y \in S$;
$\left(S I_{3}\right) f_{S}(x) \supseteq f_{S}(a) \cap f_{S}(b)$ with $x+a+z=b+z$ for all $x, a, b, z \in S$.
(2) A soft set f_{S} over U is called a soft intersection left(right) h-ideal(briefly, $S I$-left(right) h-ideal) of S over U if satisfies $\left(S I_{1}\right),\left(S I_{3}\right)$ and
$\left(S I_{4}\right) f_{S}(x y) \supseteq f_{S}(y)\left(f_{S}(x y) \supseteq f_{S}(x)\right)$ for all $x, y \in S$.
It is easy to see that if $f_{S}(x)=U$ for all $x \in S$, then f_{S} is an SI-hemiring(SI-left h-ideal, SI-right h-ideal,SI-h-ideal) denoted by $\widetilde{\mathbb{S}}[19]$.

Proposition 2.8. [19] Let $A \subseteq S$. Then, A is an h-subhemiring(left h-ideal, right h-ideal, h-ideal) of S if and only if \mathcal{S}_{A} is an SI-hemiring(SI-left h-ideal, SI-right h-ideal, SI-h-ideal) of S over U.

3. SI-h-Bi-Ideals

In this section, we introduce the concept of SI-h-bi-ideals of hemirings and investigate some characterizations.

Definition 3.1. A soft set f_{S} over U is called a soft intersection h-bi-ideal(briefly, SI-h-bi-ideal) of S over U if it satisfies $\left(S I_{1}\right),\left(S I_{2}\right),\left(S I_{3}\right)$ and
$\left(S I_{5}\right) f_{S}(x y z) \supseteq f_{S}(x) \cap f_{S}(z)$ for all $x, y, z \in S$.
Remark 3.2. If f_{S} is an $S I$-h-bi-ideal of S over U, the $f_{S}(0) \supseteq f_{S}(x)$ for all $x \in S$.

Example 3.3. Let $U=\left\{<x, y>\mid x^{2}=y^{2}=e, x y=y x\right\}=\{e, x, y, y x\}$, Dihedral group, be the universal set. Consider the hemiring $S=\mathbb{Z}_{4}=\{0,1,2,3\}$, non-negative integers module 4 , as the set of paramenters.

Define a soft set f_{S} over U by
$f_{S}(0)=\{e, x, y\}, f_{S}(1)=f_{S}(3)=\{x\}$ and $f_{S}(2)=\{e, x\}$.
Then, one can easily check that f_{S} is an SI-h-bi-ideal of S over U.

Theorem 3.4. Let $f_{S} \in S(U)$. Then, f_{S} is an $S I$-h-bi-ideal of S over U if and only if it satisfies $\left(S I_{3}\right)$ and
(SI $)_{6} f_{S} \boxplus f_{S} \widetilde{\subseteq} f_{S}$;
$\left(S I_{7}\right) f_{S} \star f_{S} \widetilde{\subseteq} f_{S} ;$
$\left(S I_{8}\right) f_{S} \star \widetilde{\mathbb{S}} \star f_{S} \widetilde{\subseteq} f_{S}$.

Proof. Assume that f_{S} is an $S I-h$-bi-ideal of S over U.
(1) Let $x \in S$. If $\left(f_{S} \boxplus f_{S}\right)(x)=\emptyset$. Then, it is clear that $\left(f_{S} \boxplus f_{S}\right)(x) \subseteq f_{S}(x)$. Otherwise, let $a_{1}, a_{2}, b_{1}, b_{2}, z \in S$ such that $x+a_{1}+b_{1}+z=a_{2}+b_{2}+z$.
Then,

$$
\begin{aligned}
\left(f_{S} \boxplus f_{S}\right)(x) & =\bigcup^{x+a_{1}+b_{1}+z=a_{2}+b_{2}+z}\left(\bigcup_{S}\left(a_{1}\right) \cap f_{S}\left(a_{2}\right) \cap f_{S}\left(b_{1}\right) \cap f_{S}\left(b_{2}\right)\right) \\
& \left.\subseteq f_{S}\left(a_{1}+b_{1}\right) \cap f_{S}\left(a_{2}+b_{2}\right)\right) \\
& \subseteq \bigcup_{\substack{x+a_{1}+b_{1}+z=a_{2}+b_{2}+z}} f_{S}(x) \\
& =f_{S}(x),
\end{aligned}
$$

which implies, f_{S} 田 $f_{S} \widetilde{\subseteq} f_{S}$. Thus, $\left(S I_{6}\right)$ holds.
(2) Let $x \in S$. If $\left(f_{S} \star f_{S}\right)(x)=\emptyset$. Then, it is clear that $\left(f_{S} \star f_{S}\right)(x) \subseteq f_{S}(x)$. Otherwise, let $x+\sum_{i=1}^{m} a_{i} b_{i}+z=$ $\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z$ with $a_{i}, a_{j}^{\prime} \in S$ and $b_{i}, b_{j}^{\prime} \in S$ for all $i=1,2, \ldots, m ; j=1,2, \ldots, n$. Thus,

$$
\begin{aligned}
\left(f_{S} \star f_{S}\right)(x) & =\quad \bigcup_{\substack{x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}}\left(f_{S}\left(a_{i}\right) \cap f_{S}\left(b_{i}\right) \cap f_{S}\left(a_{j}^{\prime}\right) \cap f_{S}\left(b_{j}^{\prime}\right)\right) \\
& \subseteq \bigcup_{\substack{x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}}^{\bigcup}\left(f_{S}\left(a_{i}\right) \cap f_{S}\left(b_{i}\right) \cap \widetilde{\mathbb{S}}\left(a_{j}^{\prime}\right) \cap \widetilde{\mathbb{S}}\left(b_{j}^{\prime}\right)\right) \\
& =f_{S}(x),
\end{aligned}
$$

which implies, $f_{S} \star f_{S} \widetilde{\subseteq} f_{S}$. Thus, $\left(S I_{7}\right)$ holds.
(3) Let $x \in S$, if $\left(f_{S} \star \widetilde{\mathbb{S}} \star f_{S}\right)(x)=\emptyset$. Then, it is clear that $\left(f_{S} \star \widetilde{\mathbb{S}} \star f_{S}\right)(x) \subseteq f_{S}(x)$. Otherwise,

```
    \(\left(f_{S} \star \widetilde{\mathbb{S}} \star f_{S}\right)(x)=\left(\left(f_{S} \star \widetilde{\mathbb{S}}\right) \star f_{S}\right)(x)\)
\(=\bigcup_{x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}\left(\left(f_{S} \star \widetilde{\mathbb{S}}\right)\left(a_{i}\right) \cap\left(f_{S} \star \widetilde{\mathbb{S}}\right)\left(a_{j}^{\prime}\right) \cap f_{S}\left(b_{i}\right) \cap f_{S}\left(b_{j}^{\prime}\right)\right)\)
\(=\bigcup_{x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}\left(\bigcup_{a_{i}+\sum_{k=1}^{m_{i}} a_{i k} b_{i k}+z_{i}=\sum_{l=1}^{n_{i}} a_{j l}^{\prime} b_{j l}^{\prime}+z_{i}}\left(f_{S}\left(a_{i k}\right) \cap f_{S}\left(a_{j l}^{\prime}\right) \cap \widetilde{\mathbb{S}}\left(b_{j k}\right) \cap \widetilde{\mathbb{S}}\left(b_{j l}^{\prime}\right)\right)\right.\)
\(\cap\left(\cup_{n^{\prime}}\left(f_{S}\left(a_{i p}\right) \cap f_{S}\left(a_{j q}^{\prime}\right) \cap \widetilde{\mathbb{S}}\left(b_{i p}\right) \cap \widetilde{\mathbb{S}}\left(b_{j q}^{\prime}\right)\right) \cap f_{S}\left(b_{i}\right) \cap f_{S}\left(b_{j}^{\prime}\right)\right)\)
    \(a_{j}^{\prime}+\sum_{p=1}^{m_{j}^{\prime}} a_{i p} b_{i p}+z_{j}^{\prime}=\sum_{q=1}^{n_{j}^{\prime}} a_{i q}^{\prime} b_{j q}^{\prime}+z_{j}^{\prime}\)
\(=\bigcup^{m} \bigcup_{m_{i}^{\prime}}^{m_{n_{i}}} \bigcup_{n_{j}^{\prime}} \quad\left(\left(f_{S}\left(a_{i k}\right)\right.\right.\)
    \(x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z \quad a_{i}+\sum_{k=1}^{m_{i}} a_{i k} b_{i k}+z_{i}=\sum_{l=1}^{n_{i}} a_{j l}^{\prime} b_{j i}^{\prime}+z_{i} \quad a_{j}^{\prime}+\sum_{p=1}^{m_{j}^{\prime}} a_{i p} b_{i p}+z_{j}^{\prime}=\sum_{q=1}^{n_{j}^{\prime}} a_{j q}^{\prime} b_{j q}^{\prime}+z_{j}^{\prime}\)
\(\left.\cap f_{S}\left(a_{j l}^{\prime}\right) \cap \widetilde{\mathbb{S}}\left(b_{j k}\right) \cap \widetilde{\mathbb{S}}\left(b_{j l}^{\prime}\right)\right) \cap\left(\left(f_{S}\left(a_{i p}\right) \cap f_{S}\left(a_{j q}^{\prime}\right) \cap \widetilde{\mathbb{S}}\left(b_{i p}\right) \cap \widetilde{\mathbb{S}}\left(b_{j q}^{\prime}\right)\right) \cap f_{S}\left(b_{i}\right) \cap f_{S}\left(b_{j}^{\prime}\right)\right)\)
\(\subseteq \quad \cup, \quad\left(f_{S}\left(a_{i}\right) \cap f_{S}\left(a_{j}^{\prime}\right) \cap f_{S}\left(b_{i}\right) \cap f_{S}\left(b_{j}^{\prime}\right)\right)\) (Please refer to Appendix)
    \(x+\sum_{i=1}^{m^{\prime}} \tilde{\tilde{a}}_{i} \tilde{i}_{i} \tilde{b}_{i}+\tilde{z}=\sum_{j=1}^{n^{\prime}} \tilde{\tilde{f}}_{j}^{\prime} \tilde{\tau}_{j} \tilde{b}_{j}^{\prime}+\tilde{z}\)
\(\subseteq \bigcup_{x+\sum_{i=1}^{m} a_{i} c_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} c_{j}^{\prime} b_{j}^{\prime}+z}\left(f_{S}\left(\sum_{i=1}^{m^{\prime}} a_{i} c_{i} b_{i}\right) \cap f_{S}\left(\sum_{j=1}^{n^{\prime}} a_{j}^{\prime} c_{j}^{\prime} b_{j}^{\prime}\right)\right)\)
\(\subseteq f_{S}(x)\),
```

 which implies, \(f_{S} \star \widetilde{\mathbb{S}} \star f_{S} \widetilde{\subseteq} f_{S}\). Thus, \(\left(S I_{8}\right)\) holds.
 Conversely, assume that \(\left(S I_{3}\right),\left(S I_{6}\right),\left(S I_{7}\right)\) and \(\left(S I_{8}\right)\) hold.
 (1) \(f_{S}(x+y) \supseteq\left(f_{S} \boxplus f_{S}\right)(x+y)\)
 \(=\underset{x+y+a_{1}+b_{1}+z=a_{2}+b_{2}+z}{\bigcup}\left(f_{S}\left(a_{1}\right) \cap f_{S}\left(a_{2}\right) \cap f_{S}\left(b_{1}\right) \cap f_{S}\left(b_{2}\right)\right)\)
 \(\supseteq f_{S}(x) \cap f_{S}(y) \cap f_{S}(0)\)
 \(=f_{S}(x) \cap f_{S}(y)\).
 Thus, $\left(S I_{1}\right)$ holds.
(2) $f_{S}(x y) \supseteq\left(f_{S} \star f_{S}\right)(x y)$

$$
\begin{array}{ll}
= & \bigcup_{x y+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}\left(f_{S}\left(a_{i}\right) \cap f_{S}\left(a_{j}^{\prime}\right) \cap f_{S}\left(b_{i}\right) \cap f_{S}\left(b_{j}^{\prime}\right)\right) \\
\supseteq & f_{S}(x) \cap f_{S}(y) \cap f_{S}(0) \\
= & f_{S}(x) \cap f_{S}(y) .
\end{array}
$$

Thus, $\left(S I_{2}\right)$ holds.
(3) Let $x, y, z \in S$. Then,

$$
\begin{aligned}
& f_{S}(x y z) \supseteq\left(f_{S} \star \widetilde{\mathbb{S}} \star f_{S}\right)(x y z) \\
& =\left(f_{S} \star\left(\widetilde{\mathbb{S}} \star f_{S}\right)\right)(x y z) \\
& \left.\left.=\quad \cup^{n}\left(f_{S}\left(a_{i}\right) \cap f_{S}\left(a_{j}^{\prime}\right) \cap \widetilde{(\mathbb{S}} \star f_{S}\right)\left(b_{i}\right) \cap \widetilde{\mathbb{S}} \star f_{S}\right)\left(b_{j}^{\prime}\right)\right) \\
& x y z+\sum_{i=1}^{m} a_{i} b_{i}+z^{\prime}=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime_{j}}+z^{\prime} \\
& \left.\left.\supseteq f_{S}(0) \cap f_{\underline{S}}(x) \cap \widetilde{\mathbb{S}} \star f_{S}\right)(0) \cap \widetilde{(\mathbb{S} \star} f_{S}\right)(y z) \\
& =f_{S}(x) \cap\left(\mathbb{S} \star f_{S}\right)(y z) \\
& =f_{S}(x) \cap\left(\bigcup_{n} \quad \widetilde{\mathbb{S}}\left(c_{i}\right) \cap \widetilde{\mathbb{S}}\left(c_{j}^{\prime}\right) \cap f_{S}\left(d_{i}\right) \cap f_{S}\left(d_{j}^{\prime}\right)\right) \\
& y z+\sum_{i=1}^{m} c_{i} d_{i}+z^{\prime}=\sum_{i=1}^{n} c_{j}^{\prime} d_{j}^{\prime}+z^{\prime} \\
& =f_{S}(x) \cap f_{S}(z) .
\end{aligned}
$$

Thus, $\left(S I_{5}\right)$ holds. Hence, f_{S} is an $S I-h$-bi-ideal of S over U.
The following proposition is obvious.
Proposition 3.5. Every SI-left h-ideal(right h-ideal, h-ideal) of S over U is an $S I$-h-bi-ideal of S over U.

Theorem 3.6. Let $f_{S}, g_{S} \in S(U)$. If f_{S} and g_{S} are an $S I-h$-bi-ideal of S over U, then $f_{S} \star g_{S}$ and $g_{S} \star f_{S}$ are $S I-h$-bi-ideals of S over U.

Proof. For all $x, y \in S$, we have

```
(1) \(\left(f_{S} \star g_{S}\right)(x) \cap\left(f_{S} \star g_{S}\right)(y)\)
\(=\bigcup_{n} \quad\left(f_{S}\left(a_{i}\right) \cap f_{S}\left(a_{j}^{\prime}\right) \cap g_{S}\left(b_{i}\right) \cap g_{S}\left(b_{j}^{\prime}\right)\right.\)
    \(x+\sum_{i=1}^{m} a_{i} b_{i}+z_{1}=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z_{1}\)
\(\cap \quad \cup \quad\left(f_{S}\left(c_{i}\right) \cap f_{S}\left(c_{j}^{\prime}\right) \cap g_{S}\left(d_{i}\right) \cap g_{S}\left(d_{j}^{\prime}\right)\right)\)
    \(y+\sum_{i=1}^{p} c_{i} d_{i}+z_{2}=\sum_{j=1}^{q} c_{j}^{\prime} d_{j}^{\prime}+z_{2}\)
    \(=\quad \cup\)
    \(x+\sum_{i=1}^{m} a_{i} b_{i}+z_{1}=\sum_{i=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z_{1}\)
        \(\cup_{q} \quad\left(f_{S}\left(a_{i}\right) \cap f_{S}\left(c_{i}\right) \cap f_{S}\left(a_{j}^{\prime}\right) \cap f_{S}\left(c_{j}^{\prime}\right) \cap g_{S}\left(b_{i}\right) \cap g_{S}\left(d_{i}\right) \cap g_{S}\left(b_{j}^{\prime}\right) \cap g_{S}\left(d_{j}^{\prime}\right)\right)\)
\(y+\sum_{i=1}^{p} c_{i} d_{i}+z_{2}=\sum_{j=1}^{q} c_{j}^{\prime} d_{j}^{\prime}+z_{2}\)
\(\subseteq \quad \cup \quad\left(f_{S}\left(x_{i}\right) \cap f_{S}\left(x_{j}^{\prime}\right) \cap g_{S}\left(y_{i}\right) \cap g_{S}\left(y_{j}^{\prime}\right)\right)\)
    \(x+y+\sum_{i=1}^{k} x_{i} y_{i}+z_{1}+z_{2}=\sum_{j=1}^{p} x_{j}^{\prime} y_{j}^{\prime}+z_{1}+z_{2}\)
    \(=\left(f_{S} \star g_{S}\right)(x+y)\).
```

This proves that $\left(S I_{1}\right)$ holds, that is, $\left(S I_{6}\right)$ holds.
(2) Similar to (1), we can show that $\left(\mathrm{SI}_{3}\right)$ holds.
(3) $\left(f_{S} \star g_{S}\right) \star\left(f_{S} \star g_{S}\right)$
$=f_{S} \star\left(g_{S} \star\left(f_{S} \star g_{S}\right)\right)$
$\left.\widetilde{\Im} f_{S} \star\left(g_{S} \star \widetilde{(\mathbb{S}} \star g_{S}\right)\right)$
(since $f_{S} \widetilde{\subseteq} \widetilde{\mathbb{S}}$)
$=f_{S} \star\left(g_{S} \star \widetilde{\mathbb{S}} \star g_{S}\right)$
$\widetilde{\Im} f_{S} \star g_{S}$.
(since $g_{S} \star \widetilde{\mathbb{S}} \star g_{S} \widetilde{\subseteq} g_{S}$)
This proves that $\left(S I_{7}\right)$ holds.
(4) $\left(f_{S} \star g_{S}\right) \star \widetilde{\mathbb{S}} \star\left(f_{S} \star g_{S}\right)$

$$
\begin{array}{ll}
=f_{S} \star\left(g_{S} \star\left(\widetilde{\mathbb{S}} \star f_{S}\right) \star g_{S}\right) & \text { (since } \left.\widetilde{\mathbb{S}} \star f_{S} \widetilde{\subseteq} \widetilde{\mathbb{S}}\right) \\
\widetilde{\subseteq} f_{S} \star\left(g_{S} \star \widetilde{\mathbb{S}} \star g_{S}\right) & \\
\widetilde{\subseteq} f_{S} \star g_{S} . & \text { (since } \left.g_{S} \star \widetilde{\mathbb{S}} \star g_{S} \widetilde{\subseteq} g_{S}\right)
\end{array}
$$

This proves that $\left(S I_{8}\right)$ holds.
It follows from 3.4 that $f_{S} \star g_{S}$ is an SI-h-bi-ideal of S over U. Similarly, we can prove that $g_{S} \star f_{S}$ is also an $S I-h$-bi-ideal of S over U.

The following proposition is similar to Proposition 2.8.
Proposition 3.7. Let $A \in S$. Then, A is an h-bi-ideal of S if an only if \mathcal{S}_{A} is an $S I$-h-bi-ideal of S over U.
Theorem 3.8. If f_{S} and h_{S} are two $S I-h$-bi-ideals of S over U, then so is $f_{S} \widetilde{\cap} h_{S}$.
Proof. Let $x, y \in S$. Then,
(1) $\left(f_{S} \widetilde{\cap} h_{S}\right)(x+y)=f_{S}(x+y) \cap h_{S}(x+y)$

$$
\begin{aligned}
& \supseteq\left(f_{S}(x) \cap f_{S}(y)\right) \cap\left(h_{S}(x) \cap h_{S}(y)\right) \\
& =\left(f_{S}(x) \cap h_{S}(x)\right) \cap\left(f_{S}(y) \cap h_{S}(y)\right) \\
& =\left(f_{S} \widetilde{\cap} h_{S}\right)(x) \cap\left(f_{S} \widetilde{\cap} h_{S}\right)(y) .
\end{aligned}
$$

(2) $\left(f_{S} \widetilde{\cap} h_{S}\right)(x y)=f_{S}(x y) \cap h_{S}(x y)$

$$
\begin{aligned}
& \supseteq\left(f_{S}(x) \cap f_{S}(y)\right) \cap\left(h_{S}(x) \cap h_{S}(y)\right) \\
& =\left(f_{S}(x) \cap h_{S}(x)\right) \cap\left(f_{S}(y) \cap h_{S}(y)\right) \\
& =\left(f_{S} \widetilde{\cap} h_{S}\right)(x) \cap\left(f_{S} \widetilde{\cap} h_{S}\right)(y) .
\end{aligned}
$$

(3) Now, let $x, z, a, b \in S$ with $x+a+z=b+z$. Then,

$$
\begin{aligned}
\left(f_{S} \widetilde{\cap} h_{S}\right)(x) & =f_{S}(x) \cap h_{S}(x) \\
& \supseteq\left(f_{S}(a) \cap f_{S}(b)\right) \cap\left(h_{S}(a) \cap h_{S}(b)\right) \\
& =\left(f_{S}(a) \cap h_{S}(a)\right) \cap\left(f_{S}(b) \cap h_{S}(b)\right) \\
& =\left(f_{S} \widetilde{\cap} h_{S}\right)(a) \cap\left(f_{S} \cap h_{S}\right)(b) . \\
& \\
& =\left(f_{S} \widetilde{\cap} h_{S}\right)(x y z) \\
& =f_{S}(x y z) \cap h_{S}(x y z) \\
& \supseteq\left(f_{S}(x) \cap f_{S}(z)\right) \cap\left(h_{S}(x) \cap h_{S}(z)\right) \\
& =\left(f_{S}(x) \cap h_{S}(x)\right) \cap\left(f_{S}(z) \cap h_{S}(z)\right) \\
& =\left(f_{S} \widetilde{\cap} h_{S}\right)(x) \cap\left(f_{S} \widetilde{\cap} h_{S}\right)(z) .
\end{aligned}
$$

Hence, $f_{S} \widetilde{\cap} h_{S}$ is an SI-h-bi-ideal of S over U.
Remark 3.9. $f_{S} \widetilde{\cup} h_{S}$ may not be an $S I-h$-bi-ideal of S over U.
Example 3.10. Assume that $U=\mathbb{Z}^{+}$, the set of positive integers, is the universal set. Consider two parameter sets $S_{1}=\mathbb{Z}_{4}=\{0,1,2,3\}$, non-negative integers module 4 , and

$$
S_{2}=\left\{\left.\left[\begin{array}{ll}
x & x \\
y & y
\end{array}\right] \right\rvert\, x, y \in \mathbb{Z}_{2}=\{0,1\}\right\},
$$

where \mathbb{Z}_{2} is the set of non-negative integers module 2 . Define two soft sets $f_{S_{1}}$ and $f_{S_{2}}$ over U by $f_{S_{1}}(0)=\mathbb{Z}^{+}, f_{S_{1}}(1)=f_{S_{1}}(3)=\{2,3\}$ and $f_{S_{1}}(2)=\{1,2,3,5\}$.
$f_{S_{2}}\left(\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right)=\mathbb{Z}^{+}, f_{S_{2}}\left(\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]\right)=\{2,3,5\}$,
$f_{S_{2}}\left(\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\right)=\{1,2,3,5,7\}$ and $f_{S_{2}}\left(\left[\begin{array}{cc}1 & 1 \\ 1 & 1\end{array}\right]\right)=\{1,2,3,5,7,8\}$.
Then, one can easily check that $f_{S_{1}}$ and $f_{S_{2}}$ are both SI-h-bi-ideals of S over U.
$f_{S_{1} \cup S_{2}}\left(\left(3,\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\right)+\left(2,\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right)\right)$
$=f_{S_{1} \cup S_{2}}\left(1,\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]\right)$
$=f_{S_{1}}(1) \cup f_{S_{2}}\left(\left[\begin{array}{cc}1 & 1 \\ 0 & 0\end{array}\right]\right)$
$=\{2,3\} \cup\{1,2,3,5,7\}$
$=\{1,2,3,5,7\}$,
but $f_{S_{1} \cup S_{2}}\left(3,\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\right)=f_{S_{1}}(3) \cup f_{S_{2}}\left(\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\right)$
$=\{2,3\} \cup\{1,2,3,5,7\}$
$=\{1,2,3,5,7\}$,
and $f_{S_{1} \cup S_{2}}\left(2,\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right)=f_{S_{1}}(2) \cup f_{S_{2}}\left(\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right)$
$=\{1,2,3,5\} \cup\{1,2,3,5,7,8\}$
$=\{1,2,3,5,7,8\}$,
which implies, $f_{S_{1} \cup S_{2}}\left(3,\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\right) \cup f_{S_{1} \cup S_{2}}\left(2,\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right)$
$=\{1,2,3,5,7,8\}$.
This implies that
$f_{S_{1} \cup S_{2}}\left(\left(3,\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\right)+\left(2,\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right)\right)$
$\nsupseteq f_{S_{1} \cup S_{2}}\left(3,\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\right) \cap f_{S_{1} \cup S_{2}}\left(2,\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right)$.
Hence, $f_{S_{1}} \widetilde{\cup} f_{S_{2}}$ is not an SI-h-bi-ideal over U.

4. SI-h-Quasi-Ideals

In this section, we introduce the concept of SI-h-quasi-ideals and investigate some related properties.
Definition 4.1. A soft set over U is called a soft intersection h-quasi-ideal (briefly, $S I-h$-quasi-ideal) of S over U if it satisfies $\left(S I_{1}\right),\left(S I_{3}\right)$ and
$\left.\left(S I_{9}\right)\left(f_{S} \star \widetilde{\mathbb{S}}\right) \widetilde{\cap} \widetilde{\mathbb{S}} \star f_{S}\right) \widetilde{\widetilde{\subseteq}} f_{S}$.
Example 4.2. Assume that $U=\mathbb{Z}^{+}$, the set of positive integers, is the universal set and $S=\mathbb{Z}_{6}=$ $\{0,1,2,3,4,5\}$, non-negative positive integers module 6 , is the set of parameters. Define a soft set f_{S} of S over U by
$f_{S}(0)=\mathbb{Z}^{+}, f_{S}(1)=f_{S}(5)=\left\{6 n \mid n \in \mathbb{Z}^{+}\right\}, f_{S}(2)=f_{S}(4)=\left\{2 n \mid n \in \mathbb{Z}^{+}\right\}$and $f_{S}(3)=\left\{3 n \mid n \in \mathbb{Z}^{+}\right\}$.
Then, one can easily check that f_{S} is an SI-h-quasi-ideal of S over U.
The following proposition is obvious.
Proposition 4.3. (1) Every SI-h-quasi-ideal of S over U is an SI-hemiring of S.
(2) Every $S I$-h-ideal of S over U is an $S I$-h-quasi-ideal of S.
(3) Every SI-h-quasi-ideal of S over U is an $S I$-h-bi-ideal of S.

Proof. We only prove (3) and the others are obvious. We only need to show that $\left(\mathrm{SI}_{7}\right)$ and $\left(\mathrm{SI}_{8}\right)$ hold. By (SI9), we have
$f_{S} \star f_{S}=\left(f_{S} \star f_{S}\right) \widetilde{\cap}\left(f_{S} \star f_{S}\right) \widetilde{\subseteq}\left(f_{S} \star \widetilde{\mathbb{S}}\right) \widetilde{\cap}\left(\widetilde{\mathbb{S}} \star \widetilde{f_{S}}\right) \widetilde{\subseteq} f_{S}$.
Thus, (SI ${ }_{7}$) holds.
Moveover, we have
$f_{S} \star \widetilde{\mathbb{S}} \star f_{S} \widetilde{\widetilde{S}} \star \widetilde{\mathbb{S}} \star f_{S} \widetilde{\widetilde{S}} \star f_{S}$ and $f_{S} \star \widetilde{\mathbb{S}} \star f_{S} \widetilde{\subseteq} f_{S} \star \widetilde{\mathbb{S}} \star \widetilde{\mathbb{S}} \widetilde{\subseteq} f_{S} \star \widetilde{\mathbb{S}}$, and so
$f_{S} \star \widetilde{\mathbb{S}} \star f_{S} \widetilde{\subseteq}\left(f_{S} \star \widetilde{\mathbb{S}}\right) \cap\left(\widetilde{\mathbb{S}} \star f_{S}\right) \widetilde{\subseteq} f_{S}$.
This proves that $\left(S I_{8}\right)$ holds. Hence, f_{S} is an $S I-h$-bi-ideal of S over U.
Now, we give an important result of uni-int product $f_{S} \star g_{S}$.
Theorem 4.4. Let f_{S} and g_{S} be any $S I$ - h-quasi-ideals of S over U. Then, $f_{S} \star g_{S}$ is an $S I-h$-bi-ideal of S over U.

Proof. Let f_{S} be an $S I-h$-quasi-ideal of S over U. Then, by Proposition 4.3(3), f_{S} is an $S I-h$-bi-ideal of S over U. Hence, $f_{S} \star \widetilde{\mathbb{S}} \star f_{S} \widetilde{\subseteq} f_{S}$.
For any $x, y \in S$, if x or y cannot be expressed $x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z$ or $y+\sum_{i=1}^{p} c_{i} d_{i}+z^{\prime}=\sum_{j=1}^{q} c_{j}^{\prime} d_{j}^{\prime}+z^{\prime}$, then $\left(f_{S} \star h_{S}\right)(x)=\emptyset$ or $\left(f_{S} \star h_{S}\right)(y)=\emptyset$, and so $\left(f_{S} \star h_{S}\right)(x) \cap\left(f_{S} \star h_{S}\right)(y) \subseteq\left(f_{S} \star h_{S}\right)(x+y)$. Otherwise, we have $\left(f_{S} \star h_{S}\right)(x) \cap\left(f_{S} \star h_{S}\right)(y)$
$=\bigcup_{\substack{m \\ x+p^{\prime} \\ b_{i}+z=\sum_{a^{\prime} b^{\prime}+z}}}\left(f_{S}\left(a_{i}\right) \cap f_{S}\left(a_{j}^{\prime}\right) \cap h_{S}\left(b_{i}\right) \cap h_{S}\left(b_{i}^{\prime}\right)\right)$
$x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=i}^{n} a_{j}^{\prime} b_{j}^{\prime}+z$
$\cap \quad \cup_{q} \quad\left(f_{S}\left(c_{i}\right) \cap f_{S}\left(c_{j}^{\prime}\right) \cap h_{S}\left(d_{i}\right) \cap h_{S}\left(d_{i}^{\prime}\right)\right)$ $y+\sum_{i=1}^{p} c_{i} d_{i}+z^{\prime}=\sum_{i=i}^{q} c_{j}^{\prime} j_{j}^{\prime}+z^{\prime}$
$={ }_{m} \cup$
$x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=i}^{n} a_{j}^{\prime} b_{j}^{\prime}+z$
$\cup_{q} \quad\left(f_{S}\left(a_{i}\right) \cap f_{S}\left(a_{j}^{\prime}\right) \cap f_{S}\left(c_{i}\right) \cap f_{S}\left(c_{j}^{\prime}\right) \cap h_{S}\left(b_{i}\right) \cap h_{S}\left(b_{j}^{\prime}\right) \cap h_{S}\left(d_{i}\right) \cap h_{S}\left(d_{j}^{\prime}\right)\right)$
$y+\sum_{i=1}^{p} c_{i} d_{i}+z^{\prime}=\sum_{j=i}^{q} c_{j}^{\prime} j_{j}^{\prime}+z^{\prime}$
$\subseteq \quad \cup \quad\left(f_{S}\left(x_{i}\right) \cap f_{S}\left(x_{j}^{\prime}\right) \cap h_{S}\left(y_{i}\right) \cap h_{S}\left(y_{j}^{\prime}\right)\right)$
$x+y+\sum_{i=1}^{k} x_{i} y_{i}+z+z^{\prime}=\sum_{j=1}^{l} x_{j}^{\prime} y_{j}^{\prime}+z+z^{\prime}$
$=\left(f_{S} \star h_{S}\right)(x+y)$.
Thus, $\left(S I_{1}\right)$ holds, that is $\left(S I_{6}\right)$ holds.

Similarly, we can prove that $\left(\mathrm{SI}_{3}\right)$ holds.

$$
\begin{aligned}
&\left(f_{S} \star h_{S}\right) \star\left(f_{S} \star h_{S}\right) \\
&=\left(f_{S} \star h_{S} \star f_{S}\right) \star h_{S} \\
& \widetilde{\widetilde{ }}\left(f_{S} \star \widetilde{\mathbb{S}} \star f_{S}\right) \star h_{S} \\
& \widetilde{\subseteq} f_{S} \star h_{S} .
\end{aligned}
$$

Thus, $\left(\right.$ SI $\left._{7}\right)$ holds.
Finally,

$$
\begin{aligned}
& \left(f_{S} \star h_{S}\right) \star \widetilde{\mathbb{S}} \star\left(f_{S} \star h_{S}\right) \\
= & \left(f_{S} \star\left(h_{S} \star \widetilde{\mathbb{S}}\right) \star f_{S}\right) \star h_{S}
\end{aligned}
$$

(since $h_{S} \widetilde{\subseteq} \widetilde{\mathbb{S}}$)

```
\(\left.\widetilde{\subseteq}\left(f_{S} \star \widetilde{(\mathbb{S}} \star \widetilde{\mathbb{S}}\right) \star f_{S}\right) \star h_{S}\)
\(\widetilde{\subseteq}\left(f_{S} \star \widetilde{S} \star f_{S}\right) \star h_{S} \widetilde{\subseteq} f_{S} \star h_{S}\). (since \(f_{S} \star \widetilde{\mathbb{S}} \star f_{S} \widetilde{\subseteq} f_{S}\) )
```

Thus, $\left(S I_{8}\right)$ holds. It follows from Theorem 3.4 that $f_{S} \star g_{S}$ is an $S I-h$-bi-ideal of S over U.
Proposition 4.5. (1) Let f_{S} and g_{S} be any SI-right h-ideal and SI-left h-ideal of S over U, respectively. Then, $f_{S} \widetilde{\cap} g_{S}$ is an $S I$-h-quasi-ideal of S over U.
(2) Let f_{S} and g_{S} be two SI-h-quasi-ideals of S over U. Then, so is $f_{S} \widetilde{\cap} g_{S}$.

Proof. By similar proof of Theorem 3.8, we can prove that $\left(S I_{1}\right)$ and $\left(S I_{3}\right)$ hold.
(1) If f_{S} and g_{S} are any SI-right h-ideal and SI-left h-ideal of S over U, respectively, then $\left(\left(f_{S} \widetilde{\cap} g_{S}\right) \star \widetilde{\mathbb{S}}\right) \widetilde{\cap}\left(\widetilde{\mathbb{S}} \star\left(f_{S} \widetilde{\cap} g_{S}\right)\right) \widetilde{\widetilde{S}}\left(f_{S} \star \widetilde{\mathbb{S}}\right) \widetilde{\cap}\left(\widetilde{\mathbb{S}} \star g_{S}\right) \widetilde{\widetilde{\subseteq}} f_{S} \widetilde{\cap} g_{S}$.
Thus, $\left(S I_{9}\right)$ holds. Hence, $f_{S} \widetilde{\cap} g_{S}$ is an $S I-h$-quasi-ideal of S over U.
(2) If f_{S} and g_{S} are two $S I$-h-quasi-ideals of S over U,
$\left(\left(f_{S} \widetilde{\cap} g_{S}\right) \star \widetilde{\mathbb{S}}\right) \widetilde{\cap}\left(\widetilde{\mathbb{S}} \star\left(f_{S} \widetilde{\cap} g_{S}\right)\right) \widetilde{\subseteq}\left(f_{S} \star \widetilde{\mathbb{S}}\right) \widetilde{\cap}\left(\widetilde{\mathbb{S}} \star f_{S}\right) \widetilde{\subseteq} f_{S}$,
and
$\left(\left(f_{S} \widetilde{\cap} g_{S}\right) \star \widetilde{\mathbb{S}}\right) \widetilde{\cap}\left(\widetilde{\mathbb{S}} \star\left(f_{S} \widetilde{\cap} g_{S}\right)\right) \widetilde{\subseteq}\left(g_{S} \star \widetilde{\mathbb{S}}\right) \widetilde{\cap}\left(\widetilde{\mathbb{S}} \star g_{S}\right) \widetilde{\subseteq} g_{S}$,
and so

$$
\left(\left(f_{S} \widetilde{\cap} g_{S}\right) \star \widetilde{\mathbb{S}}\right) \widetilde{\cap}\left(\widetilde{\mathbb{S}} \star\left(f_{S} \widetilde{\cap} g_{S}\right)\right) \widetilde{\widetilde{\subseteq}} f_{S} \widetilde{\cap} g_{S}
$$

Then, $f_{S} \widetilde{\cap} g_{S}$ is an SI-h-quasi-ideal of S over U.
Similar to Proposition 2.8, we can get the following proposition.
Proposition 4.6. Let $A \subseteq S$. Then, A is an h-quasi-ideal of S if and only if \mathcal{S}_{A} is an $S I$-h-quasi-ideal of S over U.

Finally, we give the following important result:
Theorem 4.7. (1) Let $f_{S} \in S(U)$ and $\alpha \subseteq U$ such that $\alpha \in \operatorname{Im}\left(f_{S}\right)$. If f_{S} is an $S I$ - h-quasi-ideal of S over U, then $U\left(f_{S} ; \alpha\right)$ is an h-quasi-ideal of S.
(2) Let $f_{S} \in S(U)$. If $U\left(f_{S} ; \alpha\right)$ is an h-quasi-ideal of f_{S} for each $\alpha \subseteq U$ and $\operatorname{Im}\left(f_{S}\right)$ is a totally ordered set by inclusion f_{S} is an SI-h-quasi-ideal of S over U.

Proof. (1) Since $f_{S}(x)=\alpha$ for some $x \in S$, then $\emptyset \neq U\left(f_{S} ; \alpha\right) \subseteq \alpha$.
(i) Let $x, y \in U\left(f_{S} ; \alpha\right)$. Then, $f_{S}(x) \supseteq \alpha$ and $f_{S}(y) \supseteq \alpha$. Since f_{S} is an SI-h-quasi-ideal of S over U, then $f_{S}(x+y) \supseteq f_{S}(x) \cap f_{S}(y) \supseteq \alpha \cap \alpha=\alpha$, and so $x+y \in U\left(f_{S} ; \alpha\right)$.
(ii) Let $a, b \in U\left(f_{S} ; \alpha\right)$ and $x, z \in S$ such that $x+a+z=b+z$. Then, $f_{S}(a) \supseteq \alpha$ and $f_{S}(b) \supseteq \alpha$. Since f_{S} is an SI-h-quasi-ideal of S over U, then $f_{S}(x) \supseteq f_{S}(a) \cap f_{S}(b) \supseteq \alpha \cap \alpha=\alpha$, and so $x \in U\left(f_{S} ; \alpha\right)$.
(iii) Let $a \in \overline{S \cdot U\left(f_{S} ; \alpha\right)} \cap \overline{U\left(f_{S} ; \alpha\right) \cdot S}$. Then, there exist $x_{1}, x_{2}, y_{1}, y_{2} \in U\left(f_{S} ; \alpha\right)$ and $s_{1}, s_{2}, t_{1}, t_{2}, z_{1}, z_{2} \in S$ such that $a+s_{1} x_{1}+z_{1}=s_{2} x_{2}+z_{1}$ and $a+y_{1} t_{1}+z_{2}=y_{2} t_{2}+z_{2}$. Hence, $f_{S}\left(x_{1}\right) \supseteq \alpha, f_{S}\left(x_{2}\right) \supseteq \alpha, f_{S}\left(y_{1}\right) \supseteq \alpha$ and $f_{S}\left(y_{2}\right) \supseteq \alpha$.

Moreover, we have

$$
\begin{aligned}
\left(\widetilde{\mathbb{S}} \star f_{S}\right)(a) & =\quad \underset{a+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}{\bigcup}\left(\widetilde{\mathbb{S}}\left(a_{i}\right) \cap \widetilde{\mathbb{S}}\left(a_{j}^{\prime}\right) \cap f_{S}\left(b_{i}\right) \cap f_{S}\left(b_{j}^{\prime}\right)\right) \\
& \supseteq \widetilde{\mathbb{S}}\left(s_{1}\right) \cap \widetilde{\mathbb{S}}\left(s_{2}\right) \cap f_{S}\left(x_{1}\right) \cap f_{S}\left(x_{2}\right) \\
& =f_{S}\left(x_{1}\right) \cap f_{S}\left(x_{2}\right) \\
& \supseteq \alpha \cap \alpha \\
& =\alpha, \\
\text { and } & \\
\left(f_{S} \star \widetilde{\mathbb{S}}\right)(a) & =\quad \bigcup^{a+\sum_{i=1}^{m} c_{i} d_{i}+z^{\prime}=\sum_{j=1}^{n} c_{j}^{\prime} d_{j}^{\prime}+z^{\prime}} \\
& \supseteq f_{S}\left(y_{1}\right) \cap f_{S}\left(y_{2}\right) \cap \widetilde{\mathbb{S}}\left(t_{1}\right) \cap \widetilde{\mathbb{S}}\left(t_{2}\right) \\
& =f_{S}\left(y_{1}\right) \cap f_{S}\left(y_{2}\right) \\
& \supseteq \alpha \cap \alpha \\
& =\alpha .
\end{aligned}
$$

Since f_{S} is an SI-h-quasi-ideal of S over U, then $\left.f_{S}(a) \supseteq \widetilde{(\mathbb{S}} \star f_{S}\right)(a) \cap\left(f_{S} \star \widetilde{\mathbb{S}}\right)(a) \supseteq \alpha \cap \alpha=\alpha$, which implies that $a \in U\left(f_{s} ; \alpha\right)$. This proves that $U\left(f_{s} ; \alpha\right)$ is an h-quasi-ideal of S.
(2) Let $f_{S} \in S(U)$. Then,
(i) Let $x, y \in S$ be such that $f_{S}(x)=\alpha_{1}$ and $f_{S}(y)=\alpha_{2}$, where it may be assumed $\alpha_{1} \subseteq \alpha_{2}$. Then, $x \in U\left(f_{S} ; \alpha_{1}\right)$ and $y \in U\left(f_{S} ; \alpha_{2}\right)$. Since $\alpha_{1} \subseteq \alpha_{2}$, then $y \in U\left(f_{S} ; \alpha_{1}\right)$. Since $U\left(f_{S} ; \alpha\right)$ is an h-quasi-ideal of f_{S} for each $\alpha \subseteq U$, then $x+y \in U\left(f_{S} ; \alpha_{1}\right)$. Hence, $f_{S}(x+y) \supseteq \alpha_{1}=\alpha_{1} \cap \alpha_{2}=f_{S}(x) \cap f_{S}(y)$.
(ii) Let $x, a, b, z \in S$ with $x+a+z=b+z$ such that $f_{S}(a)=\alpha_{1}$ and $f_{S}(b)=\alpha_{2}$, where $\alpha_{1} \subseteq \alpha_{2}$. Then, $a \in U\left(f_{S} ; \alpha_{1}\right)$ and $b \in U\left(f_{S} ; \alpha_{2}\right)$. Since $\alpha_{1} \subseteq \alpha_{2}$, then $b \in U\left(f_{S} ; \alpha_{1}\right)$. Since $U\left(f_{S} ; \alpha\right)$ is an h-quasi-ideal of f_{S} for each $\alpha \subseteq U$. Then, $x \in U\left(f_{S} ; \alpha_{1}\right)$. Hence,
$f_{S}(x) \supseteq \alpha_{1}=\alpha_{1} \cap \alpha_{2}=f_{S}(a) \cap f_{S}(b)$.
(iii) Let $x \in S$ be such that $\left.\widetilde{(\mathbb{S}} \star f_{S}\right)(x)=\alpha_{1}$ and $\left(f_{S} \star \widetilde{\mathbb{S}}\right)(x)=\alpha_{2}$, where $\alpha_{1} \subseteq \alpha_{2}$. Then, $x \in U\left(\widetilde{\mathbb{S}} \star f_{S} ; \alpha_{1}\right)$ and $x \in U\left(f_{S} \star \widetilde{\mathbb{S}} ; \alpha_{2}\right)$. Since $\alpha_{1} \subseteq \alpha_{2}, x \in U\left(f_{S} \star \widetilde{\mathbb{S}} ; \alpha_{1}\right)$. From $\left.\widetilde{(\mathbb{S}} \star f_{S}\right)(x)=\alpha_{1}$, then there exist $s_{1}, s_{2}, z_{1} \in S$ and $k_{1}, k_{2} \in U\left(f_{S} ; \alpha_{1}\right)$ such that $x+s_{1} k_{1}+z_{1}=s_{2} k_{2}+z_{1}$, that is, $x \in \overline{S \cdot U\left(f_{S} ; \alpha_{1}\right)}$. Similarly, we can prove that $x \in \overline{U\left(f_{S} ; \alpha_{1}\right) \cdot S}$. Hence, $x \in \overline{S \cdot U\left(f_{S} ; \alpha_{1}\right)} \cap \overline{U\left(f_{S} ; \alpha_{1}\right) \cdot S}$. Since $U\left(f_{S} ; \alpha_{1}\right)$ is an h-quasi-ideal of f_{S}, then $x \in U\left(f_{S} ; \alpha_{1}\right)$. Thus, we have
$\left.f_{S}(x) \supseteq \alpha_{1}=\alpha_{1} \cap \alpha_{2}=\widetilde{(\mathbb{S}} \star f_{S}\right)(x) \cap\left(f_{S} \star \widetilde{\mathbb{S}}\right)(x)$.
Hence, f_{S} is an SI-h-quasi-ideal of S over U.

5. h-Hemiregular Hemirings

In this section, we investigate some characterizations by means of SI-h-ideals, SI-h-bi-ideals and SI-h-quasi-ideals.

Definition 5.1. [31] A hemiring S is called h-hemiregular if for each $a \in S$, there exist $x_{1}, x_{2}, z \in S$ such that $a+a x_{1} a+z=a x_{2} a+z$.

Lemma 5.2. [31] If A and B, are respectively, a right h-ideal and a left h-ideal of S, then $\overline{A B} \subseteq A \cap B$.
Lemma 5.3. [31] A hemiring S is h-hemiregular if and only if for any right h-ideal A and left h-ideal B, we have $\overline{A B}=A \cap B$.

Theorem 5.4. [19] For any hemiring S, the following conditions are equivalent:
(1) S is h-hemiregular;
(2) $f_{S} \star g_{S}=f_{S} \widetilde{\cap} g_{S}$ for any SI-right h-ideal f_{S} and any SI-left h-ideal g_{S} of S over U.

Lemma 5.5. [30] Let S be a hemiring. Then, the following conditions are equivalent:
(1) S is h-hemiregular;
(2) $B=\overline{B S B}$ for every h-bi-ideal B of S;
(3) $Q=\overline{Q S Q}$ for every h-quasi-ideal Q of S.

Theorem 5.6. For any hemiring S, the following conditions are equivalent:
(1) S is h-hemiregular;
(2) $f_{S}=f_{S} \star \widetilde{\mathbb{S}} \star f_{S}$ for every SI-h-bi-ideal f_{S} of S over U;
(3) $f_{S}=f_{S} \star \widetilde{\mathbb{S}} \star f_{S}$ for every SI-h-quasi-ideal f_{S} of S over U.

Proof. (1) $\Rightarrow(2)$ Let S be an h-hemiregular hemiring, f_{S} an $S I-h$-bi-ideal of S over U. For any $x \in S$. There exist $a, a^{\prime}, z \in S$ such that $x+x a x+z=x a^{\prime} x+z$ since S is h-hemiregular. Thus, we have

$$
\begin{aligned}
& \left(f_{S} \star \widetilde{\mathbb{S}} \star f_{S}\right)(x) \\
& =\left(\left(f_{S} \star \widetilde{\mathbb{S}}\right) \star f_{S}\right)(x) \\
& =\bigcup_{x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}\left(\left(f_{S} \star \widetilde{\mathbb{S}}\right)\left(a_{i}\right) \cap\left(f_{S} \star \widetilde{\mathbb{S}}\right)\left(a_{j}^{\prime}\right) \cap f_{S}\left(b_{i}\right) \cap f_{S}\left(b_{j}^{\prime}\right)\right) \\
& \supseteq\left(f_{S} \star \widetilde{\mathbb{S}}\right)(x a) \cap\left(f_{S} \star \widetilde{\mathbb{S}}\right)\left(x a^{\prime}\right) \cap f_{S}(x) \\
& =\bigcup_{n} \quad\left(f_{S}\left(a_{i}\right) \cap f_{S}\left(a_{j}^{\prime}\right) \cap \widetilde{\mathbb{S}}\left(b_{i}\right) \cap \widetilde{\mathbb{S}}\left(b_{j}^{\prime}\right)\right) \\
& x a+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z \\
& \cap \quad \cup_{n} \quad\left(f_{S}\left(a_{i}\right) \cap f_{S}\left(a_{j}^{\prime}\right) \cap \widetilde{\mathbb{S}}\left(b_{i}\right) \cap \widetilde{\mathbb{S}}\left(b_{j}^{\prime}\right)\right) \cap f_{S}(x) \\
& x a^{\prime}+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=i}^{n} a_{i}^{\prime} b_{j}^{\prime}+z \\
& \supseteq\left(f_{S}(x a x) \cap f_{S}\left(x a^{\prime} x\right)\right) \cap\left(f_{S}(x a x) \cap f_{S}\left(x a^{\prime} x\right)\right) \cap f_{S}(x) \\
& \text { (Since } \left.x a+x a x a+z a=x a^{\prime} x a+z a \text { and } x a^{\prime}+x a x a^{\prime}+z a^{\prime}=x a^{\prime} x a^{\prime}+z a^{\prime}\right) \\
& \supseteq f_{S}(x) \cap f_{S}(x) \cap f_{S}(x) \\
& =f_{S}(x) \text {, }
\end{aligned}
$$

which implies, $f_{S} \star \widetilde{\mathbb{S}} \star f_{S} \supseteq f_{S}$. Since f_{S} is an $S I-h$-bi-ideal of S over U, then $f_{S} \star \widetilde{\mathbb{S}} \star f_{S} \widetilde{\subseteq} f_{S}$. Thus, we have $f_{S} \star \widetilde{\mathbb{S}} \star f_{S}=f_{S}$.
$(2) \Rightarrow(3)$ This is straightforward by Proposition 4.3.
$(3) \Rightarrow(1)$ Let Q be any h-quasi-ideal of S. Then, by Proposition 4.6 , the soft characteristic function \mathcal{S}_{A} of A is an $S I-h$-quasi-ideal of S over U.
Thus, by the assumption and Proposition 2.6(3), we have

$$
\mathcal{S}_{A}=\mathcal{S}_{A} \star \widetilde{\mathbb{S}} \star \mathcal{S}_{A}=\mathcal{S}_{A} \star \mathcal{S}_{S} \star \mathcal{S}_{A}=\mathcal{S}_{\overline{A S A}}
$$

It follows from Proposition 2.6(1), we have $A=\overline{A S A}$. Thus, by Lemma $5.5, S$ is h-hemiregular.
Theorem 5.7. Let f_{S} be a soft set of an h-hemiregular hemiring S. Then, the following conditions are equivalent:
(1) f_{S} may be presented in the form $f_{S}=g_{S} \star h_{S}$, where g_{S} is an SI-right h-ideal and h_{S} is an SI-left h-ideal of S over U;
(2) f_{S} is an $S I$-h-bi-ideal of S over U;
(3) f_{S} is an $S I-h$-quasi-ideal of S over U.

Proof. $(1) \Rightarrow(2)$ If there exist an SI-right h-ideal g_{S} and an SI-left h-ideal h_{S} of S such that $f_{S}=g_{S} \star h_{S}$, then by Proposition 4.3, every SI-left (right) h-ideal of S is an SI-h-bi-ideal of S. Thus, g_{S} and h_{S} are $S I-h$-bi-ideals of S over U. It follows from Theorem 3.6 that $g_{S} \star h_{S}=f_{S}$ is an $S I-h$-bi-ideal of S.
$(2) \Rightarrow(3)$ This is straightforward by Proposition 4.3.
(3) \Rightarrow (1) Since S is h-hemiregular, then by Theorem $5.6, f_{S}=f_{S} \star \widetilde{\mathscr{S}} \star f_{S}$, where f_{S} is an $S I$-h-quasi-ideal of S over U. Thus,
$f_{S}=f_{S} \star \widetilde{\mathbb{S}} \star f_{S}=f_{S} \star(\widetilde{\mathbb{S}} \star \widetilde{\mathbb{S}}) \star f_{S}=\left(f_{S} \star \widetilde{\mathbb{S}}\right) \star\left(\widetilde{\mathbb{S}} \star f_{S}\right)$.
Hence, we can easily show that $f_{S} \star \widetilde{\mathbb{S}}$ and $\widetilde{\mathbb{S}} \star f_{S}$ are an SI-right h-ideal and an SI-left h-ideal of S over U, respectively. In fact,
$\left(f_{S} \star \widetilde{\mathbb{S}}\right) \star \widetilde{\mathbb{S}}=f_{S} \star(\widetilde{\mathbb{S}} \star \widetilde{\mathbb{S}}) \widetilde{\subseteq} f_{S} \star \widetilde{\mathbb{S}}$ and $\widetilde{\mathbb{S}} \star\left(\widetilde{\mathbb{S}} \star f_{S}\right)=(\widetilde{\mathbb{S}} \star \widetilde{\mathbb{S}}) \star f_{S} \widetilde{\subseteq} \widetilde{\mathbb{S}} \star f_{S}$.

Theorem 5.8. For any hemiring S, the following conditions are equivalent:
(1) S is h-hemiregular;
(2) $f_{S} \widetilde{\cap} g_{S}=f_{S} \star g_{S} \star f_{S}$ for every SI-h-bi-ideal f_{S} and every SI-h-ideal g_{S} of S over U;
(3) $f_{S} \widetilde{\cap} g_{S}=f_{S} \star g_{S} \star f_{S}$ for every $S I-h$-quasi-ideal f_{S} and every $S I-h$-ideal g_{S} of S over U.

Proof. (1) $\Rightarrow(2)$ Let f_{S} and g_{S} be any SI-h-bi-ideal and SI-h-ideal of S over U, respectively. Then, $f_{S} \star g_{S} \star f_{S} \widetilde{\widetilde{ }} f_{S} \star \widetilde{\mathbb{S}} \star f_{S} \widetilde{\subseteq} f_{S}$ and $f_{S} \star g_{S} \star f_{S} \widetilde{\subseteq} \widetilde{\mathbb{S}} \star\left(g_{S} \star \widetilde{\mathbb{S}}\right) \widetilde{\subseteq} \mathbb{S} \star g_{S} \widetilde{\subseteq} g_{S}$.
Then, $f_{S} \star g_{S} \star f_{S} \widetilde{\subseteq} f_{S} \widetilde{\cap} g_{S}$.
For any $x \in S$, there exist $a, a^{\prime}, z \in S$ such that $x+x a x+z=x a^{\prime} x+z$ since S is h-hemiregular. Thus, we have
$\left(f_{S} \star g_{S} \star f_{S}\right)(x)$
$=\left(\left(f_{S} \star g_{S}\right) \star f_{S}\right)(x)$
$=\cup^{m}\left(\left(f_{S} \star g_{S}\right)\left(a_{i}\right) \cap\left(f_{S} \star g_{S}\right)\left(a_{j}^{\prime}\right) \cap f_{S}\left(b_{i}\right) \cap f_{S}\left(b_{j}^{\prime}\right)\right)$
$x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z$
$\supseteq\left(f_{S} \star g_{S}\right)(x a) \cap\left(f_{S} \star g_{S}\right)\left(x a^{\prime}\right) \cap f_{S}(x)$
$={ }_{m} \quad{ }_{n} \quad\left(f_{S}\left(a_{i}\right) \cap f_{S}\left(a_{j}^{\prime}\right) \cap g_{S}\left(b_{i}\right) \cap g_{S}\left(b_{j}^{\prime}\right)\right)$
$x a+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z$
$\cap \quad \cup \quad\left(f_{S}\left(a_{i}\right) \cap f_{S}\left(a_{j}^{\prime}\right) \cap g_{S}\left(b_{i}\right) \cap g_{S}\left(b_{j}^{\prime}\right)\right) \cap f_{S}(x)$
$x a^{\prime}+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z$
$\supseteq\left(f_{S}(x) \cap g_{S}(a x a) \cap g_{S}\left(a^{\prime} x a\right)\right) \cap\left(f_{S}(x) \cap g_{S}\left(a x a^{\prime}\right) \cap g_{S}\left(a^{\prime} x a^{\prime}\right)\right) \cap f_{S}(x)$
$\left(x a+x a x a+z a=x a^{\prime} x a+z a\right.$ and $\left.x a^{\prime}+x a x a^{\prime}+z a^{\prime}=x a^{\prime} x a^{\prime}+z a^{\prime}\right)$
$\supseteq f_{S}(x) \cap g_{S}(x)$
$=\left(f_{S} \widetilde{\cap} g_{S}\right)(x)$,
which implies, $f_{S} \cap g_{S} \widetilde{\subseteq} f_{S} \star g_{S} \star f_{S}$. Thus, we have
$f_{S} \star g_{S} \star f_{S}=f_{S} \cap g_{S}$.
$(2) \Rightarrow(3)$ This is straightforward by Proposition 4.3.
$(3) \Rightarrow(1)$ Since $\widetilde{\mathbb{S}}$ is an $S I-h$-ideal of S over U, then by the assumption, we have
$f_{S}=f_{S} \widetilde{\cap} \widetilde{S}=f_{S} \star \widetilde{\mathbb{S}} \star f_{S}$.
It follows from Theorem 5.6 that S is h-hemiregular.
Theorem 5.9. Let S be a hemiring. Then, the following conditions are equivalent:
(1) S is h-hemiregular;
(2) $f_{S} \widetilde{\cap} g_{S} \widetilde{\widetilde{ }} f_{S} \star g_{S}$ for every SI-h-bi-ideal f_{S} and every SI-left h-ideal g_{S} of S over U;
(3) $f_{S} \widetilde{\cap} g_{S} \widetilde{\widetilde{ }} f_{S} \star g_{S}$ for every SI-h-quasi-ideal f_{S} and every SI-left h-ideal g_{S} of S over U;
(4) $f_{S} \widetilde{\cap} g_{S} \widetilde{\subseteq} f_{S} \star g_{S}$ for every SI-right h-ideal f_{S} and every SI-h-bi-ideal of S over U;
(5) $f_{S} \widetilde{\cap} g_{S} \widetilde{\cong} f_{S} \star g_{S}$ for every SI-right h-ideal f_{S} and every SI-h-quasi-ideal of S over U;
(6) $f_{S} \widetilde{\cap} g_{S} \widetilde{\cap} h_{S} \widetilde{\subseteq} f_{S} \star g_{S} \star h_{S}$ for every SI-right h-ideal f_{S}, every SI-h-bi-ideal g_{S} and every SI-left h-ideal h_{S} of S over U;
(7) $f_{S} \widetilde{\cap} g_{S} \widetilde{\cap} h_{S} \widetilde{\subseteq} f_{S} \star g_{S} \star h_{S}$ for every SI-right h-ideal f_{S}, every SI-h-quasi-ideal g_{S} and every SI-left h-ideal h_{S} of S over U.

Proof. $(1) \Rightarrow(2)$ Let f_{S} and g_{S} be any SI-h-bi-ideal and any SI-left h ideal of S over U, respectively. For any $x \in S$, there exist $a, a^{\prime}, z \in S$ such that $x+x a x+z=x a^{\prime} x+z$ since S is h-hemiregular. Then,

$$
\begin{aligned}
& \quad\left(f_{S} \star g_{S}\right)(x) \\
& =\bigcup_{\substack{x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}}^{\supseteq f_{S}(x) \cap g_{S}(a x) \cap g_{S}\left(a^{\prime} x\right)} \\
& \supseteq f_{S}(x) \cap g_{S}(x) \\
& =\left(f_{S} \cap g_{S}\right)(x),
\end{aligned}
$$

which implies, $f_{S} \widetilde{\cap} g_{S} \widetilde{\subseteq} f_{S} \star g_{S}$.
$(2) \Rightarrow(1)$ Let f_{S} and g_{S} be any SI-right h-ideal and any SI-left h-ideal of S over U, respectively. Then, it is easy to see that f_{S} is an $S I$ - h-bi-ideal of S over U. By the assumption, we have
$f_{S} \widetilde{\cap} g_{S} \widetilde{\widetilde{ }} f_{S} \star g_{S} \widetilde{\subseteq}\left(f_{S} \star \widetilde{\mathbb{S}}\right) \widetilde{\cap}\left(\widetilde{\mathbb{S}} \star g_{S}\right) \widetilde{\subseteq} f_{S} \widetilde{\cap} g_{S}$. Hence, $f_{S} \widetilde{\cap} g_{S}=f_{S} \star g_{S}$. It follows from Theorem 5.4 that S is h-hemiregular.

Similarly, we can show that $(1) \Rightarrow(3),(1) \Rightarrow(4),(1) \Rightarrow(5)$.
$(1) \Rightarrow(6)$ Let f_{S}, g_{S} and h_{S} be any SI-right h-ideal, any SI-h-bi-ideal and any SI-left h-ideal of S over U, respectively. For any $x \in S$, there exist $a, a^{\prime}, z \in S$ such that $x+x a x+z=x a^{\prime} x+z$ since S is h-hemiregular. Then, we have

```
    \(\left(f_{S} \star g_{S} \star h_{S}\right)(x)\)
\(=\bigcup_{x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}^{U}\left(\left(f_{S} \star g_{S}\right)\left(a_{i}\right) \cap\left(f_{S} \star g_{S}\right)\left(a_{j}^{\prime}\right) \cap h_{S}\left(b_{i}\right) \cap h_{S}\left(b_{j}^{\prime}\right)\right)\)
\(\supseteq\left(f_{S} \star g_{S}\right)(x) \cap h_{S}(a x) \cap h_{S}\left(a^{\prime} x\right)\)
\(=\bigcup^{m}\left(f_{S}\left(a_{i}\right) \cap f_{S}\left(a_{j}^{\prime}\right) \cap g_{S}\left(b_{i}\right) \cap g_{S}\left(b_{j}^{\prime}\right)\right) \cap h_{S}(a x) \cap h_{S}\left(a^{\prime} x\right)\)
    \(x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z\)
\(\supseteq f_{S}(x a) \cap f_{S}\left(x a^{\prime}\right) \cap g_{S}(x) \cap h_{S}(a x) \cap h_{S}\left(a^{\prime} x\right)\)
\(\supseteq f_{S}(x) \cap g_{S}(x) \cap h_{S}(x)\)
\(=\left(f_{S} \widetilde{\cap} g_{S} \widetilde{\cap} h_{S}\right)(x)\),
```

which implies, $f_{S} \widetilde{\cap} g_{S} \widetilde{\cap} h_{S} \widetilde{\subseteq} f_{S} \star g_{S} \star h_{S}$.
$(6) \Rightarrow(7)$ This is straightforward by Proposition 4.3.
$(7) \Rightarrow(1)$ Let f_{S} and h_{S} be any SI-right h-ideal and any SI-left h-ideal of S over U, respectively. Since $\widetilde{\mathbb{S}}$ is an
$S I-h$-quasi-ideal of S over U, then by the assumption, we have $f_{S} \widetilde{\cap} h_{S}=f_{S} \widetilde{\cap} \widetilde{\mathbb{S}} \widetilde{\sim} h_{S} \widetilde{\subseteq} f_{S} \star \widetilde{\mathbb{S}} \star h_{S} \widetilde{\subseteq} f_{S} \star h_{S} \widetilde{\subseteq}\left(f_{S} \star \widetilde{\mathbb{S}}\right) \widetilde{\cap}\left(\widetilde{\mathbb{S}} \star h_{S}\right) \subseteq f_{S} \widetilde{\cap} h_{S}$.
Then, $f_{S} \widetilde{\cap} h_{S}=f_{S} \star h_{S}$. It follows from Theorem 5.4 that S is h-hemiregular.

6. h-intra-Hemiregular Hemirings

In this section, we investigate some characterizations by means of SI-h-ideals, SI-h-bi-ideal and SI-h-quasi-ideals.

Definition 6.1. [30] A hemiring S is called h-intra-hemiregular if for each $x \in S$, there exist $a_{i}, a_{i}^{\prime}, b_{j}, b_{j}^{\prime}, z \in S$ such that $x+\sum_{i=1}^{m} a_{i} x^{2} a_{i}^{\prime}+z=\sum_{j=1}^{n} b_{j} x^{2} b_{j}^{\prime}+z$. Equivalent definitions:
(1) $x \in S x^{2} S, \forall x \in S$; (2) $A \subseteq \overline{S A^{2} S}, \forall A \subseteq S$.

Lemma 6.2. [30] Let S be a hemiring. Then, the following conditions are equivalent:
(1) S is h-intra-hemiregular;
(2) $L \cap R \subseteq \overline{L R}$ for every left h-ideal L and every right h-ideal R of S.

Theorem 6.3. Let S be a hemiring. Then, the following conditions are equivalent:
(1) S is h-intra-hemiregular;
(2) $f_{S} \widetilde{\cap} g_{S} \widetilde{\subseteq} f_{S} \star g_{S}$ for every SI-left h-ideal f_{S} and every SI-right h-ideal of S over U.

Proof. (1) $\Rightarrow(2)$ Let f_{S} and g_{S} be any SI-left h-ideal and any SI-right h-ideal of S over U, respectively.For any $x \in S$. Then, there exist $a_{i}, a_{i}^{\prime}, b_{j}, b_{j}^{\prime}, z \in S$ such that
$x+\sum_{i=1}^{m} a_{i} x^{2} a_{i}^{\prime}+z=\sum_{j=1}^{n} b_{j} x^{2} b_{j}^{\prime}+z$.
Then, we have

```
    \(\left(f_{S} \star g_{S}\right)(x)\)
\(=\bigcup_{x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}\left(f_{S}\left(a_{i}\right) \cap f_{S}\left(a_{j}^{\prime}\right) \cap g_{S}\left(b_{i}\right) \cap g_{S}\left(b_{j}^{\prime}\right)\right)\)
\(\supseteq f_{S}\left(a_{i} x\right) \cap f_{S}\left(b_{j} x\right) \cap g_{S}\left(x a_{i}^{\prime}\right) \cap g_{S}\left(x b_{j}^{\prime}\right)\)
\(\supseteq f_{S}(x) \cap g_{S}(x)\)
\(=f_{S} \widetilde{\cap} g_{S}(x)\),
```


$(2) \Rightarrow(1)$ Let L and R be any left h-ideal and any right h-ideal of S, respectively. Then, by Proposition $2.8, \mathcal{S}_{L}$ and \mathcal{S}_{R} are an SI-left h-ideal and an SI-right h-ideal of S over U, respectively. Now, by Proposition 2.6 and assumption, we have

$$
\mathcal{S}_{L \cap R}=\mathcal{S}_{L} \widetilde{\cap} \mathcal{S}_{R} \subseteq \mathcal{S}_{L} \star \mathcal{S}_{L}=\mathcal{S}_{\overline{L R}}
$$

By Proposition 2.6, we have $L \cap R \subseteq \overline{L R}$. Thus, it follows from Lemma 6.2 that S is h-intra-hemiregular.
Lemma 6.4. [30] Let S be a hemiring. Then, the following are equivalent:
(1) S is both h-hemiregular and h-intra-hemiregular.
(2) $B=\overline{B^{2}}$ for every h-bi-ideal B of S.
(3) $Q=\overline{Q^{2}}$ for every h-quasi-ideal Q of S.

Theorem 6.5. Let S be a hemiring. Then, the following conditions are equivalent:
(1) S is both h-hemiregular and h-intra-hemiregular;
(2) $f_{S}=f_{S} \star f_{S}$ for every $S I-h$-bi-ideal f_{S} of S over U (that is, every $S I-h$-bi-ideal of S is idempotent);
(3) $f_{S}=f_{S} \star f_{S}$ for every $S I$ - h-quasi-ideal f_{S} of S over U (that is, every $S I$-h-quasi-ideal of S is idempotent).

Proof. $(1) \Rightarrow(2)$ Let f_{S} be any $S I-h$-bi-ideal of S over U. Then, it is clear that $f_{S} \star f_{S} \widetilde{\subseteq} f_{S}$. For any $x \in S$, there exist $a_{1}, a_{2}, p_{i}, p_{i}^{\prime}, q_{j}, q_{j}^{\prime}, z \in S$ such that

$$
\begin{aligned}
& x+\sum_{j=1}^{n}\left(x a_{2} q_{j} x\right)\left(x q_{j}^{\prime} a_{1} x\right)+\sum_{j=1}^{n}\left(x a_{1} q_{j} x\right)\left(x q_{j}^{\prime} a_{2} x\right)+\sum_{i=1}^{m}\left(x a_{1} p_{i} x\right)\left(x p_{i}^{\prime} a_{1} x\right)+\sum_{i=1}^{m}\left(x a_{2} p_{i} x\right)\left(x p_{i}^{\prime} a_{2} x\right)+z \\
= & \sum_{i=1}^{m}\left(x a_{2} p_{i} x\right)\left(x p_{i}^{\prime} a_{1} x\right)+\sum_{i=1}^{m}\left(x a_{1} p_{i} x\right)\left(x p_{i}^{\prime} a_{2} x\right)+\sum_{j=1}^{n}\left(x a_{1} q_{j} x\right)\left(x q_{j}^{\prime} a_{1} x\right)+\sum_{j=1}^{n}\left(x a_{2} q_{j} x\right)\left(x q_{j}^{\prime} a_{2} x\right)+z .
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
& \quad\left(f_{S}^{\prime} \star f_{S}\right)(x) \\
& =\bigcup^{x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z} \\
& \supseteq f_{S}\left(x a_{2} q_{j} x\right) \cap f_{S}\left(x q_{j}^{\prime} a_{1} x\right) \cap f_{S}\left(x a_{1} q_{j} x\right) \cap f_{S}\left(x q_{j}^{\prime} a_{2} x\right) \cap f_{S}\left(x a_{1} p_{i} x\right) \cap f_{S}\left(x p_{i}^{\prime} a_{1} x\right) \cap f_{S}\left(x a_{i} p_{i} x\right) \\
& \cap f_{S}\left(x p_{i}^{\prime} a_{2} x\right) \\
& \supseteq f_{S}(x),
\end{aligned}
$$

which implies, $f_{S} \widetilde{\subseteq} f_{S} \star f_{S}$. Thus, $f_{S}=f_{S} \star f_{S}$.
$(2) \Rightarrow(3)$ This is straightforward by Proposition 4.3.
$(3) \Rightarrow(1)$ Let Q be any h-quasi-ideal of S. Then, by Proposition $2.8, \mathcal{S}_{Q}$ is an $S I-h$-quasi-ideal of S over U.
Now, by the assumption and Proposition 2.6, we have
$\mathcal{S}_{Q}=\mathcal{S}_{Q} \star \mathcal{S}_{Q}=S_{\overline{Q^{2}}}$.
Then, by Proposition 2.6, $Q=\overline{Q^{2}}$. It follows from Lemma 6.4 that S is both h-hemiregular and h-intrahemiregular.

Similarly, we can get the following theorem:
Theorem 6.6. Let S be a hemiring. Then, the following conditions are equivalent:
(1) S is both h-hemiregular and h-intra-hemiregular;
(2) $f_{S} \widetilde{\cap} g_{S} \widetilde{\widetilde{ }} f_{S} \star g_{S}$ for all SI-h-bi-ideals f_{S} and g_{S} of S over U;
(3) $f_{S} \widetilde{\cap} g_{S} \widetilde{\subseteq} f_{S} \star g_{S}$ for all SI-h-quasi-ideals f_{S} and g_{S} of S over U;
(4) $f_{S} \widetilde{\cap} g_{S} \widetilde{\subseteq} f_{S} \star g_{S}$ for every SI-h-bi-ideal f_{S} and every SI-h-quasi-ideal g_{S} of S over U;
(5) $f_{S} \widetilde{\cap} g_{S} \widetilde{\subseteq} f_{S} \star g_{S}$ for every SI-h-quasi-ideal f_{S} and every SI-h-bi-ideal g_{S} of S over U;
(6) $f_{S} \widetilde{\cap} g_{S} \widetilde{\simeq} f_{S} \star g_{S}$ for all SI-h-quasi-ideals f_{S} and g_{S} of S over U.

7. h-Quasi-Hemiregular Hemirings

In this section, we investigate some characterizations of h-quasi-hemiregular hemirings by means of three SI-h-ideals.

Definition 7.1. [15] A subset A of S is called idempotent if $A=\overline{A^{2}}$. A hemiring S is called left (right) h -quasi-hemiregular if every left(right) h-ideal is idempotent and is called h-quasi-hemiregular if every left h-ideal and every right h-ideal is idempotent.

Lemma 7.2. [15] A hemiring S is left h-quasi-hemiregular if and only if one of the following conditions holds:
(1) There exist $c_{i}, d_{i}, c_{j}^{\prime}, d_{j}^{\prime}, z \in S$ such that
$x+\sum_{i=1}^{m} c_{i} x d_{i} x+z=\sum_{j=1}^{n} c_{j}^{\prime} x d_{j}^{\prime} x+z$ for all $x \in S$;
(2) $x \in \overline{S x S x}$ for all $x \in S$;
(3) $A \subseteq \overline{S A S A}$ for all $A \in S$;
(4) $I \cap L=\overline{I L}$ for every h-ideal I an every left h-ideal L of S.

Theorem 7.3. A hemiring is left(right) h-quasi-hemiregular if and only if every $S I$-left(right) h-ideal of S is idempotent.

Proof. Let S be a left h-quasi-hemiregular hemiring, f_{S} any SI-left h-ideal of S over U. For any $x \in S$, there exist $c_{i}, c_{j}^{\prime}, d_{i}, d_{j}^{\prime}, z \in S$ such that

$$
x+\sum_{i=1}^{m} c_{i} x d_{i} x+z=\sum_{j=1}^{n} c_{j}^{\prime} x d_{j}^{\prime} x+z
$$

Then, we have

$$
\begin{aligned}
& =\bigcup_{\substack{ \\
x+\sum_{i=1}^{m} a_{i} b_{i}+z^{\prime}=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z^{\prime}}}^{\bigcup}\left(f_{S}\left(a_{i}\right) \cap f_{S}\left(a_{j}^{\prime}\right) \cap f_{S}\left(b_{i}\right) \cap f_{S}\left(b_{j}^{\prime}\right)\right) \\
& \supseteq f_{S}\left(c_{i} x\right) \cap f_{S}\left(c_{j}^{\prime} x\right) \cap f_{S}\left(d_{i} x\right) \cap f_{S}\left(d_{j}^{\prime} x\right) \\
& \supseteq f_{S}(x),
\end{aligned}
$$

which implies, $f_{S} \widetilde{\subseteq} f_{S} \star f_{S}$. Since f_{S} is an SI-left h-ideal of S over U, then $f_{S} \star f_{S} \widetilde{\subseteq} f_{S}$. Thus, we have $f_{S} \star f_{S}=f_{S}$.

Conversely, let L be any left h-ideal of S. Then, \mathcal{S}_{L} is an SI-left h-ideal of S over U by Proposition 2.8. Then, by Proposition 2.6, we have

$$
\mathcal{S}_{L}=\mathcal{S}_{L} \star \mathcal{S}_{L}=\underline{\mathcal{S}_{L^{2}}},
$$

which implies, $L=\overline{L^{2}}$. Hence, S is left h-quasi-hemiregular. Similarly, we can prove the case for SI-right h ideals.

Theorem 7.4. Let S be a hemiring. Then, the following conditions are equivalent:
(1) S is left h-quasi-hemiregular;
(2) $f_{S} \widetilde{\cap} g_{S}=f_{S} \star g_{S}$ for every SI-h-ideal f_{S} and every SI-left h-ideal g_{S} of S over U;
(3) $f_{S} \widetilde{\cap} g_{S} \widetilde{\widetilde{ }} f_{S} \star g_{S}$ for every SI-h-ideal f_{S} and every SI-h-bi-ideal g_{S} of S over U;
(4) $f_{S} \widetilde{\cap} g_{S} \widetilde{\subseteq} f_{S} \star g_{S}$ for every SI-h-ideal f_{S} and every SI-h-quasi-ideal g_{S} of S over U.

Proof. (1) $\Rightarrow(3)$ Let f_{S} and g_{S} be any SI-h-ideal and SI-h-bi-ideal of S over U, respectively. For $x \in S$, by Lemma 7.2, we have $x \in \overline{S x S x} \subseteq \overline{S \overline{S x S x} S x} \subseteq \overline{S x S x S x}$, and so there exist $c_{i}, c_{j}^{\prime}, d_{i}, d_{j}^{\prime}, e_{i}, e_{j}^{\prime}, z \in S$ such that $x+\sum_{j=1}^{m^{\prime}} c_{i} x d_{i} x e_{i} x+z=\sum_{j=1}^{n^{\prime}} c_{j}^{\prime} x d_{j}^{\prime} x e_{j}^{\prime} x+z$.
Then, we have

$$
\begin{aligned}
& =\bigcup^{\left(f_{S} \star f_{S}\right)(x)} \bigcup_{x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}\left(f_{S}\left(a_{i}\right) \cap f_{S}\left(a_{j}^{\prime}\right) \cap g_{S}\left(b_{i}\right) \cap g_{S}\left(b_{j}^{\prime}\right)\right) \\
& \supseteq f_{S}\left(c_{i} x d_{i}\right) \cap f_{S}\left(c_{j}^{\prime} x d_{j}^{\prime}\right) \cap g_{S}\left(x e_{i} x\right) \cap g_{S}\left(x e_{j}^{\prime} x\right) \\
& \supseteq f_{S}(x) \cap g_{S}(x) \\
& =f_{S} \widetilde{\cap} g_{S}(x),
\end{aligned}
$$

which implies, $f_{S} \widetilde{\cap} g_{S} \widetilde{\subseteq} f_{S} \star f_{S}$.
$(3) \Rightarrow(4) \Rightarrow(2)$ It is clear.
$(2) \Rightarrow(1)$ Let I and L be any h-ideal and any left h-ideal of S, respectively. Then, \mathcal{S}_{I} and \mathcal{S}_{L} are an $S I$ - h-ideal and SI-left h-ideal of S, respectively. Then,

$$
\mathcal{S}_{I \cap L}=\mathcal{S}_{I} \widetilde{\cap} \mathcal{S}_{L}=\mathcal{S}_{I} \star \mathcal{S}_{L}=\mathcal{S}_{\overline{I L}}
$$

which implies, $I \cap L=\overline{I L}$. It follows from Lemma 7.2 that S is h-quasi-hemiregular.
Similarly, we can get the following theorem.
Theorem 7.5. Let S be a hemiring. Then, the following conditions are equivalent:
(1) S is left h-quasi-hemiregular;
(2) $f_{S} \widetilde{\cap} g_{S} \widetilde{\cap} h_{S} \widetilde{\subseteq} f_{S} \star g_{S} \star h_{S}$ for every SI-h-ideal f_{S}, every SI-right h-ideal g_{S} and every SI-h-bi-ideal h_{S} of S over U;
(3) $f_{S} \widetilde{\cap} g_{S} \widetilde{\cap} h_{S} \widetilde{\subseteq} f_{S} \star g_{S} \star h_{S}$ for every SI-h-ideal f_{S}, every SI-right h-ideal g_{S} and every SI-h-quasi-ideal h_{S} of S over U.

Now, we can describe the characterization of h-quasi-hemiregular hemirings.
Theorem 7.6. A hemiring S is h-quasi-hemiregular if and only if $f_{S}=\left(\widetilde{\mathbb{S}} \star f_{S}\right)^{2} \widetilde{\cap}\left(f_{S} \star \widetilde{\mathbb{S}}\right)^{2}$ for every SI-h-quasi-ideal of S over U.

Proof. Let S be an h-quasi-hemiregular hemiring, f_{S} an $S I-h$-quasi-ideal of S over U. we know that $\widetilde{S} \star f_{S}$ and $f_{S} \star \widetilde{\mathbb{S}}$ are an SI-left h-ideal and an SI-right h-ideal of S over U, respectively, and so both $\widetilde{\mathbb{S}} \star f_{S}$ and $f_{S} \star \widetilde{\mathbb{S}}$ are idempotent by Theorem 7.3. Hence, we have
$\left.\left.\widetilde{(\mathbb{S}} \star f_{S}\right)^{2} \widetilde{\cap}\left(f_{S} \star \widetilde{\mathbb{S}}\right)^{2}=\widetilde{(\mathbb{S}} \star f_{S}\right) \widetilde{\cap}\left(f_{S} \star \widetilde{\mathbb{S}}\right) \widetilde{\subseteq} f_{S}$.
For any $x \in S$, there exist $c_{i}, c_{j}^{\prime}, d_{i}, d_{j}^{\prime}, z \in S$ such that $x+\sum_{i=1}^{m^{\prime}} c_{i} x d_{i} x+z=\sum_{j=1}^{n^{\prime}} c_{j}^{\prime} x d_{j}^{\prime} x+z$ since S is left h-quasihemiregular. Then, we have

$$
\begin{aligned}
& \left.\quad \widetilde{\mathbb{S}} \star f_{S}\right)^{2}(x) \\
& \left.=\bigcup_{\substack{x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}}\left(\widetilde{\mathbb{S}} \star f_{S}\right)\left(a_{i}\right) \cap\left(\widetilde{\mathbb{S}} \star f_{S}\right)\left(a_{j}^{\prime}\right) \cap\left(\widetilde{\mathbb{S}} \star f_{S}\right)\left(b_{i}\right) \cap\left(\widetilde{\mathbb{S}} \star f_{S}\right)\left(b_{j}^{\prime}\right)\right) \\
& \supseteq \widetilde{\left(\mathbb{S} \star f_{S}\right)\left(c_{i} x\right) \cap\left(\widetilde{\mathbb{S}} \star f_{S}\right)\left(c_{c}^{\prime} x\right) \cap\left(\widetilde{\mathbb{S}} \star f_{S}\right)\left(d_{i} x\right) \cap\left(\widetilde{\mathbb{S}} \star f_{S}\right)\left(d_{j}^{\prime} x\right)} \\
& \supseteq f_{\mathcal{S}}(x),
\end{aligned}
$$

 $f_{S}=\left(\widetilde{\mathbb{S}} \star f_{S}\right)^{2} \widetilde{\cap}\left(f_{S} \star \widetilde{\mathbb{S}}\right)^{2}$.

Conversely, let f_{S} be any SI-left h-ideal of S over U. Then, by Proposition 4.3, we have f_{S} is an SI- h -quasi-ideal of S over U. Then,

$$
\left.f_{S}=\left(\widetilde{\mathbb{S}} \star f_{S}\right)^{2} \widetilde{\cap}\left(f_{S} \star \widetilde{\mathbb{S}}\right)^{2} \widetilde{\subseteq} \widetilde{(\mathbb{S}} \star f_{S}\right)^{2} \widetilde{\subseteq} f_{S} \star f_{s} \widetilde{\mathbb{S}} \star f_{S} \widetilde{\subseteq} f_{S} .
$$

Thus, $f_{S}=f_{S} \star f_{S}$. Then, by Theorem 4.3, S is left h-quasi-hemiregular. Similarly, we can prove S is a right h-quasi-hemiregular. Therefore, S is h-quasi-hemiregular.

Lemma 7.7. [15] A hemiring S is both left h-quasi-hemiregular and h-intra-hemiregular if and only if for any $x \in S$, there exist $c_{i}, d_{i}, c_{j^{\prime}}^{\prime}, d_{j^{\prime}}^{\prime} z \in S$ such that $x+\sum_{i=1}^{m} c_{i} x^{2} d_{i} x+z=\sum_{j=1}^{n} c_{j}^{\prime} x^{2} d_{j}^{\prime} x+z$.

Similar to Theorems 7.4 and 7.5 , we can get the following theorem.
Theorem 7.8. Let S be a hemiring. Then, the following conditions are equivalent:
(1) S is both left h-hemiregular and h-intra-hemiregular;

(3) $f_{s} \widetilde{\cap} g_{S} \widetilde{\widetilde{ }} f_{S} \star g_{S}$ for every $S I$-left h-ideal f_{S} and every $S I$-h-quasi-ideal g_{S} of S over U.

8. Conclusions

The aim of this article is to lay a foundation for providing a soft algebraic tool in considering many problems that contain uncertainties. In order to provide these soft algebraic structures, we make a new approach to hemirings by means of soft set theory, with the concepts of SI-hemirings, SI-h-ideals, SI-h-bi-ideals and SI-h-quasi-ideals. Finally, we investigate the characterizations of h-hemiregular hemirings, h-intra-hemiregular hemirings and h-quasi-hemiregular hemirings.

We believe that the research along this direction can be continued, and in fact, some results in this paper have already constituted a foundation for further investigation concerning the further development of hemirings. In the future study of soft hemirings, we can consider to apply this kind of new soft hemirings to some applied fields, such as decision making, data analysis and forecasting and so on.

Acknowledgements

This research is partially supported by a grant of National Natural Science Foundation of China (11461025) and Science Foundation of Hubei Province (2014CFC1125).

Appendix

It suffices to show that when $x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z$ and for each $i=1, \cdots, m$ and $j=1, \cdots, n$, $a_{i}+\sum_{k=1}^{m_{i}} a_{i k} b_{i k}+z_{i}=\sum_{l=1}^{n_{i}} a_{j}^{\prime} b_{j l}^{\prime}+z_{i}$ and $a_{j}^{\prime}+\sum_{p=1}^{m_{j}^{\prime}} a_{i p} b_{i p}+z_{j}^{\prime}=\sum_{q=1}^{n_{j}^{\prime}} a_{j q^{\prime}} b_{j q}^{\prime}+z_{j}^{\prime}$, we have $x+\sum_{i=1}^{m^{\prime}} \tilde{a}_{i} \tilde{c}_{i} \tilde{b}_{i}+\tilde{z}=\sum_{j=1}^{n^{\prime}} \tilde{a}_{j}^{\prime} \tilde{c}_{j}^{\prime} \tilde{b}_{j}^{\prime}+\tilde{z}$ for some $m^{\prime}, n^{\prime}, \tilde{a}_{i}, \tilde{b}_{i}, \tilde{c}_{i}, \tilde{a}_{j}^{\prime}, \tilde{b}_{j}^{\prime}$ and \tilde{c}_{j}^{\prime}.

For each i, we have

$$
\begin{equation*}
a_{i}+\sum_{k=1}^{m_{i}} a_{i k} b_{i k}+z_{i}=\sum_{l=1}^{n_{i}} a_{j l}^{\prime} b_{j l}^{\prime}+z_{i} \tag{1}
\end{equation*}
$$

Multiplying two side of Eq. (1) by b_{i}, we have

$$
\begin{equation*}
a_{i} b_{i}+\sum_{k=1}^{m_{i}} a_{i k} b_{i k} b_{i}+z_{i} b_{i}=\sum_{l=1}^{n_{i}} a_{j l}^{\prime} b_{j l}^{\prime} b_{i}+z_{i} b_{i} \tag{2}
\end{equation*}
$$

Summing for all i ranging from 1 to m, we have

$$
\begin{equation*}
\sum_{i=1}^{m} a_{i} b_{i}+\sum_{i=1}^{m} \sum_{k=1}^{m_{i}} a_{i k} b_{i k} b_{i}+\sum_{i=1}^{m} z_{i} b_{i}=\sum_{i=1}^{m} \sum_{l=1}^{n_{i}} a_{j l}^{\prime} b_{j l}^{\prime} b_{i}+\sum_{i=1}^{m} z_{i} b_{i} \tag{3}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\sum_{j=1}^{n} \sum_{q=1}^{n_{j}^{\prime}} a_{j q}^{\prime} b_{j q}^{\prime} b_{j}^{\prime}+\sum_{j=1}^{n} z_{j}^{\prime} b_{j}^{\prime}=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+\sum_{j=1}^{n} \sum_{p=1}^{m_{j}^{\prime}} a_{i p} b_{i p} b_{j}^{\prime}+\sum_{j=1}^{n} z_{j}^{\prime} b_{j}^{\prime} \tag{4}
\end{equation*}
$$

Adding Eqs. (3) and (4), we have

$$
\begin{align*}
\sum_{i=1}^{m} a_{i} b_{i}+\sum_{i=1}^{m} \sum_{k=1}^{m_{i}} a_{i k} b_{i k} b_{i}+\sum_{i=1}^{m} z_{i} b_{i}+\sum_{j=1}^{n} \sum_{q=1}^{n_{j}^{\prime}} a_{j q}^{\prime} b_{j q}^{\prime} b_{j}^{\prime}+\sum_{j=1}^{n} z_{j}^{\prime} b_{j}^{\prime}= & \sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+\sum_{j=1}^{n} \sum_{p=1}^{m_{j}^{\prime}} a_{i p} b_{i p} b_{j}^{\prime}+\sum_{j=1}^{n} z_{j}^{\prime} b_{j}^{\prime} \tag{5}\\
& +\sum_{i=1}^{m} \sum_{l=1}^{n_{i}} a_{j l}^{\prime} b_{j l}^{\prime} b_{i}+\sum_{i=1}^{m} z_{i} b_{i}
\end{align*}
$$

Adding two side of Eq. (1) by $x+z$, we have

$$
\begin{align*}
\left(x+\sum_{i=1}^{m} a_{i} b_{i}+z\right)+\sum_{i=1}^{m} \sum_{k=1}^{m_{i}} a_{i k} b_{i k} b_{i}+\sum_{i=1}^{m} z_{i} b_{i}+ & \sum_{j=1}^{n} \sum_{q=1}^{n_{j}^{\prime}} a_{j q}^{\prime} b_{j q}^{\prime} b_{j}^{\prime}+\sum_{j=1}^{n} z_{j}^{\prime} b_{j}^{\prime}=x+\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z \tag{6}\\
& +\sum_{j=1}^{n} \sum_{p=1}^{m_{j}^{\prime}} a_{i p} b_{i p} b_{j}^{\prime}+\sum_{j=1}^{n} z_{j}^{\prime} b_{j}^{\prime}+\sum_{i=1}^{m} \sum_{l=1}^{n_{i}} a_{j l}^{\prime} b_{j l}^{\prime} b_{i}+\sum_{i=1}^{m} z_{i} b_{i}
\end{align*}
$$

By $x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z$, we have

$$
\begin{align*}
\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z+\sum_{i=1}^{m} \sum_{k=1}^{m_{i}} a_{i k} b_{i k} b_{i}+\sum_{i=1}^{m} z_{i} b_{i}+ & \sum_{j=1}^{n} \sum_{q=1}^{n_{j}^{\prime}} a_{j q}^{\prime} b_{j q}^{\prime} b_{j}^{\prime}+\sum_{j=1}^{n} z_{j}^{\prime} b_{j}^{\prime}=x+\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z \tag{7}\\
& +\sum_{j=1}^{n} \sum_{p=1}^{m_{j}^{\prime}} a_{i p} b_{i p} b_{j}^{\prime}+\sum_{j=1}^{n} z_{j}^{\prime} b_{j}^{\prime}+\sum_{i=1}^{m} \sum_{l=1}^{n_{i}} a_{j l}^{\prime} b_{j l}^{\prime} b_{i}+\sum_{i=1}^{m} z_{i} b_{i}
\end{align*}
$$

Hence, Eq. (7) can be reformulated as the following form:

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{k=1}^{m_{i}} a_{i k} b_{i k} b_{i}+\sum_{j=1}^{n} \sum_{q=1}^{n_{j}^{\prime}} a_{j q}^{\prime} b_{j q}^{\prime} b_{j}^{\prime}+z^{\prime}=x+\sum_{j=1}^{n} \sum_{p=1}^{m_{j}^{\prime}} a_{i p} b_{i p} b_{j}^{\prime}+\sum_{i=1}^{m} \sum_{l=1}^{n_{i}} a_{j l}^{\prime} b_{j l}^{\prime} b_{i}+z^{\prime} \tag{8}
\end{equation*}
$$

where $z^{\prime}=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z+\sum_{i=1}^{m} z_{i} b_{i}+\sum_{j=1}^{n} z_{j}^{\prime} b_{j}^{\prime}$.

References

[1] H. Aktaş, N. Çaǧman, Soft sets and soft groups, Inform. Sci. 177 (2007) 2726-2735.
[2] M.I. Ali, F. Feng, X. Liu, W.K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. 57 (2009) 1547-1553.
[3] M.I. Ali, M. Shabir, M. Naz, Algebraic structure of soft sets associated with new operations, Comput. Math. Appl. 61 (2011) 2647-2654.
[4] S.M. Anvariyeh, S. Mirvakili, O. Kazanc1, B. Davvaz, Algebraic hyperstructures of soft sets associated to semihypergroups, SEA Bull. Math. 35 (2011) 911-925.
[5] N. Çaǧman, F. Citak, H. Aktas, Soft-int group and its applications to group theory, Neural Comput. Applic. 21 (2012) (Suppl1) 151-158.
[6] N. Çaǧman, S. Enginoglu, Soft matrix theory and its decision making, Comput. Math. Appl. 59 (2010) 3308-3314.
[7] N. Çağman, S. Enginoglu, Soft set theory and uni-int decision making, Eur. J. Oper. Res. 207 (2010) 848-855.
[8] W.A. Dudek, M. Shabir, M.I. Ali, (α, β)-fuzzy ideals of hemirings, Comput. Math. Appl. 58 (2009) 310-321.
[9] W.A. Dudek, M. Shabir, R. Anjum, Characterizations of hemirings by their h-ideals, Comput. Math. Appl. 59 (2010) 3167-3179.
[10] F. Feng, Y.B. Jun, X. Liu, L. Li, An adjustable approach to fuzzy soft set based decision making, J. Comput. Appl. Math. 234 (2010) 10-20.
[11] F. Feng, Y.B. Jun, X. Zhao, Soft semirings, Comput. Math. Appl. 56 (2008) 2621-2628.
[12] F. Feng, C. Li, B. Davvaz, M.I. Ali, Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Comput. 12 (2010) 899-911.
[13] Y.B. Jun, Soft BCK/BCI-algebras, Comput. Math. Appl. 56 (2008) 1408-1413
[14] Y.B. Jun, M.A. Öztürk, S.Z. Song, On fuzzy h-ideals in hemirings, Inform. Sci. 162 (2004) 211-226.
[15] X. Ma, Y. Yin, J. Zhan, Characterizations of h-intra- and h-quasi-hemiregular hemirings, Comput. Math. Appl. 63 (2012) 783-793
[16] X. Ma, J. Zhan, Applications of soft intersection set theory to h-hemiregular and h-semisimple hemirings, J. Mult-Valued Logic Soft Comput. 25(2015) 105-124.
[17] X. Ma, J. Zhan, Generalized fuzzy h-bi-ideals and h-quasi-ideals of hemirings, Inform. Sci. 179 (2009) 1249-1268.
[18] X. Ma, J. Zhan, New fuzzy h-ideals in hemirings, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 74 (2012) 11-24.
[19] X. Ma, J. Zhan, SI-h-ideals of hemirings, Ital. J. Pure Appl Math. 32(2014) 301-308.
[20] P.K. Maji, R. Biswas, A.R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555-562.
[21] P.K. Maji, A.R. Roy, R. Biswas, An applications of soft sets in a decision making problem, Comput. Math. Appl. 44 (2002) 1077-1083
[22] P. Majumdar, S.K. Samanta, On soft mapping, Comput. Math. Appl. 60 (2010) 2666-2672.
[23] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999) 19-31.
[24] S. K. Sardar, D. Manda, B. Davvaz, Fuzzy h-ideal of matrix hemiring $S_{2}=\left(\begin{array}{cc}R & \Gamma \\ S & L\end{array}\right)$, Iran. J. Fuzzy systems 9(4) (2012) 55-70.
[25] A. Sezgin, A.O. Atagun, On operations of soft sets, Comput. Math. Appl. 61 (2011) 1457-1467.
[26] A. Sezgin, A.O. Atagun, N. Çaǧman, Soft intersection near-rings with its applications, Neural Comput. Applic. 21 (2012) (Suppl1) S221-S229.
[27] D.R. La Torre, On h-ideals and k-ideals in hemirings. Publ. Math. Debrecen. 12 (1965) 219-226.
[28] S. Yamak, O. Kazancı, B. Davvaz, Soft hyperstructure, Comput. Math. Appl. 62 (2011) 797-803.
[29] Y. Yin, X. Huang, D. Xu, H. Li, The characterization of h-semisimple hemirings, Int. J. Fuzzy Systems 11 (2009) 116-122.
[30] Y. Yin, H. Li, The characterization of h-hemiregular hemirings and h-intra-hemiregular hemirings, Inform. Sci. 178 (2008) 34513464.
[31] J. Zhan, W.A. Dudek, Fuzzy h-ideals of hemirings, Inform. Sci. 177 (2007) 876-886.
[32] Y. Zou, Z. Xiao, Data analysis approaches of soft sets under incomplete information, Knowledge-Based Systems 21 (2008) 941-945.

[^0]: 2010 Mathematics Subject Classification. 16Y60; 13E05; 16Y99
 Keywords. Soft set; SI-h-ideal; SI-h-bi-ideal; SI-h-quasi-ideal; (h-hemiregular, h-intra-hemiregular, h-quasi-hemiregular); Hemiring Received: 11 June 2014; Accepted: 24 April 2015
 Communicated by Dragan S. Djordjević
 Corresponding author: Jianming Zhan
 Email addresses: zjmhbmy@126.com (Xueling Ma), zhanjianming@hotmail.com (Jianming Zhan), davvaz@yazd.ac.ir (Bijan Davvaz)

