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Abstract. In this paper we study fuzzy hyperideals of a fuzzy hyperring, we define and analyze two
particular kinds of fuzzy hyperideals, which extend similar notions of ring context, namely prime fuzzy
hyperideals and maximal fuzzy hyperideals. Moreover, we study the hyperideal transfer through a fuzzy
hyperring homomorphism, particularly for prime fuzzy hyperideals and for maximal fuzzy hyperideals.

1. Introduction

Most of the problems in biology, economics, ecology, engineering, environmental science, medical
science, social science etc. have various uncertainties. Fuzzy set theory, rough set theory, vague set theory,
interval mathematics, probability, soft set theory are different ways of expressing uncertainty.

There have been some developments in the study focusing on a fusion of algebra and theories modelling
imprecision. The study of fuzzy algebraic structures, especially of fuzzy groups, dates back to the early
70-ies. Famous mathematicians were involved in it, such as A. Rosenfeld, J.N. Mordeson, D.S. Malik etc.

Fuzzy hyperstructures represent a connection between fuzzy sets [14] and algebraic hyperstructures
[10]. This topic occurs in many up-to-date papers concerning fuzzy algebraic structures. There are several
important applications of fuzzy algebra, such as in automata theory and coding theory. Concerning fuzzy
sets and algebraic hyperstructures, there are three approaches in order to connect these topics. One approach
is to consider a certain hyperoperation, defined through a fuzzy set, as in [1, 2]. Another approach is to
consider fuzzy hyperstructures in a similar way as Rosenfeld did for fuzzy groups [11]. This study was
initiated by Zahedi and his collaborations [15]. The third approach involves the definition and study of
fuzzy hyperoperations. In a nonempty set H, fuzzy hyperstructures map a pair of elements of H to a fuzzy
subset of H, see [3]. This idea was continued by Kehagias, Konstantinidou and Serafimidis ([5], [6], [12]).
In 2007, Sen, Ameri and Chowdhury [13] used this idea for defining fuzzy hypersemigroups. Soon after,
Leoreanu-Fotea and Davvaz introduced fuzzy hyperrings [7] and Leoreanu-Fotea extended this study to
fuzzy hypermodules [8].

This topic is placed at the border between logic, computer science and universal algebra. It has been
especially approached and developed in the past decade, especially due to its applicability in various
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domains: various subdomains of computer science and mathematics, biology, chemistry etc. To this end, a
theoretical study of generalized algebraic structures and of their properties is required.

In this paper, we continue the study of fuzzy hyperideals of a fuzzy hyperring, initiated in [7]. We
introduce and characterize prime fuzzy hyperideals and maximal fuzzy hyperideals. Moreover, we study
the hyperideal transfer through a fuzzy hyperring homomorphism, particularly for prime fuzzy hyperideals
and for maximal fuzzy hyperideals. In this paper, we present a study in detail of fuzzy hyperideals of
a fuzzy hyperring, continuing [7]. We introduce and characterize prime fuzzy hyperideals and maximal
fuzzy hyperideals. Moreover, we study the hyperideal transfer through a fuzzy hyperring homomorphism,
particularly for prime fuzzy hyperideals and for maximal fuzzy hyperideals.

2. Preliminaries

Let us present some definitions that we need for the rest of our paper.

A mapping ◦ : H × H −→ P∗(H) is called a hyperoperation (or a join operation), where P∗(H) is the set of
all non-empty subsets of H and the couple (H, ◦) is called a hypergroupoid.
The join operation is extended to subsets of H in natural way, so that A ◦ B is given by

A ◦ B =
⋃
{a ◦ b : a ∈ A and b ∈ B}.

The notations a ◦ A and A ◦ a are used for {a} ◦ A and A ◦ {a}, respectively. Generally, the singleton {a} is
identified by its element a.

A hypergroupoid (H, ◦) is called a semihypergroup if for all x, y, z of H

(x ◦ y) ◦ z = x ◦ (y ◦ z),

which means that
⋃

u∈x◦y

u ◦ z =
⋃

v∈y◦z

x ◦ v.

We say that a semihypergroup (H, ◦) is a hypergroup if for all x ∈ H, x ◦H = H ◦ x = H. A subhypergroup
(S, ◦) of (H, ◦) is a nonempty set S, such that for all s ∈ S, we have s ◦ S = S = S ◦ s.
Many examples of hypergroups can be found in [2]. We present here some of them:
Example 2.1. Let R be an equivalence relation on H. We define a hypergroupoid (H, ◦R), as follows:

∀a, b ∈ H, a ◦R a = {y | (a, y) ∈ R} and a ◦R b = a ◦R a ∪ b ◦R b.

Then (H, ◦R) is a hypergroup.
Example 2.2. Let (S, ·) be a semigroup and let P be a non-empty subset of S. For all x, y of S, we define
x ◦ y = xPy. Then (S, ◦) is a semihypergroup. If (S, ·) is a group, then (S, ◦) is a hypergroup, called a
P-hypergroup.
Example 2.3. If G is a group and for all x, y of G, < x, y > denotes the subgroup generated by x and y, then
we define x ◦ y =< x, y >. Then (G, ◦) is a hypergroup.

Let (H1, ◦1) and (H2, ◦2) be two semihypergroups. A map f : H1 −→ H2 is called a semihypergroup
homomorphism if for all x, y ∈ H1, we have f (x ◦1 y) ⊆ f (x) ◦2 f (y).

Hypergroups were introduced in 1934 by a French mathematician Marty at the VIIIth Congress of
Scandinavian Mathematicians [10]. Till now, a lot of applications of hypergroups have been established in
several fields, such as: combinatorics, cryptography, artificial intelligence, automata etc, see [2]. There are
also other kinds of algebraic hyperstructures, such as hyperrings, hypermodules, hypervector spaces.

Several kinds of hyperrings on a nonempty set R can be defined, depending on which operation
is replaced by a hyperoperation. In what follows, we shall consider one of the most general types of
hyperrings [4]:
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The triple (R,+, ·) is a hyperring if:
(i) (R,+) is a commutative hypergroup;
(ii) (R, ·) is a semihypergroup;
(iii) the hyperoperation “ · ” is distributive over the hyperoperation “ + ”.

Example 2.4. (M. Krasner) Let (P,+, ·) be a ring and let G be a normal subgroup of its multiplicative
semigroup (i.e., xG = Gx for all x ∈ P). SetP̄ = {xG | x ∈ P}. For any two elements x, y ∈ P̄, define
xG ⊕ yG = {(xp + yq)G | p, q ∈ G} and xG � yG = xyG. Then (P̄,⊕,�) is a hyperring.

Let us recall now some fuzzy hyperstructure definitions, [13].
Let S be a nonempty set. F∗(S) denotes the set of all fuzzy subsets of S. A fuzzy hyperoperation on S is a

mapping ◦ : S × S 7−→ F∗(S) written as (a, b) 7−→ a ◦ b. In other words the fuzzy hyperoperation “◦”, assigns
to every pair (a, b) in H2 , a nonempty fuzzy subset of H. The set S together with a fuzzy hyperoperation
“ ◦ ” is called a fuzzy hypergroupoid.

(1) A fuzzy hypergroupoid (S, ◦) is called a fuzzy hypersemigroup if for all a, b, c ∈ S, (a ◦ b) ◦ c = a ◦ (b ◦ c),
where for any fuzzy subset µ of S and for all r ∈ S:

(a ◦ µ)(r) =
∨

t∈S((a ◦ t)(r) ∧ µ(t)) , (µ ◦ a)(r) =
∨

t∈S((t ◦ a)(r) ∧ µ(t)).
(2) If A is a nonempty subset of S and x ∈ S, then for all t ∈ S we have

(x ◦ A)(t) =
∨

a∈A(x ◦ a)(t) and (A ◦ x)(t) =
∨

a∈A(a ◦ x)(t).
(3) Let µ, ν be two fuzzy subsets of a fuzzy hypergroupoid (S, ◦) then for all t ∈ S,

(µ ◦ ν)(t) =
∨
p,q∈S

(µ(p) ∧ (p ◦ q)(t) ∧ ν(q)).

If A is a nonempty subset of S, then we denote the characteristic function of A by χA. If A = S, then
for all t ∈ S we have χS(t) = 1. A fuzzy hypergroup (H, ·) is a fuzzy semihypergroup, such that for all
x ∈ H, x ·H = H · x = χH.

Example 2.5.[8] Consider the set N∗ of all nonzero natural numbers and for all a, b ∈ N∗ we define the fuzzy
set a ◦ b : N∗ → [0, 1] by (a ◦ b)(t) = min{1/a, 1/b, 1/t}. It follows that (N∗, ◦) is a fuzzy semihypergroup.
Example 2.6. [8] Let (H, ·) be a fuzzy semihypergroup. Let x0 be an external element of H and denote
H0 = H ∪ {x0}. For all x ∈ H0 define x ◦ x0 = x0 ◦ X = χH0 and for all a, b ∈ H define (a ◦ b)(x0) = 1. If x ∈ H,
then (a ◦ b)(x) = (a · b)(x). Then (H0, ◦) is a fuzzy hypergroup.

Continuing this idea Leoreanu-Fotea and Davvaz [7] introduced the notion of fuzzy hyperrings as
follows:
Let R be a nonempty set and “ ⊕ ”,“ � ” be two fuzzy hyperoperations on R. The triple (R,⊕,�) is called a
fuzzy hyperring if
(1) a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c for all a, b, c ∈ R;
(2) x ⊕ R = R ⊕ x = χS for all x ∈ R;
(3) a ⊕ b = b ⊕ a for all a, b ∈ R;
(4) a � (b � c) = (a � b) � c for all a, b, c ∈ R;
(5) x � (y ⊕ z) = (x � y) ⊕ (x � z) and (x ⊕ y) � z = (x � z) ⊕ (y � z) for all x, y, z ∈ R.

The element 1 ∈ R is called unity (or identity) if for all r ∈ R, we have (r � 1)(r) > 0.

Example 2.7. [7] Let (R,+, ·) be a ring and µ ∈ (0, 1]. If we define the following fuzzy hyperoperations on
R: ∀a, b ∈ R, a ⊕ b = χ{a,b} and (a � b)(t) = µ iff t = ab and (a � b)(t) = 0, otherwise, then (R,⊕,�) is a fuzzy
hyperring.
Example 2.8. Let us consider the ring Z of integer numbers and k ∈ (0, 1]. We define the following fuzzy
hyperoperation on Z:
∀a, b ∈ Z, a ]1 b = χa+b and

(a ◦1 b)(t) =

{
k if t = ab,

0 otherwise.
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According to Theorem 3.1, [7], (Z,]1, ◦1) is a fuzzy hyperring.
All fuzzy hyperrings we consider in sequel are commutative and have unity.

3. Prime Fuzzy Hyperideals and Maximal Fuzzy Hyperideals

In this section we shall introduce and analyze the notions of a prime fuzzy hyperideal and a maximal
fuzzy hyperideal.

First we recall the fuzzy hyperideal notion as it was defined in [7]:

Definition 3.1. If (R,⊕,�) is a fuzzy hyperring and I is a nonempty set of R, then I is called a fuzzy hyperideal
if the followings hold:
(i) if s1, s2 ∈ I and (s1 ⊕ s2)(x) > 0, then x ∈ I;
(ii) for all s ∈ I, we have s ⊕ I = χI;
(iii) if r ∈ R, s ∈ I and (r � s)(x) > 0 or (s � s)(x) > 0 then x ∈ I.

Example 3.2. Let us consider the fuzzy hyperring (Z,]1, ◦1), given in Example 2.8.
Consider S = nZ, where n ∈ N. We check that S is a fuzzy hyperideal of (Z,]1, ◦1).
If s1, s2 ∈ nZ and x ∈ Z, then

(s1 ]1 s2)(x) =

{
1 if x = s1 + s2,

0 otherwise,

hence, (s1 ]1 s2)(x) > 0 implies that x = s1 + s2 ∈ nZ.
Now, ∀s ∈ nZ, and ∀x ∈ nZ,

(s ]1 nZ)(x) =
∨

s1∈nZ

(s ]1 s1)(x)

=
∨

s1∈nZ

{
1 if x = s + s1,

0 otherwise,

so (s ]1 nZ)(x) = 1, since we can consider s1 = x − s ∈ nZ.
For all x ∈ Z − nZ, (s ]1 nZ)(x) = 0, because x cannot be equal to s + s1 ∈ nZ. Hence, s ]1 nZ = χS.
Finally, if s ∈ nZ, r ∈ nZ and (s ◦1 r)(x) > 0, then (s ◦1 r)(x) = k, and so x = sr ∈ nZ. In other words, if s ∈ nZ,
r ∈ Z and (s ◦1 r)(x) > 0 then x ∈ nZ.
Therefore, (nZ,]1, ◦1) is a fuzzy hyperideal of (Z,]1, ◦1).

Moreover, we shall prove that for all fuzzy hyperideal S of (Z,]1, ◦1), there exists n ∈ N such that S = nZ.
Suppose that S , {0}, which means that ∃s ∈ S, s , 0. We have (s ◦1 0)(0) = k, which means that 0 ∈ S.
Moreover, s ]1 S = χS, so (s ]1 S)(0) = 1, whence

∨
ś∈S

(s ]1 ś)(0) = 1. Hence, ∃ś ∈ S, for which (s ]1 ś)(0) > 0,

whence 0 = s + ś. In other words, −s ∈ S. So, S contains a positive integer.
Let n = min{s ∈ S|s > 0}. We show that S = nZ. Since (n ]1 n)(2n) = 1 > 0, it follows that 2n ∈ S. Similarly,
from (n]1 2n)(3n) > 0 it follows that 3n ∈ S and so on. We obtain that for all x ∈ N, nx ∈ S. In a similar way
as above, from nx ∈ S, it follows that −nx ∈ S, whence nZ ⊆ S.
Let now s ∈ S ⊆ Z. Hence, there are q, r ∈ Z, r ≥ 0 such that s = nq + r. From (s]1 −nq)(r) > 0, it follows that
r ∈ S and by the minimality of n, it follows that r = 0. Then s = nq ∈ nZ. Therefore, S = nZ, which means
that the fuzzy hyperideals of Z are nZ, where n is a natural number.

We shall endow quotients of a fuzzy hyperring through its fuzzy hyperideals with hyperring structures,
as follows:

Let (R,⊕,�) be a fuzzy hyperring and I be a fuzzy hyperideal. We define the next relation on R:
xρI y⇐⇒ [(x ⊕ I)(t) > 0⇐⇒ (y ⊕ I)(t) > 0]



M. Motameni et al. / Filomat 30:8 (2016), 2329–2341 2333

where (x ⊕ I)(t) =
∨
i∈I

(x ⊕ i)(t).

It is easy to see that ρI is an equivalence relation. We obtain the equivalence classes as follows:
x̂ = {y ∈ R| xρI y} = {y ∈ R| (x ⊕ I)(t) > 0⇐⇒ (y ⊕ I)(t) > 0}

and the quotient R/I = {x̂|x ∈ R}. Finally, we define the following hyperoperations on R/I:

x̂ � ŷ = {ẑ| (x ⊕ y)(z) > 0},

x̂ � ŷ = {t̂| (x � y)(t) > 0}.

Theorem 3.3. If R is a fuzzy hyperring and I is a fuzzy hyperideal, then R/I endowed with the hyperoperations
“ � ”, “ � ” is a hyperring.

Proof. Let us first verify the associativity of “ � ”. We have
ŷ � ẑ = {t̂|(y ⊕ z)(t) > 0},
x̂ � t̂ = {ŝ|(x ⊕ t)(s) > 0},

whence, (x ⊕ (y ⊕ z))(s) =
∨
t∈R

((x ⊕ t)(s) ∧ (y ⊕ z)(t) > 0.

Since (x ⊕ t)(s) > 0 and (y ⊕ z)(t) > 0, then (x ⊕ (y ⊕ z))(s) > 0. Conversely, if (x ⊕ (y ⊕ z))(s) > 0 then there
exists t ∈ R such that (x ⊕ t)(s) > 0 and (y ⊕ z)(t) > 0. So x̂ � (ŷ � ẑ) = {ŝ|(x ⊕ (y ⊕ z))(s) > 0}.
On the other hand, we have: (x̂� ŷ)� ẑ = {ŝ|((x⊕ y)⊕z)(s) > 0}. Since R is a fuzzy hyperring, the associativity
law holds. Similarly, we can show the associativity of “ � ”.
Now we have to check the reproduction axiom. If x, y ∈ R then x̂, ŷ ∈ R/I. Since x ⊕ R = χR, it follows that
for all y ∈ R we have (x⊕R)(y) = 1. So there exists r ∈ R such that (x⊕ r)(y) > 0 then ŷ ∈ x̂� r̂. Therefore for
all x̂ ∈ R/I we have x̂ � R/I = R/I.
Hence, (R/I,�) is a hypergroup.
And by a similar way we show the distributivity. Hence (R/I,�,�) is a hyperring. �

Definition 3.4. (see [9]) Let (R,⊕,�) be a fuzzy hyperring. An element x is called zero and it is denoted by
“0” if [(s ⊕ x)(u) > 0⇐⇒ s = u].
From now on, we consider that all fuzzy hyperrings have zero and all fuzzy hyperideals of them contain
zero, too.
Definition 3.5. A hyperring (H,+, ·) with zero is called an integral hyperring if the following implication
holds: x · y = 0 =⇒ x = 0 or y = 0.
Lemma 3.6. In the quotient hyperring (R/I,�,�), the next equivalence holds:

x ∈ I⇐⇒ x̂ = 0̂.

Proof. If x ∈ I then x ⊕ I = χI. Also, we have (x ⊕ I)(t) > 0⇐⇒ χI(t) > 0⇐⇒ t ∈ I.
On the other hand, by the definition of “0”, (0 ⊕ I)(t) > 0 if and only if t ∈ I.
Hence, we will obtain [(x⊕ I)(t) > 0⇐⇒ (0⊕ I)(t) > 0] and according to the definition of ρI we can say xρI0,
whence x̂ = 0̂.
Conversely, suppose x̂ = 0̂. This means that xρI0 and so the the following implication holds:

(x ⊕ I)(k) > 0⇐⇒ (0 ⊕ I)(k) > 0.
But (0 ⊕ I)(k) > 0 means that k ∈ I. Hence,

(x ⊕ I)(k) > 0⇐⇒ k ∈ I. (1)
From 0 ∈ I and (x ⊕ 0)(x) > 0, it follows that (x ⊕ I)(x) > 0 and according to (1) we obtain that x ∈ I. �

Lemma 3.7. If x̂ � ŷ = 0̂, then [(x � y)(u) > 0 =⇒ u ∈ I].

Proof. Let (x � y)(u) > 0. Then û ∈ x̂ � ŷ = 0̂, whence û = 0̂, and by Lemma 3.6, it follows that u ∈ I. �

We can introduce now prime fuzzy hyperideals, as follows:
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Definition 3.8. A fuzzy hyperideal P of a fuzzy hyperring (R,⊕,�) is called a prime fuzzy hyperideal, if P , R
and whenever the following condition holds:

(x � y)(u) > 0 =⇒ u ∈ P,
then x ∈ P or y ∈ P.

Example 3.9. We determine the prime fuzzy hyperideals of (Z,]1, ◦1), given in Example 2.8.
By Corollary 3.20, all fuzzy hyperideals pZ, where p is a prime natural number are prime fuzzy hyperideals,
since they are maximal. We show that if (nZ,]1, ◦1) is a prime fuzzy hyperideal, then (nZ,+, ·) is a prime
ideal of (Z,+, ·), whence we obtain that n is a prime natural number or n = 0. Indeed, (nZ,]1, ◦1) is prime
if [(a ◦1 b)(x) > 0 =⇒ x ∈ nZ] =⇒ a ∈ nZ or b ∈ nZ. But (a ◦1 b)(x) > 0 if and only if x = a · b. So the above
condition becomes:

a · b ∈ nZ =⇒ a ∈ nZ or b ∈ nZ
which means that nZ is a prime ideal of the ring Z.
Therefore, the prime fuzzy hyperideals of (Z,]1, ◦1) are {0} and (pZ,]1, ◦1) where p is a prime natural number.

Theorem 3.10. If P is a prime fuzzy hyperideal of a fuzzy hyperring (R,⊕,�), then R/P is an integral hyperring.

Proof. Let x̂ � ŷ = 0̂. By Lemma 3.7, it follows that [(x � y)(u) > 0 =⇒ u ∈ P]. Since P is prime, we obtain
x ∈ P or y ∈ P, and by Lemma 3.6, we obtain x̂ = 0̂ or ŷ = 0̂. Hence R/P is integral hyperring. �

Also the reverse of the above theorem holds:
Theorem 3.11. If R/P is integral hyperring, then P is prime.

Proof. Suppose that (x � y)(u) > 0 =⇒ u ∈ P. We show that x ∈ P or y ∈ P.
We have (x � y)(u) > 0⇐⇒ û ∈ x̂ � ŷ and by Lema 3.6, u ∈ P⇐⇒ û = 0̂.
Hence, the following implication hold:

û ∈ x̂ � ŷ =⇒ û = 0̂, which means that x̂ � ŷ = 0̂.
Since R/P is an integral hyperring, it follows that x̂ = 0̂ or ŷ = 0̂, which means that x ∈ P or y ∈ P. �

Hence we have just proved the following:
Corollary 3.12. If (R,⊕,�) is a fuzzy hyperring, then R/P is an integral hyperring if and only if P is a fuzzy prime
hyperideal.

Now, let R be a fuzzy hyperring with “0” and let I be a fuzzy hyperideal of R. We denote (R/I)∗ = R/I−{0̂}.
We recall that the definition of a hyperfield [4]:

A hyperring (R,�,�) with “0” is called hyperfield if for all x ∈ R∗ = R − {0}, we have x � R = R.
In other words, a hyperring (R,�,�) is a hyperfield if (R∗,�) is a hypergroup. Hence, in a hyperfield
(R,�,�), (R,�) and (R∗,�) are hypergroups and “ � ” is distributive over “ � ”.

Proposition 3.13. Let R be a fuzzy hyperring with zero and I be a fuzzy hyperideal. Then the following equivalence
holds:

x̂ � (R/I)∗ = (R/I)∗, where x̂ ∈ (R/I)∗ ⇐⇒ ∀t < I,∃y < I : (x � y)(t) > 0.

Proof. According to Lemma 3.6, x̂ = 0̂⇐⇒ x ∈ I, hence x̂ ∈ (R/I)∗ means that x < I.
We have x̂ � (R/I)∗ = (R/I)∗ ⇐⇒ ∀t̂ ∈ (R/I)∗,∃ŷ ∈ (R/I)∗ such that t̂ ∈ x̂ � ŷ
⇐⇒ ∀t < I,∃y < I such that (x � y)(t) > 0. �

Definition 3.14. If S is a nonempty subset of R, then the smallest fuzzy hyperideal of R containing S is
called the fuzzy hyperideal generated by S and it is denoted by < S >. In other words < S >=

⋂
I⊇S

I, where I is
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a fuzzy hyperideal of R.

In what follows, by
n∑

i=1

µi we intend µ1 ⊕ · · · ⊕ µn, where µi are fuzzy subsets on a same set.

Proposition 3.15. Let (R,⊕,�) be a fuzzy hyperring with unity and S be a nonempty subset of R. Then

< S >= {t ∈ R | ∃n ∈ N∗,
n∑

i=1

(ai � si)(t) > 0, where ∀i ∈ {1, ...,n}, ai ∈ R, si ∈ S}.

Proof. Let A = {t ∈ R | ∃n ∈ N∗,
n∑

i=1

(ai � si)(t) > 0, where ∀i ∈ {1, ...,n}, ai ∈ R, si ∈ S}. We show that

(i) A is a fuzzy hyperideal;
(ii) A is the smallest fuzzy hyperideal of R containing S.

First, let t1, t2 ∈ A and (t1 ⊕ t2)(x) > 0. We check that x ∈ A. We have

(
n∑

i=1

ai � si)(t1) > 0, (
m∑

j=1

á j � ś j)(t2) > 0, where for all i, j; ai ∈ R, si ∈ S, a j́ ∈ R, s j́ ∈ S.

We can check easily that the next equivalence holds:
(a ⊕ b)(x) > 0⇐⇒ ∃k ∈ (0, 1] such that kχx ≤ χa ⊕ χb.

Indeed, we can take k = (a ⊕ b)(x), and similarly
(a � b)(y) > 0⇐⇒ ∃k ∈ (0, 1] such that kχy ≤ χa � χb.

Hence, from (
n∑

i=1

ai � si)(t1) > 0 it follows that ∃k1 ∈ (0, 1] : k1χt1 ≤

n∑
i=1

χai �χsi . Similarly, ∃k2 ∈ (0, 1] : k2χt2 ≤

m∑
j=1

χá j � χś j . Moreover, ∃k ∈ (0, 1] : kχx ≤ χt1 ⊕ χt2 .

Set ḱ = min{k1, k2}. We obtain

kḱχx ≤ ḱχt1 ⊕ ḱχt2 ≤ (
n∑

i=1

χai � χsi ) ⊕ (
m∑

j=1

χá j � χś j ).

Since kḱ ∈ (0, 1], it follows that ((
n∑

i=1

ai � si) ⊕ (
m∑

j=1

á j � ś j))(x) > 0, which means that x ∈ A.

Now, let t ∈ A, r ∈ R and (r � t)(x) > 0. We check that x ∈ A.

There are n ∈ N∗ such that ∀i ∈ {1, ...,n},∃ai ∈ R,∃si ∈ S and (
n∑

i=1

ai � si)(t) > 0. Hence, ∃k1, k2 ∈ (0, 1] such

that k1χx ≤ χr � χt and k2χt ≤

n∑
i=1

χai � χsi . By distributivity, we obtain k1k2χx ≤

n∑
i=1

(χr � χai ) � χsi , whence

(
n∑

i=1

(r � ai) � si)(x) > 0. Hence, there exist u1, · · ·,un ∈ R such that (
n∑

i=1

ui)(x) > 0 and ((r � ai) � si)(ui) > 0, for

all i. Moreover, there are yi ∈ R such that (r � ai)(yi) > 0 and (yi � si)(ui) > 0. For all i ∈ {1, , ..., n}we obtain

ḱiχui ≤ χyi � χsi and k3χx ≤

m∑
i=1

χui , for some k3, ḱi ∈ (0, 1].

Set ḱi = min{ḱi| i ∈ {1, ...,n}}. We obtain

k3ḱχx ≤

n∑
i=1

ḱχui ≤

n∑
i=1

χyi � χsi .
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So, (
n∑

i=1

yi � si)(x) > 0. This means that x ∈ A. Therefore, A is a fuzzy hyperideal of R.

Moreover, since R has unity, we have (1 � s)(s) > 0, for all s ∈ S, and so S ⊆ A, as desired.

(ii) Next, we show that A is the smallest fuzzy hyperideal containg S. Let B be a fuzzy hyperideal, which

contains S and let t ∈ A. Then (
n∑

i=1

ri � si)(t) > 0, where for all i ∈ {1, ...,n}, ri ∈ R, si ∈ S. Since

(
n∑

i=1

ri � si)(t) =
∨

u1,...,un∈R

((
n∑

i=1

ui)(t) ∧ (r1 � s1)(u1) ∧ ... ∧ (rn � sn)(un))

it follows that ∃u1, ...,un ∈ R such that (
n∑

i=1

ui)(t) > 0, ∀i, (ri � si)(ui) > 0.

Since si ∈ S ⊆ B, it follows that ui ∈ B, for all i ∈ {1, ...,n}, whence t ∈ B. Hence, A ≤ B. Therefore, A =< S >. �

Definition 3.16. A fuzzy hyperideal M of a fuzzy hyperring R is called maximal if for all fuzzy hyperideal
N, if M ≤ N ≤ R then M = N or N = R.

Example 3.17. Let us find the maximal fuzzy hyperideals of the fuzzy hyperring, given in Example 2.8.
Notice that nZ is maximal if and only if n is a prime integer. Indeed, if n = p is prime and S = mZ is a fuzzy
hyperideal of (Z,]1, ◦1) such that pZ ≤ mZ ≤ Z, then m|p, whence m ∈ {1, p}. Hence, m = 1 and so mZ = Z
or m = p and so mZ = pZ. This means that pZ is a maximal fuzzy hyperideal of (Z,]1, ◦1).
On the other hand, if we suppose there is n ∈ N such that S = nZ is maximal and n is not prime, then ∃m|x,
m ∈ N, m < {1,n}, whence S = nZ � mZ � Z which is a contradiction. Hence, the only maximal fuzzy
hyperideals of (Z,]1, ◦1) are nZ, where n is a prime natural number.

Now, we characterize maximal fuzzy hyperideals in fuzzy hyperrings.
Theorem 3.18. If (R,⊕,�) is a fuzzy hyperring, M is a fuzzy hyperideal, M , R, then the quotient (R/M,�,�) is a
hyperfield if and only if M is a maximal fuzzy hyperideal.

Proof. Let x be an whichever element of R −M. We denote the fuzzy hyperideals of R generated by M and
x by < M, x >. In order to show that M is maximal we check that < M, x >= R. Suppose (R/M,�,�) is a
hyperfield, so according to Proposition 3.13,

∀x <M, ∀t <M,∃y <M ; (x � y)(t) > 0
On the other hand, < M, x > is a fuzzy hyperideal and x ∈< M, x >, y ∈ R. Hence, t ∈< M, x >, for all t <M.
Therefore, R −M ⊂< M, x >, whence < M, x >= R. This means that M is a maximal fuzzy hyperideal.
Conversely, let x <M. It follows that M ⊆< M, x > and since M is maximal we obtain that < M, x >= R.
On the other hand,

< M, x >= {u ∈ R|∃n ∈ N∗ : ((
n∑

i=1

ri �mi) ⊕ (r � x))(u) > 0, where r ∈ R, ∀i, mi ∈M, ri ∈ R}.

Let t ∈ R −M be arbitrary. Since t ∈ R =< M, x >, it follows that ((
n∑

i=1

ri �mi) ⊕ (r � x))(t) > 0. We have

((
n∑

i=1

ri �mi) ⊕ (r � x))(t) =
∨

∀i∈{1,...,n+1},ui∈R

((
n+1∑
i=1

ui)(t) ∧ (r1 �m1)(u1)∧

∧ ... ∧ (rn �mn)(un) ∧ (r � x)(un+1)),
whence there exist u1, ...,un+1 ∈ R, such that

(
n+1∑
i=1

ui)(t) > 0, (r1 �m1)(u1) > 0, ..., (rn �mn)(un) > 0, (r � x)(un+1) > 0.
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This means that in R/M we have t̂ ∈
n+1∑
i=1

ûi, û1 ∈ r̂1 � m̂1 = 0̂, since m1 ∈ M, ... , ûn ∈ r̂n � m̂n = 0̂, and

ûn+1 ∈ r̂ � x̂. Hence, t̂ = ûn+1 ∈ r̂ � x̂. So, ∀t̂, x̂ ∈ R/M, t̂ , 0̂ , x̂, ∃r̂ ∈ R/M such that t̂ ∈ r̂ � x̂. Notice that
r̂ , 0̂, otherwise t̂ = 0̂.
Therefore, ((R/M)∗,�) is a hypergroup and so (R/M,�,�) is a hyperfield. �.

Theorem 3.19. Every hyperfield is an integral hyperring.

Proof. Let (R,�,�) be a hyperfield and a, b ∈ R such that a�b = 0. We show that a = 0 or b = 0. Suppose a , 0.
Since (R∗,�) is a hypergroup it follows that a�R∗ = R∗. Hence, a�b < a�R∗, but a�b ∈ a�R, so b must be 0. �

Corollary 3.20. Every maximal fuzzy hyperideal is a prime fuzzy hyperideal.
It follows by the characterizations of prime fuzzy hyperideals, maximal fuzzy hyperideals and the above
theorem. �

4. Fuzzy Ideal Transfer

Let (R1,⊕1,�1) and (R2,⊕2,�2) be two fuzzy hyperrings. In [7], a homomorphism of fuzzy hyperrings
is defined as follows:

A map f : R1 −→ R2 is called homomorphism of fuzzy hyperrings if the following conditions hold:
∀a, b ∈ R1, f (a ⊕1 b) ≤ f (a1) ⊕2 f (b) and f (a �1 b) ≤ f (a) �2 f (b).

Definition 4.1. If in the above conditions we have “ = ” instead of “ ≤ ”, then f is called a good homomorphism
of fuzzy hyperrings.

Recall that if R1 −→ R2 is a map and µ is a fuzzy set on R1, then f (µ) : R2 −→ [0, 1] is defined as follows:

( f (µ))(t) =
∨

r∈ f−1(t)

µ(r) i f f−1(t) , ∅,

otherwise we consider ( f (µ))(t) = 0.

Theorem 4.2. Let f : R1 −→ R2 be a surjective good homomorphism of fuzzy hyperrings and I1, I2 be two fuzzy
hyperideals of R1 and R2 respectively. The following statements hold:
(i) if the next implication holds:

f (µ) = χI2 and µ =
∨

a∈A⊆R1,b∈B⊆R2

a ⊕ b =⇒ µ = χ f−1(I2) (τ)

then f−1(I2) is a fuzzy hyperideal of R1.
(ii) f (I1) is a fuzzy hyperideal of R2.

Proof. (i) Let s1, s2 ∈ f−1(I2) and x ∈ R1 such that (s1 ⊕1 s2)(x) > 0. We show that x ∈ f−1(I2).
Since (s1 ⊕1 s2)(x) > 0, it follows that

0 <
∨

r∈ f−1( f (x))

(s1 ⊕1 s2)(r) = f (s1 ⊕1 s2)( f (x)) ≤ ( f (s1) ⊕2 f (s2))( f (x)).

Since I2 is a fuzzy hyperideal of R2 and f (s1), f (s2) ∈ I2, we obtain that f (x) ∈ I2, which means that x ∈ f−1(I2).
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Here, we check that s1 ⊕1 f−1(I2) = χ f−1(I2), using (τ). Indeed,

f (s1 ⊕1 f−1(I2)) = f (s1) ⊕2 f ( f−1(I2)) = f (s1) ⊕2 I2 = χI2

whence, s1 ⊕1 f−1(I2) = χ f−1(I2), (we put A = {s1} and B = f−1(I2), so µ = s1 ⊕1 f−1(I2)).
Notice that for all r < f−1(I2), we will obtain (s1 ⊕1 f−1(I2))(r) = 0 without using condition (τ) as follows:
Let r ∈ R1, we have (s1 ⊕1 f−1(I2)(r) =

∨
u∈ f−1(I2)

(s1 ⊕1 u)(r). On the other hand, f (s1 ⊕1 u) ≤ f (s1) ⊕2 f (u) ∈

f (s1) ⊕2 I2 = χI2 , hence for all x < I2, f (s1 ⊕1 u)(x) = 0, which means that
∨

r∈ f−1(x)

(s1 ⊕1 u)(r) = 0, if x ∈ Im f .

Hence, (s1 ⊕1 u)(r) = 0 for all r such that f (r) < I2, whence (s1 ⊕1 f−1(I2))(r) = 0, for all r < f−1(I2).
Finally, if s ∈ f−1(I2), r ∈ R1 and (r �1 s)(x) > 0, then we show that x ∈ f−1(I2).
We have 0 <

∨
t∈ f−1( f (x))

(r �1 s)(t) = f (r �1 s)( f (x)) ≤ ( f (r) �2 f (s))( f (x)). Since I2 is a fuzzy hyperideal of R2 and

f (s) ∈ I2, it follows that f (x) ∈ I2 which means that x ∈ f−1(I2).

(ii) Let s1, s2 ∈ I1 and x ∈ R2 such that ( f (s1) ⊕2 f (s2))(x) > 0. We have ( f (s1) ⊕2 f (s2))(x) = f (s1 ⊕1 s2)(x) =∨
r∈ f−1(x)

(s1 ⊕1 s2)(r), since f is surjective. Hence there exists r ∈ f−1(x) such that (s1 ⊕1 s2)(r) > 0 and since I1 is

a fuzzy hyperideal it follows that r ∈ I1 and so f (r) = x ∈ f (I1).
Similarly, we check that if s1 ∈ I1; r, x ∈ R2 and ( f (s1) �2 r)(x) > 0, then we obtain that x ∈ f (I1), too.
Finally, for all s ∈ I1, f (s) ⊕2 f (I1) = f (s ⊕1 I1) = f (χI1 ) = χ f (I1), since f (χI1 )(x) =

∨
r∈ f−1(x)

χI1 (r) = χ f (I1)(x).

Therefore, f (I1) is a fuzzy hyperideal of R2. �

Notice that since any fuzzy hyperideal contains zero, it follows that if I2 is a fuzzy hyperideal of R2, then
f−1(I2) contains f−1(0), which we denote by Ker f .

Now, let f : R1 −→ R2 be a map and let x ∈ R1. Denote by x̄ = {t| f (x) = f (t)}. x̄ is the euivalence class
determined by the equivalence relation induced by f :

x ∼ f y⇐⇒ f (x) = f (y)

Theorem 4.3. Let f : R1 −→ R2 be a surjective good fuzzy homomorphism. If P is a prime fuzzy hyperideal of R1
and the following condition holds:

x ∈ P =⇒ x̄ ⊂ P (∗)

then f (P) is a prime fuzzy hyperideal of R2.

Proof. First, notice that f (P) , R2. We have that P , R1. Suppose that f (P) = R2. Since f (R1) = R2, it follows
that f (P) = f (R1), which means that for all x ∈ R1, there exists p ∈ P such that f (x) = f (p), x ∈ P̄. By (∗), it
follows that x ∈ P, that is R1 = P, which is a contradiction.
Moreover, By Theorem 4.2, f (P) is a fuzzy hyperideal of R2.
Now, suppose that (á � b́)(y) > 0 =⇒ y ∈ f (P) holds, where á, b́, y ∈ R2. We check that á ∈ f (P) or b́ ∈ f (P).
If (a � b)(x) > 0, then f (a � b)( f (x)) =

∨
f (u)= f (x)

(a � b)(u) > 0, whence ( f (a)) � f (b))( f (x)) > 0.

Denote f (a) = á, f (b) = b́, f (x) = y. We obtain f (x) = y ∈ f (P) and by (∗) it follows that x ∈ P. Hence,
(a � b)(x) > 0 implies that x ∈ P. Since P is prime, we obtain that a ∈ P or b ∈ P, and so f (a) = á ∈ f (P) or
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f (b) = b́ ∈ f (P). Therefore f (P) is a prime fuzzy hyperideal of R2. �

Theorem 4.4. Let f : R1 −→ R2 be a surjective good fuzzy homomorphism. If M is a maximal fuzzy hyperideal of
R1 and the following condition holds:

x ∈M =⇒ x̄ ⊂M (∗)

then f (M) is a maximal fuzzy hyperideal of R2.

Proof. The proof is the same as the proof in the classical context of maximal ideals of rings. �

Theorem 4.5. Let f : R1 −→ R2 be a surjective good homomorphism, such that condition (τ) holds. If Ṕ is a prime
(maximal) fuzzy hyperideal of R2, then f−1(Ṕ) is a prime (maximal) fuzzy hyperideal of R1.

Proof. First, notice that f−1(Ṕ) , R1, otherwise, if f−1(Ṕ) = R1, then f ( f−1(Ṕ)) = f (R1) = R2. Since
f ( f−1(Ṕ)) ⊆ Ṕ, it follows that R2 ⊆ Ṕ ⊆ R2, that is Ṕ = R2, which is a contradiction.
Moreover, according to Theorem 4.2, f (P) is a fuzzy hyperideal of R2.
Finally, suppose that the next implication holds:

(a � b)(x) > 0 =⇒ x ∈ f−1(Ṕ) (∗∗)

where a, b, x ∈ R1
We check that a ∈ f−1(Ṕ) or b ∈ f−1(Ṕ).
If (á � b́)(x) > 0,where á, b́, y ∈ R2, then á = f (a), b́ = f (b), y = f (x), where a, b, x ∈ R1, and f (a � b)( f (x)) > 0.
Hence,

∨
f (u)= f (x)

(a � b)(u) > 0, whence there exists u ∈ R1 : f (u) = f (x), such that (a � b)(u) > 0. By (∗∗), it

follows that u ∈ f−1(Ṕ), that is f (u) = f (x) = y ∈ Ṕ.
Since Ṕ is prime, we obtain that á = f (a) ∈ Ṕ or b́ = f (b) ∈ Ṕ. Hence, a ∈ f−1(Ṕ) or b ∈ f−1(Ṕ). Therefore
f−1(Ṕ) is a prime fuzzy hyperideal of R2.
The proof for maximal fuzzy hyperideal is the same as the proof in the classical context of maximal ideals
of rings. �

Corollary 4.6. If R1 −→ R2 is a surjective good homomorphism such that condition (τ) holds, then there is a bijection
correspondence between the set of prime (maximal) fuzzy hyperideals of R1, that satisfy condition (∗) and the set of
prime (maximal) fuzzy hyperideals of R2.

Example 4.7. We endow the ring (Zn,+, ·) with two fuzzy hyperoperatins:
∀â, b̂ ∈ Zn, â ]2 b̂ = χâ+b̂,

â ◦2 b̂(t) = k ∈ (0, 1] if t = â · b̂ and otherwise, â ◦2 b̂(t) = 0.
In other words, â ◦2 b̂ = kχâ.b̂. According to Theorem 3.1 [7], it follows that (Zn,]2, ◦2) is a fuzzy hyperring.
Consider now the canonical projection π : Z −→ Zn, where (Z,]1, ◦1) and (Zn,]2, ◦2) are the above fuzzy
hyperrings. For all t̂ ∈ Zn, we have

π(a ]1 b)(t̂) = π(χa+b)(t̂) =
∨

s∈π−1(t̂)

χa+b(s),

so π(a ]1 b)(t̂) = 1 if and only if a + b ∈ π−1(t̂), which means that π(a + b) = t̂, or equivalently t̂ = â + b.
Otherwise, π(a ]1 b)(t̂) = 0.
On the other hand, (π(a) ]2 π(b))(t̂) = (â ]2 b̂)(t̂) = χâ+b̂(t). Therefore, π(a ]1 b) = π(a) ]2 π(b).
Similarly, for all t̂ ∈ Zn, we have

π(a ◦1 b)(t̂) = π(kχa·b)(t̂) =
∨

s∈π−1(t̂)

kχa·b(s) = kχâb(t̂) = (π(a) ◦2 π(b))(t̂).
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Therefore, π is a surjective good homomorphism of fuzzy hyperrings.
Let us check condition (τ). Consider that µ = A ]1 B is a fuzzy subset on Z. Then µ = χA+B. If π(µ) = χS,
where S is a fuzzy hyperideal of Zn, then

χS(t̂) = π(µ)(t̂) =
∨
s∈t̂

µ(s) =
∨
s∈t̂

χA+B(s)

=

{
1 if t̂ ∩ (A + B) , ∅,

0 otherwise,

=

 1 if t̂ ∈ Â + B,

0 otherwise.

Hence, t̂ ∈ S⇐⇒ t̂ ∈ Â + B, whence S = Â + B. Therefore, µ = χπ−1(S).
On the other hand, the fuzzy hyperring (Zn,]2, ◦2) has zero, which is 0̂ = π(nZ), so all fuzzy hyperideals

of Zn contain it. This means that nZ = π−1(0̂) ⊆ π−1(I2), for all fuzzy hyperideal I2 of Zn. According to
Theorem 4.2, the set of fuzzy hyperideals of (Zn,]2, ◦2) is {π(mZ)|where m|n}.

Recall that the prime fuzzy hyperideals of (Z,]1, ◦1) are {0} and pZ, where p is a prime natural number,
while the maximal fuzzy hyperideals of (Z,]1, ◦1) are pZ, where p is a prime natural number.
We look for the fuzzy hyperideals I which satisfy (∗). Condition (∗) is:

x ∈ I =⇒ x̂ ⊂ I.

Clearly, {0} does not satisfy (∗). We prove that a fuzzy hyperideal I = mZ of (Z,]1, ◦1) satisfies (∗) if and only
if m|n, where π : Z −→ Zn.

Let x ∈ mZ and y ∈ x̄. This means that n|(y − x). We have y ∈ mZ⇐⇒ m|y if and only if m|(y − x). Hence, if
n|(y − x), then we must have m|(y − x). This happens if and only if m|n.
For instance, if n = 5 and m = 6, then x = 6 ∈ 6Z, but 1 < 6Z and 1 ∈ 6̄. If x = 6 and m = 3, then x = 9 ∈ 3Z
and x̄ = 6Z + 3 ⊆ 3Z.
We can conclude that for the surjective good homomorphism π : Z −→ Zn, the set of prime (maximal) fuzzy
hyperideals of Z which satisfy (∗) is {pZ|p is prime, p|n}. According to Corollary 4.6, this set is in a bijective
correspondence with the set of prime (maximal) fuzzy hyperideals of Zn.
Therefore, the set of prime (maximal) fuzzy hyperideals of Zn is {π(pZ)|p is prime, p|n}. �

In [7] homomorphisms of fuzzy hyperrings are analysed; in particular, they are considered quotients
of fuzzy hyperrings with respect to fuzzy regular relations, notions that are necessary for isomorphism
theorems. It is proved that there exists a bijective map between fuzzy regular relations on a hyzzy hyperring
and regular relations on the associated hyperring.Hence the study of quotient fuzzy hyperrings is reduced
to the study of quotient hyperrings. Isomorphism theorems for hyperrings are presented in [4].

5. Conclusion.

We extend the study initiated in [13] about fuzzy semihypergroups and in [7] about fuzzy hyperrings.
We introduce and characterize prime fuzzy hyperideals and maximal fuzzy hyperideals and study the
hyperideal transfer through a fuzzy hyperring homomorphism. This study can be continued in several
directions, such as: to examine the spectrum of fuzzy hyperrings, to analyse similar notions in the context
of fuzzy hypermodules.
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