
Filomat 30:8 (2016), 2111–2120
DOI 10.2298/FIL1608111D

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Let G = (V,E) be a simple graph of order n and size m with maximum degree ∆ and minimum
degree δ . The inverse degree of a graph G with no isolated vertices is defined as

ID(G) =

n∑
i=1

1
di
,

where di is the degree of the vertex vi ∈ V(G) . In this paper, we obtain several lower and upper bounds on
ID(G) of graph G and characterize graphs for which these bounds are best possible. Moreover, we compare
inverse degree ID(G) with topological indices (GA1-index, ABC-index, K f -index) of graphs.

1. Introduction

Throughout this paper we consider simple graphs. Let G = (V,E) be a graph with V(G) =
{v1, v2, . . . , vn} and |E(G)| = m . We denote by di = dG(vi) the degree of vertex vi for i = 1, 2, . . . , n such
that d1 ≥ d2 ≥ · · · ≥ dn . The maximum vertex degree is denoted by ∆ = ∆(G) and the minimum by δ = δ(G)
in G . Other undefined notations and terminology on the graph theory can be found in [1].

Molecular descriptors play a significant role in mathematical chemistry especially in the QSPR/QSAR
investigations (see [15] for some details on this topic). Among them, special place is reserved for so-
called topological indices [16]. Nowadays, there exists a legion of topological indices that found particular
applications in chemistry [26]. They can be classified by the structural properties of graphs used for their
calculation. Here we can list some well-known topological indices of graphs as follows: Wiener index [28]
( based on the distance of vertices in a graph), Hosoya index [23] (on the matching in a graph ), energy
[22] and Estrada index [17] (on the spectrum of a graph), Randić connectivity index [25] and Zagreb group
indices (on the degrees of vertices in a graph). Recently, a new class of topological descriptors, based
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on some properties of vertices of graph are presented. These indices are named as “geometric–arithmetic
indices”. The first member of this class was considered by Vukičević and Furtula [27]:

GA1 = GA1(G) =
∑

viv j∈E(G)

√
di d j

1
2 (di + d j)

(1)

In [27] it was demonstrated, on the example of octane isomers, that the GA1-index is well correlated
with a variety of physico-chemical properties. In [4, 6, 9, 11, 27], mathematical properties of GA1 index
were studied.

Atom-bond connectivity (ABC) index is defined as follows [21]:

ABC(G) =
∑

viv j∈E(G)

√
1
di

+
1
d j
−

2
did j

. (2)

The ABC index has been proven to be a valuable predictive index in the study of the heat of formation
in alkanes [18]. The mathematical properties of ABC index were reported in [3, 7, 10, 21].

The Kirchhoff index K f (G) of connected graph G can be written as

K f = K f (G) = n
n−1∑
k=1

1
µk
, (3)

where µ1 ≥ µ2 ≥ · · · ≥ µn = 0 are the eigenvalues of the Laplacian matrix L(G) = D(G) − A(G), where D(G)
is the diagonal matrix of vertex degrees and A(G) is the (0, 1)-adjacency matrix of graph G. The Kirchhoff
index found noteworthy applications in chemistry as a molecular structure descriptor [19], and many of its
mathematical properties have been established [5, 8].

The inverse degree of a graph G with no isolated vertices is defined [20] as

ID(G) =

n∑
i=1

1
di
,

where di is the degree of the vertex vi ∈ V(G) . The inverse degree first attracted attention through conjectures
of the computer program Graffiti [20]. It has been studied by several authors, see for example [13, 14, 29].

The paper is organized as follows. In Section 2, we present several lower and upper bounds on inverse
degree ID(G) of graph G and characterize graphs for which these bounds are best possible. In Section 3,
we compare between inverse degree ID(G) and topological indices (GA1-index, ABC-index, K f -index) of
graphs.

2. Lower and Upper Bounds on Inverse Degree

In this section we give some lower and upper bounds on inverse degree ID(G) of graph G in terms
of n, m, maximum degree ∆ and minimum degree δ. For this we need the following two lemmas:

Lemma 2.1. [24] Let (a1, a2, . . . , ap) be positive p-tuples such that there exist positive numbers A , a satisfying:

0 < a ≤ ai ≤ A .
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Then

p
p∑

i=1
a2

i( p∑
i=1

ai

)2
≤

1
4


√

A
a

+

√
a
A

2

. (4)

The equality holds if and only if a = A or

q =
A/a

A/a + 1
p

is an integer and q of the numbers ai coincide with a and the remaining p − q of the ai’s coincide with A (, a).

The following result is obtained in [2].

Lemma 2.2. [2] Let G be a graph on n vertices with m edges, maximum degree ∆ and minimum degree δ. Then

n∑
i=1

d2
i ≤ 2m(∆ + δ) − n∆δ

with equality holding if and only if G is isomorphic to a graph of two type of degrees ∆ and δ.

Let Γ1 be the class of graphs H1 = (V, E) such that there exists a positive integer p with d2 = d3 = · · · =
dp = ∆ and dp+1 = dp+2 = · · · = dn−1 = δ where di = dH1 (vi) with i = 2, 3, . . . , n− 2 as defined before. Now we
are ready to give a lower bound on inverse degree ID(G) of graph G.

Theorem 2.3. Let G be a graph of order n > 2 having m edges and no isolated vertices. Then

ID(G) ≥
∆ + δ
∆ δ

+

√
4(n − 2)3 ∆ δ

(∆ + δ)2 [2m(∆ + δ) − n∆δ − ∆2 − δ2]
, (5)

Moreover, the equality holds if and only if G is isomorphic to a regular graph.

Proof. Setting p = n − 2, A =
1
δ

, a =
1
∆

and ai =
1
di

, i = 2, 3, . . . , n − 1; by (4) we have

(n − 2)
n−1∑
i=2

1
d2

i(
n−1∑
i=2

1
di

)2 ≤
1
4


√

∆

δ
+

√
δ
∆

2

, i. e.,
n−1∑
i=2

1
di
≥

√√√
4(n − 2)∆δ

(∆ + δ)2

n−1∑
i=2

1
d2

i

. (6)

By Arithmetic-Harmonic Mean Inequality, we have

n−1∑
i=2

1
d2

i

(n − 2)
≥

(n − 2)
n−1∑
i=2

d2
i

,

i. e.,
n−1∑
i=2

1
d2

i

≥
(n − 2)2

2m(∆ + δ) − n∆δ − ∆2 − δ2 by Lemma 2.2 . (7)
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Using (7) in (6), we get

ID(G) =

n∑
i=1

1
di

=
1
∆

+
1
δ

+

n−1∑
i=2

1
di

≥
∆ + δ
∆ δ

+

√
4(n − 2)3 ∆ δ

(∆ + δ)2 [2m(∆ + δ) − n∆δ − ∆2 − δ2]
. (8)

Now suppose that equality holds in (5). Then all inequalities in the above argument must be equalities.
In particular, from equality in (6), we get

either ∆ = δ or G ∈ Γ1 .

From equality in (7), we get
d2 = d3 = · · · = dn−1.

From equality in (8), we get that G has two type of degrees ∆ and δ, by Lemma 2.2.

From the above, we conclude that G is isomorphic to a regular graph.

Conversely, one can see easily that the equality holds in (5) for regular graphs.

Let Γ2 be the class of graphs H2 = (V, E) such that d2 = d3 = · · · = dn−1 where di = dH2 (vi) with
i = 2, 3, . . . ,n− 1 as defined before. We now give another lower and upper bounds on inverse degree ID(G)
of graph G in terms of n, m, ∆ and δ.

Theorem 2.4. Let G be a graph of order n > 2 having m edges and no isolated vertices. Then

∆ + δ
∆ δ

+
(n − 2)2

2m − ∆ − δ
≤ ID(G) ≤

∆ + δ
∆ δ

+
(n − 2)[(n − 3)(∆2 + δ2) + 2∆δ]

2∆ δ(2m − ∆ − δ)
. (9)

Moreover, the left equality holds in (9) if and only if G ∈ Γ2 and the right equality holds in (9) for regular graphs.

Proof. Now,

n−1∑
i=2

di

n−1∑
i=2

1
di

= n − 2 +
∑

2≤i< j≤n−1

(
di

d j
+

d j

di

)

= n − 2 +
∑

2≤i< j≤n−1

√(
di

d j
−

d j

di

)2

+ 4 (10)

≥ n − 2 + (n − 2)(n − 3)

as
(

di

d j
−

d j

di

)2

≥ 0

 (11)

= (n − 2)2 .

From the above, we get

ID(G) =

n∑
i=1

1
di
≥

1
∆

+
1
δ

+
(n − 2)2

n−1∑
i=2

di

=
∆ + δ
∆ δ

+
(n − 2)2

2m − ∆ − δ
.
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Since
di

d j
−

d j

di
≤

∆

δ
−
δ
∆

for 2 ≤ i < j ≤ n − 1 ,

from (10), we get

n−1∑
i=2

di

n−1∑
i=2

1
di
≤ n − 2 +

∑
2≤i< j≤n−1

(
∆

δ
+
δ
∆

)
= n − 2 +

(n − 2)(n − 3)
2

×

(
∆

δ
+
δ
∆

)
. (12)

Using the above relation, we get

n∑
i=1

1
di

=
∆ + δ
∆ δ

+

n−1∑
i=2

1
di

≤
∆ + δ
∆ δ

+
(n − 2)(n − 3)(∆2 + δ2) + 2(n − 2)∆ δ

2∆ δ(2m − ∆ − δ)
.

Now suppose that the equalities hold in (9). Then all inequalities in the above argument must be
equalities. In particular, from equality in (11), we get(

di

d j
−

d j

di

)2

= 0 for 2 ≤ i < j ≤ n − 1,

that is,
di = d j for 2 ≤ i < j ≤ n − 1, that is, d2 = d3 = · · · = dn−1.

Thus we have G ∈ Γ2 .

From equality in (12), we get

di = ∆ and d j = δ for 2 ≤ i < j ≤ n − 1.

Thus we have

∆ = d2 = d3 = · · · = dn−1 = δ , that is, G is isomorphic to a regular graph.

Conversely, one can see easily that the left equality holds in (9) for graphs G ∈ Γ2 and the right equality
holds for regular graphs.

3. Comparison Between Inverse Degree and Topological Indices of Graphs

In this section we compare inverse degree ID(G) with topological indices (GA1-index, ABC-index,
K f -index) of graphs. We start with an example:

Example 1. For G = K10, 25 , we have

2d j(di − d j) ≥
√

di(2di + d j − 2)

for any edge viv j ∈ E(G) with di ≥ d j .

In [12], we compare GA1-index and ABC-index for chemical trees and molecular graphs. Here we
compare these two indices for general graphs.
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Theorem 3.1. Let G be a graph with degree di of vertex vi, i = 1, 2, . . . , n. If

2d j(di − d j) ≥
√

di(2di + d j − 2)

for any edge viv j ∈ E(G) with di ≥ d j, then GA1(G) > ABC(G) .

Proof. We can easily see that
1

1 + x
> 1 − x when x ≥ 1. Therefore, for di ≥ d j, we have√

did j

di + d j
=

√
d j

di

(
1 +

d j

di

)−1

>

√
d j

di

(
1 −

d j

di

)

=

√
d j

di
−

√(
d j

di

)3

. (13)

Since

1 +
y − 2

x
≤ 1 +

y − 2
x

+
(y − 2)2

4x2 with x, y ≥ 1,

we have √
1 +

y − 2
x
≤ 1 +

1
2

y − 2
x

.

Using the above result, we get√
di + d j − 2

di d j
=

1√
d j

(
1 +

d j − 2
di

)1/2

≤
1√
d j

(
1 +

1
2
·

d j − 2
di

)

=
1√
d j

+

√
d j

2di
−

1

di
√

d j
. (14)

From the given condition, we have

2d j(di − d j) ≥
√

di(2di + d j − 2) for any edge viv j ∈ E(G) with di ≥ d j .

Dividing both sides to the above inequality by 2di
√

did j, we get√
d j

di

(
1 −

d j

di

)
≥

1√
d j

+

√
d j

2di
−

1

di
√

d j
for any edge viv j ∈ E(G) with di ≥ d j ,

that is, √
di d j

di + d j
>

√
di + d j − 2

di d j
for any edge viv j ∈ E(G) with di ≥ d j , by (13) and (14) .
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Using the above result, we have

GA1(G) =
∑

viv j∈E(G)

2
√

di d j

di + d j
>

∑
viv j∈E(G)

√
1
di

+
1
d j
−

2
did j

= ABC(G) .

This completes the proof.

We now give a relation between inverse degree ID(G) and Kirchhoff index K f (G) of graph G.

Theorem 3.2. Let G be a connected graph of order n, m edges with minimum degree δ. If

2m
√

n ≤ (n − 1)2 δ,

then
K f (G) ≥

√
n · ID(G) .

Proof. Since G is connected, µn−1 > 0 . Note that

n−1∑
i=1

µi = 2m.

From the definition of Kirchhoff index, we have

K f (G) =

n−1∑
i=1

n
µi

≥ n
(n − 1)2

n−1∑
i=1
µi

(by the Arithmetic-Harmonic Mean Inequality)

=
n(n − 1)2

2m

≥
n
√

n
δ

(as 2m
√

n ≤ (n − 1)2δ)

≥

n∑
i=1

√
n

di
=
√

n · ID(G) .

This completes the proof.

We now consider any tree T of order n ≥ 6. For tree T, we have m = n−1 and δ = 1. Then 2m
√

n ≤ (n−1)2 δ,
since n − 1 ≥ 2

√
n for n ≥ 6. By Theorem 3.2, we have K f (T) ≥

√
n · ID(T) for any tree T of order n ≥ 6.

For G = Kn (n ≥ 3), we have

ID(G) =
n

n − 1
and ABC(G) =

n(n − 1)
2

·

√
2n − 4

(n − 1)
= n

√
n − 2

2
.

Therefore ABC(G) > ID(G) . For G = K1,n−1 , we have

ABC(G) =
√

(n − 1)(n − 2) < n − 1 +
1

n − 1
= ID(G) .
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From the above, it is easy to see that ABC-index and inverse degree ID(G) are incomparable. But under
certain conditions, we get the following result:

Theorem 3.3. Let G be a graph of order n with no isolated vertices. If δ ≥ 2, then

ABC(G) > ID(G) .

Proof. Now we have

ABC(G) =
∑

viv j∈E(G)

√
1
di

+
1
d j
−

2
di d j

=
1
2

∑
viv j∈E(G)


√

1
di

+
di − 2
di d j

+

√
1
d j

+
d j − 2
di d j


≥

1
2

∑
viv j∈E(G)


√

1
di

+

√
1
d j

 (as dk ≥ δ ≥ 2)

>
1
2

∑
viv j∈E(G)

(
1
di

+
1
d j

)
(as dk ≥ δ ≥ 2)

=
n
2
≥

n∑
i=1

1
di

= ID(G) (as δ ≥ 2) .

This completes the proof.

From the above result, we can get immediately:

Theorem 3.4. Let G be the complement of G with δ(G) ≥ 2 such that δ(G) ≥ 2. Then

ABC(G) + ABC(G) > ID(G) + ID(G) .

Proof. Since δ(G) ≥ 2 and δ(G) ≥ 2, from Theorem 3.3, we get

ABC(G) + ABC(G) > n ≥ ID(G) + ID(G) .

The following result is obtained in [4].

Lemma 3.5. [4] Let G be a connected graph of m edges with maximum vertex degree ∆ and minimum vertex degree
δ. Then

GA1(G) ≥
2m
√

∆ δ
∆ + δ

with equality holding if and only if G is isomorphic to a regular graph or G is isomorphic to a bipartite semiregular
graph.

For G = Kn, we have

GA1(G) =
n(n − 1)

2
>

n
n − 1

= ID(G) .

Moreover, for G = K1,n−1, we have

GA1(G) =
2(n − 1)3/2

n
< n − 1 +

1
n − 1

= ID(G) .
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From the above results, we can see that inverse degree ID(G) and GA1-index are incomparable. But we
have the following result:

Theorem 3.6. Let G be a graph with no isolated vertices and maximum degree ∆, minimum degree δ. If the average
degree

d ≥ 2

√
∆

δ3 ,

then
GA1(G) ≥ ID(G) .

Proof. Let G be a graph with n vertices and m edges. Then we have 2m = d n. Now we have

GA1(G) =
∑

viv j∈E(G)

2
√

di d j

di + d j

≥
2m
√

∆ δ
∆ + δ

( by Lemma 3.5)

≥ m

√
δ
∆

≥
n
δ

as 2m = nd and the condition that d ≥ 2

√
∆

δ3


≥ ID(G) as dk ≥ δ .

This completes the proof.
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