A Numerical Radius Version of the Arithmetic-Geometric Mean of Operators

Alemeh Sheikhhosseini ${ }^{\text {a }}$
${ }^{a}$ Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

In this paper, we obtain some numerical radius inequalities for operators, in particular for positive definite operators A, B a numerical radius and some operator norm versions for arithmeticgeometric mean inequality are obtained, respectively as $$
\omega^{2}(A \sharp B) \leqslant \omega\left(\frac{A^{2}+B^{2}}{2}\right)-\frac{1}{2} \inf _{\|x\|=1} \delta(x),
$$

where $\delta(x)=\langle(A-B) x, x\rangle^{2}$, and

$$
\|A\|\|B\| \leqslant \frac{1}{2}\left(\left\|A^{2}\right\|+\left\|B^{2}\right\|\right)-\frac{1}{2} \inf _{\|x\|=\|y\|=1} \delta(x, y)
$$

where, $\delta(x, y)=(\langle A y, y\rangle-\langle B x, x\rangle)^{2}$.

1. Introduction

Let \boldsymbol{H} be a complex Hilbert space with inner product $\langle.,$.$\rangle and let \mathcal{B}(\boldsymbol{H})$ denote the algebra of all bounded linear operators on H. Let $\|\|\| \mid$. denote any unitarily invariant norm, i.e., a norm with the property that $\|U A V\|=\|A\| \|$, for all $A \in \mathcal{B}(\boldsymbol{H})$ and for all unitary $U, V \in \mathcal{B}(\boldsymbol{H})$.
For $A \in \mathcal{B}(\boldsymbol{H})$, the spectral norm of A is defined by

$$
\|A\|=\sup \{|\langle A x, y\rangle|:\|x\|=\|y\|=1, x, y \in H\}
$$

It is evident that this norm is unitary invariant.
The numerical range of a $A \in \mathcal{B}(\boldsymbol{H})$ is defined as

$$
W(A)=\sup \{\langle A x, x\rangle:\|x\|=1, x \in \boldsymbol{H}\}
$$

For any $A \in \mathcal{B}(\boldsymbol{H}), \overline{W(A)}$ is a convex subset of the complex plane containing the spectrum of A. See [5, Chapter 2] for this topic.
The numerical radius of $A \in \mathcal{B}(\boldsymbol{H})$ is defined by

$$
\omega(A)=\sup \{|\lambda|: \lambda \in W(A)\}
$$

We recall the following results that were proved in [6].

[^0]Lemma 1.1. Let $A \in \mathcal{B}(\boldsymbol{H})$ and let $\omega($.$) be the numerical radius. Then$
(i) $\omega($.$) is a norm on \mathcal{B}(\boldsymbol{H})$,
(ii) $\omega\left(U A U^{*}\right)=\omega(A)$, for all unitary operators U,
(iii) $\omega(A)=\|A\|$ if (but not only if) A is normal,
(iv) $\frac{1}{2}\|A\| \leq \omega(A) \leq\|A\|$.

Moreover, $\omega($.$) is not a unitarily invariant norm and is not submultiplicative.$
For positive real numbers a and b, the most familiar form of the Young inequality is the following:

$$
\begin{equation*}
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} \tag{1}
\end{equation*}
$$

where $p, q>1$ such that $\frac{1}{p}+\frac{1}{q}=1$, or equivalently

$$
a^{v} b^{1-v} \leqslant v a+(1-v) b,
$$

with $v \in[0,1]$. Recently, Kittaneh and Manasrah [8] obtained a refinement of (1)

$$
\begin{equation*}
a b+r_{0}\left(a^{p / 2}-b^{q / 2}\right)^{2} \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} \tag{2}
\end{equation*}
$$

where $r_{0}=\min \left\{\frac{1}{p}, \frac{1}{q}\right\}$.
For positive definite operators $A, B \in \mathcal{B}(\boldsymbol{H})$, the operator geometric mean is defined by

$$
A \sharp B \equiv A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} .
$$

The operator geometric mean has the symmetric property $(A \sharp B=B \sharp A)$. If $A B=B A$, then $A \sharp B=(A B)^{1 / 2}$. In this paper we obtain some inequalities (upper bound) for $\omega((A \sharp B) X)$, where $X \in \mathcal{B}(\boldsymbol{H})$ is arbitrary. Throughout the paper we use the notation $A>0$ to mean that A is positive definite and \mathbb{M}_{n} the space of all $n \times n$ matrices.

2. Main Results

Bhatia and Kittaneh in 1990 [3] established a matrix mean inequality as follows:

$$
\begin{equation*}
\left\|A^{*} B\right\| \leq \frac{1}{2}\left\|A^{*} A+B^{*} B\right\| \tag{3}
\end{equation*}
$$

for matrices $A, B \in \mathbb{M}_{n}$.
In [2] a generalization of (3) was proved, for all $X \in \mathbb{M}_{n}$,

$$
\left\|A^{*} X B\right\| \leq \frac{1}{2}\left\|A A^{*} X+X B B^{*}\right\|
$$

Ando in 1995 [1] established a matrix Young inequality:

$$
\begin{equation*}
\|A B\| \leq\left\|\frac{A^{p}}{p}+\frac{B^{q}}{q}\right\| \tag{4}
\end{equation*}
$$

for $p, q>1$ with $1 / p+1 / q=1$ and positive matrices A, B. In [9] we considered the inequalities (3) and (4) with the numerical radius norm as follows:

Proposition 2.1. [9, Proposition 1] If A, B are $n \times n$ matrices, then

$$
\omega\left(A^{*} B\right) \leq \frac{1}{2} \omega\left(A^{*} A+B^{*} B\right)
$$

Also if A and B are positive matrices and $p, q>1$ with $1 / p+1 / q=1$, then

$$
\omega(A B) \leq \omega\left(\frac{A^{p}}{p}+\frac{B^{q}}{q}\right) .
$$

Moreover, the authors, in [9, Theorem 2] and [10, Theorem 2.3], showed that the inequality

$$
\|A X B\| \leq\left\|\frac{A^{p}}{p} X+X \frac{B^{q}}{q}\right\|
$$

does not holds for numerical radius and spectral norm for all $X \in \mathbb{M}_{n}$ and positive matrices A, B.
The following lemma is a consequence of the spectral theorem for positive operators and Jensen's inequality (see, e.g., [7]).

Lemma 2.2. Let A be a positive semidefinite operator in $\mathcal{B}(\boldsymbol{H})$ and let $x \in \boldsymbol{H}$ be any unit vector. Then for all $r \geqslant 1$

$$
\begin{equation*}
\langle A x, x\rangle^{r} \leq\left\langle A^{r} x, x\right\rangle \tag{5}
\end{equation*}
$$

and for all $0 \leqslant r \leqslant 1$

$$
\left\langle A^{r} x, x\right\rangle \leq\langle A x, x\rangle^{r}
$$

Theorem 2.3. Let $A, B, X \in \mathcal{B}(\boldsymbol{H})$, such that $A, B>0$ and $p \geqslant q>1$ where $1 / p+1 / q=1$. Then for all $r \geqslant \frac{2}{q}$

$$
\begin{equation*}
\omega^{r}((A \sharp B) X) \leqslant \omega\left(\frac{A^{r p / 2}}{p}+\frac{\left(X^{*} B X\right)^{r q / 2}}{q}\right)-\frac{1}{p} \inf _{\|x\|=1} \delta(x), \tag{6}
\end{equation*}
$$

where $\delta(x)=\left(\langle A x, x\rangle^{r p / 4}-\left\langle X^{*} B X x, x\right\rangle^{r q / 4}\right)^{2}$.
Proof. Let $x \in \boldsymbol{H}$, with $\|x\|=1$. By the Schwarz inequality in the Hilbert space $(\boldsymbol{H} ;\langle, .\rangle$,$) , we have$

$$
\begin{aligned}
|\langle(A \sharp B) X x, x\rangle|^{r} & =\left|\left\langle A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} X x, x\right\rangle\right|^{r} \\
& =\left|\left\langle\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} X x, A^{1 / 2} x\right\rangle\right|^{r} \\
& \leqslant\left\|\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} X x\right\|^{r} \cdot\left\|A^{1 / 2} x\right\|^{r} \\
& =\left\langle\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} X x,\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} X x\right\rangle^{r / 2} \\
& \times\left\langle A^{1 / 2} x, A^{1 / 2} x\right\rangle^{r / 2} \\
& =\langle A x, x\rangle^{r / 2}\left\langle X^{*} B X x, x\right\rangle^{r / 2} .
\end{aligned}
$$

Now, by Young's inequality and (2) we have
$\langle A x, x\rangle^{r / 2}\left\langle X^{*} B X x, x\right\rangle^{r / 2}$
$\leqslant \frac{1}{p}\langle A x, x\rangle^{r_{p} / 2}+\frac{1}{q}\left\langle X^{*} B X x, x\right\rangle^{r q / 2}-\frac{1}{p}\left(\langle A x, x\rangle^{\gamma^{r p / 4}}-\left\langle X^{*} B X x, x\right\rangle^{r q / 4}\right)^{2}$
and by (5) we have
$\frac{1}{p}\langle A x, x\rangle^{r_{p} / 2}+\frac{1}{q}\left\langle X^{*} B X x, x\right\rangle^{r q / 2}-\frac{1}{p}\left(\langle A x, x\rangle^{r p / 4}-\left\langle X^{*} B X x, x\right\rangle^{r q / 4}\right)^{2}$
$\leqslant \frac{1}{p}\left\langle A^{r p / 2} x, x\right\rangle+\frac{1}{q}\left\langle\left(X^{*} B X\right)^{r q / 2} x, x\right\rangle-\frac{1}{p}\left(\langle A x, x\rangle^{r p / 4}-\left\langle X^{*} B X x, x\right\rangle^{r q / 4}\right)^{2}$
$=\left\langle\left(\frac{A^{r p / 2}}{p}+\frac{\left(X^{*} B X\right)^{r q / 2}}{q}\right) x, x\right\rangle-\frac{1}{p}\left(\langle A x, x\rangle^{r p / 4}-\left\langle X^{*} B X x, x\right\rangle^{r q / 4}\right)^{2}$.
Now, the result follows by taking the supremum over all unit vectors in \boldsymbol{H}.

Remark 2.4. Let $r=p=q=2$. Then $\delta(x) \equiv 0$ if and only if $A-X^{*} B X=0$. In general, $\delta(x)=0$ if and only if $\langle A x, x\rangle^{r p / 4}=\left\langle X^{*} B X x, x\right\rangle^{r q / 4}$.

The following example shows that, inequality (6) does not hold in general for spectral norm.
Example 2.5. If we take $p=q=2, r=1, A=\left[\begin{array}{ll}1 & 0 \\ 0 & \frac{1}{4}\end{array}\right], B=I_{2}$ and $X=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, then

$$
1=\|(A \sharp B) X\|^{r}>\left\|\frac{A^{r p / 2}}{p}+\frac{\left(X^{*} B X\right)^{r q / 2}}{q}\right\|=\frac{5}{8} .
$$

Put $X=I$ in Theorem 2.3, we obtain the following corollary.
Corollary 2.6. Let $A, B \in \mathcal{B}(\boldsymbol{H})$, be positive definite and $p \geqslant q>1$ such that $1 / p+1 / q=1$. Then for all $r \geqslant \frac{2}{q}$

$$
\omega^{r}(A \sharp B) \leqslant \omega\left(\frac{A^{r p / 2}}{p}+\frac{B^{r q / 2}}{q}\right)-\frac{1}{p} \inf _{\|x\|=1} \delta(x),
$$

where $\delta(x)=\left(\langle A x, x\rangle^{r p / 4}-\langle B x, x\rangle^{r q / 4}\right)^{2}$.
Note that it is enough to replace r with $2 r$ and $X=I$ in the statement of Theorem 2.3 to obtain the following corollary.

Corollary 2.7. Let $A, B \in \mathcal{B}(\boldsymbol{H})$ be positive definite operators and $p \geqslant q>1$ such that $1 / p+1 / q=1$. Then for all $r \geqslant \frac{1}{q}$,

$$
\begin{equation*}
\omega^{2 r}(A \sharp B) \leqslant \omega\left(\frac{A^{r p}}{p}+\frac{B^{r q}}{q}\right)-\frac{1}{p} \inf _{\|x\|=1} \delta(x), \tag{7}
\end{equation*}
$$

where $\delta(x)=\left(\langle A x, x\rangle^{r / 2}-\langle B x, x\rangle^{r q / 2}\right)^{2}$.
Remark 2.8. Note that, if we set $r=1$ and $p=q=2$ in (7), then we have

$$
\begin{equation*}
\omega^{2}(A \sharp B) \leqslant \omega\left(\frac{A^{2}+B^{2}}{2}\right)-\frac{1}{2} \inf _{\|x\|=1} \delta(x), \tag{8}
\end{equation*}
$$

where $\delta(x)=\langle(A-B) x, x\rangle^{2}$. Notice that (8) is an operator numerical radius version for arithmetic-geometric mean and moreover if, $0 \notin \overline{W(A-B)}$, then $\inf _{\|x\|=1} \delta(x)>0$.

In the proof of Theorem 2.3, if we put $r=2$ and $X=I$, then we have the following corollary.
Corollary 2.9. Let $A, B \in \mathcal{B}(\boldsymbol{H})$, be positive definite operators. Then
$\|A \sharp B\|^{2} \leqslant\|A|\|\mid B\|$.
Let $T, U \in \mathcal{B}(\boldsymbol{H})$. The Euclidean radius(see [4]) is defined by

$$
\omega_{e}(T, U)=\sup _{\|x\|=1}\left(|\langle T x, x\rangle|^{2}+|\langle U x, x\rangle|^{2}\right)^{1 / 2} .
$$

Corollary 2.10. Let $A, B \in \mathcal{B}(\boldsymbol{H})$, be positive definite operators. Then

$$
\sqrt{2}\|A \sharp B\| \leqslant \omega_{e}(A, B) \leqslant\left\|A^{2}+B^{2}\right\|^{1 / 2},
$$

inparticular,

$$
\sqrt{2} \omega(A \sharp B) \leqslant \omega_{e}(A, B) \leqslant \omega^{1 / 2}\left(A^{2}+B^{2}\right) .
$$

Proof. Same as, in the proof of Theorem 2.3, if we set $r=p=q=2$, then we have

$$
\begin{equation*}
|\langle(A \sharp B) x, x\rangle|^{2} \leqslant \frac{1}{2}\left(\langle A x, x\rangle^{2}+\langle B x, x\rangle^{2}\right) \tag{9}
\end{equation*}
$$

and by Lemma 2.2,

$$
\begin{equation*}
\frac{1}{2}\left(\langle A x, x\rangle^{2}+\langle B x, x\rangle^{2}\right) \leqslant \frac{1}{2}\left(\left\langle A^{2} x, x\right\rangle+\left\langle B^{2} x, x\right\rangle\right)=\frac{1}{2}\left\langle\left(A^{2}+B^{2}\right) x, x\right\rangle \tag{10}
\end{equation*}
$$

Now, the result follows by taking the supremum in (9) and (10) over all unit vectors in \boldsymbol{H}.

3. Additional Results

Proposition 3.1. Let $A, B, X \in \mathcal{B}(\boldsymbol{H})$ such that $A, B>0$ and $p \geqslant q>1$ such that $1 / p+1 / q=1$. Then for all $r \geqslant \frac{2}{q}$

$$
\|(A \sharp B) X\|^{r} \leqslant\left\|\frac{A^{r p / 2}}{p}\right\|+\left\|\frac{\left(X^{*} B X\right)^{r q / 2}}{q}\right\|-\frac{1}{p} \inf _{\|x\|=\|y\|=1} \delta(x, y),
$$

where $\delta(x, y)=\left(\langle A y, y\rangle^{r p / 4}-\left\langle X^{*} B X x, x\right\rangle^{r q / 4}\right)^{2}$.
Proof. Let $x, y \in \boldsymbol{H}$, such that $\|x\|=\|y\|=1$. By the Schwarz inequality in the Hilbert space $(\boldsymbol{H} ;\langle.,\rangle$.$) , we have$

$$
\begin{aligned}
|\langle(A \sharp B) X x, y\rangle|^{r} & =\left|\left\langle A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} X x, y\right\rangle\right|^{r} \\
& =\left|\left\langle\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} X x, A^{1 / 2} y\right\rangle\right|^{r} \\
& \leqslant\left\|\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} X x\right\|^{r} \cdot\left\|A^{1 / 2} y\right\|^{r} \\
& =\left\langle\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} X x,\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} X x\right\rangle^{r / 2} \\
& \times\left\langle A^{1 / 2} y, A^{1 / 2} y\right\rangle^{r / 2} \\
& =\langle A y, y\rangle^{r / 2}\left\langle X^{*} B X x, x\right\rangle^{r / 2} .
\end{aligned}
$$

Now, by Young's inequality and (2) we have
$\langle A y, y\rangle^{r / 2}\left\langle X^{*} B X x, x\right\rangle^{r / 2}$
$\leqslant \frac{1}{p}\langle A y, y\rangle^{r_{p} / 2}+\frac{1}{q}\left\langle X^{*} B X x, x\right\rangle^{r q / 2}-\frac{1}{p}\left(\langle A y, y\rangle^{r p / 4}-\left\langle X^{*} B X x, x\right\rangle^{r q / 4}\right)^{2}$
and by (5) we have
$\frac{1}{p}\langle A y, y\rangle^{r p / 2}+\frac{1}{q}\left\langle X^{*} B X x, x\right\rangle^{r q / 2}-\frac{1}{p}\left(\langle A y, y\rangle^{r p / 4}-\left\langle X^{*} B X x, x\right\rangle^{r q / 4}\right)^{2}$
$\leqslant \frac{1}{p}\left\langle A^{r p / 2} y, y\right\rangle+\frac{1}{q}\left\langle\left(X^{*} B X\right)^{r q / 2} x, x\right\rangle-\frac{1}{p}\left(\langle A y, y\rangle^{r p / 4}-\left\langle X^{*} B X x, x\right\rangle^{r q / 4}\right)^{2}$.
Now, the result follows by taking the supremum over all unit vectors $x, y \in \boldsymbol{H}$.
Corollary 3.2. Let $A, B, X \in \mathcal{B}(\boldsymbol{H})$ be such that $A, B>0$. Then for all $r \geqslant 1$

$$
\begin{equation*}
2\|(A \nVdash B) X\|^{r} \leqslant\left\|A^{r}\right\|+\left\|\left(X^{*} B X\right)^{r}\right\|-\inf _{\|x\|=\|y\|=1} \delta(x, y), \tag{11}
\end{equation*}
$$

where $\delta(x, y)=\left(\langle A y, y\rangle^{r / 2}-\left\langle X^{*} B X x, x\right\rangle^{r / 2}\right)^{2}$.
If in relation (11) we set $X=I$ we obtain the following corollary.

Corollary 3.3. Let $A, B \in \mathcal{B}(\boldsymbol{H})$ be positive definite operators. Then for all $r \geqslant 1$

$$
2\|A \sharp B\|^{r} \leqslant\left\|A^{r}\right\|+\left\|B^{r}\right\|-\inf _{\|x\|=\|y\|=1} \delta(x, y),
$$

where $\delta(x, y)=\left(\langle A y, y\rangle^{r / 2}-\langle B x, x\rangle^{r / 2}\right)^{2}$.
Proposition 3.4. Let $A, B, X \in \mathcal{B}(\boldsymbol{H})$ such that $A, B>0$ and $p \geqslant q>1$ such that $1 / p+1 / q=1$. Then for all $r \geqslant 2 / q$

$$
\begin{equation*}
\left(\|A\|\left\|X^{*} B X\right\|\right)^{r / 2} \leqslant\left\|\frac{A^{r p / 2}}{p}\right\|+\left\|\frac{\left(X^{*} B X\right)^{r q / 2}}{q}\right\|-\frac{1}{p} \inf _{\|x\|=\|y\|=1} \delta(x, y) \tag{12}
\end{equation*}
$$

where $\delta(x, y)=\left(\langle A y, y\rangle^{r p / 4}-\left\langle X^{*} B X x, x\right\rangle^{r q / 4}\right)^{2}$.
Proof. Let $x, y \in H$ with $\|x\|=\|y\|=1$. By the inequality (2), we have
$\langle A y, y\rangle^{r / 2}\left\langle X^{*} B X x, x\right\rangle^{r / 2}$
$\leqslant \frac{1}{p}\langle A y, y\rangle^{r^{p / 2}}+\frac{1}{q}\left\langle X^{*} B X x, x\right\rangle^{r q / 2}-\frac{1}{p}\left(\langle A y, y\rangle^{r p / 4}-\left\langle X^{*} B X x, x\right\rangle^{r q / 4}\right)^{2}$
and by (5) we have
$\frac{1}{p}\langle A y, y\rangle^{r p / 2}+\frac{1}{q}\left\langle X^{*} B X x, x\right\rangle^{r q / 2}-\frac{1}{p}\left(\langle A y, y\rangle^{r p / 4}-\left\langle X^{*} B X x, x\right\rangle^{r q / 4}\right)^{2}$
$\leqslant \frac{1}{p}\left\langle A^{r p / 2} y, y\right\rangle+\frac{1}{q}\left\langle\left(X^{*} B X\right)^{r q / 2} x, x\right\rangle-\frac{1}{p}\left(\langle A y, y\rangle^{r p / 4}-\left\langle X^{*} B X x, x\right\rangle^{r q / 4}\right)^{2}$.
Now, the result follows by taking the supremum over all unit vectors $x, y \in H$.
If in relation (12), we set $X=I$ and $r=2$, then we obtain the following corollary.
Corollary 3.5. Let $A, B \in \mathcal{B}(\boldsymbol{H})$ be positive definite operators and $p \geqslant q>1$ such that $1 / p+1 / q=1$. Then

$$
\begin{equation*}
\|A\|\|B\| \leqslant\left\|\frac{A^{p}}{p}\right\|+\left\|\frac{B^{q}}{q}\right\|-\frac{1}{p} \inf _{\|x\|=\|y\|=1} \delta(x, y) \tag{13}
\end{equation*}
$$

where $\delta(x, y)=\left(\langle A y, y\rangle^{p / 2}-\langle B x, x\rangle^{q / 2}\right)^{2}$.
Remark 3.6. Note that, if we set $p=q=2$ in (13), then we have

$$
\begin{equation*}
\|A\|\|B\| \leqslant \frac{1}{2}\left(\left\|A^{2}\right\|+\left\|B^{2}\right\|\right)-\frac{1}{2} \inf _{\|x\|\| \| y \|=1} \delta(x, y) \tag{14}
\end{equation*}
$$

where $\delta(x, y)=(\langle A y, y\rangle-\langle B x, x\rangle)^{2}$. Notice that (14) is an operator norm version for arithmetic-geometric mean and moreover if, $W(A)$ and $W(B)$ are separated, then $\inf _{\|x\|=\|y\|=1} \delta(x, y)>0$.
Example 3.7. Let $p=q=2$ and $A=\operatorname{diag}(1,2), B=\operatorname{diag}(5,6)$ in the inequality (13). Then $\inf _{\|x\|=\|y\|=1} \delta(x, y)=$ $9>0$ and hence,

$$
12=\|A\|\|B\| \leqslant \frac{1}{2}\left(\left\|A^{2}\right\|+\left\|B^{2}\right\|\right)-\frac{1}{2} \inf _{\|x\|\| \| y \|=1} \delta(x, y)=\frac{31}{2} .
$$

Whereas, if we set this values in the inequality (4), with the spectral norm, then we obtain

$$
12=\|A B\| \leqslant\left\|\frac{A^{p}}{p}+\frac{B^{q}}{q}\right\|=20 .
$$

Thus, in this case, we have

$$
\|A B\|=\|A\|\|B\|<\left\|\frac{A^{p}}{p}\right\|+\left\|\frac{B^{q}}{q}\right\|-\frac{1}{p} \inf _{\|x\|=\|y\|=1} \delta(x, y)<\left\|\frac{A^{p}}{p}+\frac{B^{q}}{q}\right\| .
$$

Acknowledgement: The author would like to thank the anonymous referee for careful reading and the helpful comments improving this paper.

References

[1] T. Ando, Matrix Young inequality, Oper. Theory Adv. Appl. 75 (1995) 33-38.
[2] R. Bhatia, Positive Definite Matrices, Princeton University Press, 2007.
[3] R. Bhatia and F. Kittaneh, On the singular values of a product of operators, SIAM J. Matrix Anal. Appl. 11 (1990) 272-277.
[4] S. S. Dragomir, Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces, Linear Algebra Appl. 419 (2006) 256-264.
[5] T. Furuta, Invitation to Linear Operators, Taylor \& Francis, Ltd., London, 2001.
[6] K. E. Gustafson and D. K. M. Rao, Numerical Range, Springer-Verlag, New York, 1997.
[7] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci. 24 (1988) 283-293.
[8] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl. 361 (2010) 262-269.
[9] A. Salemi and A. Sheikhhosseini, Matrix Young numerical radius inequalities, J. Math. Inequal. 16 (2013), 783-791.
[10] A. Salemi and A. Sheikh Hosseini. On reversing of the modified Young inequality. Ann. Funct. Anal. 5 (2014) 69-75.

[^0]: 2010 Mathematics Subject Classification. Primary 47A30; Secondary 47A12
 Keywords. Geometric mean, Inequalities, Numerical radius, Operator norm
 Received: 15 May 2014; Accepted: 24 July 2014
 Communicated by Mohammad Sal Moslehian
 Email address: sheikhhosseini@uk.ac.ir (Alemeh Sheikhhosseini)

