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Abstract. In this paper, we obtain some numerical radius inequalities for operators, in particular for
positive definite operators A,B a numerical radius and some operator norm versions for arithmetic-
geometric mean inequality are obtained, respectively as

ω2(A]B) 6 ω
(

A2 + B2

2

)
−

1
2

inf
‖x‖=1

δ(x),

where δ(x) = 〈(A − B)x, x〉2 , and

‖A‖‖B‖ 6
1
2

(‖A2
‖ + ‖B2

‖) −
1
2

inf
‖x‖=‖y‖=1

δ(x, y),

where, δ(x, y) =
(〈

Ay, y
〉
− 〈Bx, x〉

)2 .

1. Introduction

Let H be a complex Hilbert space with inner product 〈., .〉 and letB(H) denote the algebra of all bounded
linear operators on H. Let |||.||| denote any unitarily invariant norm, i.e., a norm with the property that
|||UAV||| = |||A||| , for all A ∈ B(H) and for all unitary U,V ∈ B(H).
For A ∈ B(H), the spectral norm of A is defined by

‖A‖ = sup{|〈Ax, y〉| : ‖x‖ = ‖y‖ = 1, x, y ∈ H}.

It is evident that this norm is unitary invariant.
The numerical range of a A ∈ B(H) is defined as

W(A) = sup{〈Ax, x〉 : ‖x‖ = 1, x ∈ H}.

For any A ∈ B(H), W(A) is a convex subset of the complex plane containing the spectrum of A. See
[5, Chapter 2] for this topic.
The numerical radius of A ∈ B(H) is defined by

ω(A) = sup{|λ| : λ ∈W(A)}.

We recall the following results that were proved in [6].

2010 Mathematics Subject Classification. Primary 47A30; Secondary 47A12
Keywords. Geometric mean, Inequalities, Numerical radius, Operator norm
Received: 15 May 2014; Accepted: 24 July 2014
Communicated by Mohammad Sal Moslehian
Email address: sheikhhosseini@uk.ac.ir (Alemeh Sheikhhosseini)



A. Sheikhhosseini / Filomat 30:8 (2016), 2139–2145 2140

Lemma 1.1. Let A ∈ B(H) and let ω(.) be the numerical radius. Then
(i) ω(.) is a norm on B(H),
(ii) ω(UAU∗) = ω(A), for all unitary operators U,
(iii) ω(A) = ‖A‖ if ( but not only if) A is normal,
(iv) 1

2‖A‖ ≤ ω(A) ≤ ‖A‖.

Moreover, ω(.) is not a unitarily invariant norm and is not submultiplicative.
For positive real numbers a and b, the most familiar form of the Young inequality is the following:

ab ≤
ap

p
+

bq

q
, (1)

where p, q > 1 such that
1
p
+

1
q
= 1, or equivalently

aνb1−ν 6 νa + (1 − ν)b,

with ν ∈ [0, 1]. Recently, Kittaneh and Manasrah [8] obtained a refinement of (1)

ab + r0(ap/2
− bq/2)2

≤
ap

p
+

bq

q
, (2)

where r0 = min{ 1p ,
1
q }.

For positive definite operators A,B ∈ B(H), the operator geometric mean is defined by

A]B ≡ A1/2(A−1/2BA−1/2)1/2A1/2.

The operator geometric mean has the symmetric property (A]B = B]A). If AB = BA, then A]B = (AB)1/2.
In this paper we obtain some inequalities (upper bound) for ω((A]B)X), where X ∈ B(H) is arbitrary.
Throughout the paper we use the notation A > 0 to mean that A is positive definite andMn the space of all
n × n matrices.

2. Main Results

Bhatia and Kittaneh in 1990 [3] established a matrix mean inequality as follows:

|||A∗B||| ≤
1
2
|||A∗A + B∗B||| , (3)

for matrices A,B ∈Mn.
In [2] a generalization of (3) was proved, for all X ∈Mn,

|||A∗XB||| ≤
1
2
|||AA∗X + XBB∗||| .

Ando in 1995 [1] established a matrix Young inequality:

|||AB||| ≤
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣Ap

p
+

Bq

q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ (4)

for p, q > 1 with 1/p + 1/q = 1 and positive matrices A,B. In [9] we considered the inequalities (3) and (4)
with the numerical radius norm as follows:
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Proposition 2.1. [9, Proposition 1] If A,B are n × n matrices, then

ω(A∗B) ≤
1
2
ω(A∗A + B∗B).

Also if A and B are positive matrices and p, q > 1 with 1/p + 1/q = 1, then

ω(AB) ≤ ω(
Ap

p
+

Bq

q
).

Moreover, the authors, in [9, Theorem 2 ] and [10, Theorem 2.3], showed that the inequality

|||AXB||| ≤
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣Ap

p
X + X

Bq

q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
does not holds for numerical radius and spectral norm for all X ∈Mn and positive matrices A,B.
The following lemma is a consequence of the spectral theorem for positive operators and Jensen’s inequality
(see, e.g., [7]).

Lemma 2.2. Let A be a positive semidefinite operator in B(H) and let x ∈ H be any unit vector. Then for all r > 1

〈Ax, x〉r ≤ 〈Arx, x〉, (5)

and for all 0 6 r 6 1

〈Arx, x〉 ≤ 〈Ax, x〉r.

Theorem 2.3. Let A,B,X ∈ B(H), such that A,B > 0 and p > q > 1 where 1/p + 1/q = 1. Then for all r > 2
q

ωr((A]B)X) 6 ω
(

Arp/2

p
+

(X∗BX)rq/2

q

)
−

1
p

inf
‖x‖=1

δ(x), (6)

where δ(x) =
(
〈Ax, x〉rp/4

− 〈X∗BXx, x〉rq/4
)2
.

Proof. Let x ∈ H, with ‖x‖ = 1. By the Schwarz inequality in the Hilbert space (H; 〈., .〉), we have∣∣∣〈(A]B)Xx, x
〉∣∣∣r = ∣∣∣∣〈A1/2(A−1/2BA−1/2)1/2A1/2Xx, x

〉∣∣∣∣r
=

∣∣∣∣〈(A−1/2BA−1/2)1/2A1/2Xx,A1/2x
〉∣∣∣∣r

6 ‖(A−1/2BA−1/2)1/2A1/2Xx‖r.‖A1/2x‖r

=
〈
(A−1/2BA−1/2)1/2A1/2Xx, (A−1/2BA−1/2)1/2A1/2Xx

〉r/2

×

〈
A1/2x,A1/2x

〉r/2

= 〈Ax, x〉r/2 〈X∗BXx, x〉r/2 .

Now, by Young’s inequality and (2) we have
〈Ax, x〉r/2 〈X∗BXx, x〉r/2

6
1
p
〈Ax, x〉rp/2 +

1
q
〈X∗BXx, x〉rq/2

−
1
p

(
〈Ax, x〉rp/4

− 〈X∗BXx, x〉rq/4
)2

and by (5) we have
1
p
〈Ax, x〉rp/2 +

1
q
〈X∗BXx, x〉rq/2

−
1
p

(
〈Ax, x〉rp/4

− 〈X∗BXx, x〉rq/4
)2

6
1
p

〈
Arp/2x, x

〉
+

1
q

〈
(X∗BX)rq/2x, x

〉
−

1
p

(
〈Ax, x〉rp/4

− 〈X∗BXx, x〉rq/4
)2

=

〈(
Arp/2

p
+

(X∗BX)rq/2

q

)
x, x

〉
−

1
p

(
〈Ax, x〉rp/4

− 〈X∗BXx, x〉rq/4
)2
.

Now, the result follows by taking the supremum over all unit vectors in H.
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Remark 2.4. Let r = p = q = 2. Then δ(x) ≡ 0 if and only if A − X∗BX = 0. In general, δ(x) = 0 if and only if
〈Ax, x〉rp/4 = 〈X∗BXx, x〉rq/4 .

The following example shows that, inequality (6) does not hold in general for spectral norm.

Example 2.5. If we take p = q = 2, r = 1, A =
[

1 0
0 1

4

]
,B = I2 and X =

[
0 1
0 0

]
, then

1 = ‖(A]B)X‖r >

∥∥∥∥∥∥Arp/2

p
+

(X∗BX)rq/2

q

∥∥∥∥∥∥ = 5
8
.

Put X = I in Theorem 2.3, we obtain the following corollary.

Corollary 2.6. Let A,B ∈ B(H), be positive definite and p > q > 1 such that 1/p + 1/q = 1. Then for all r > 2
q

ωr(A]B) 6 ω
(

Arp/2

p
+

Brq/2

q

)
−

1
p

inf
‖x‖=1

δ(x),

where δ(x) =
(
〈Ax, x〉rp/4

− 〈Bx, x〉rq/4
)2
.

Note that it is enough to replace r with 2r and X = I in the statement of Theorem 2.3 to obtain the following
corollary.

Corollary 2.7. Let A,B ∈ B(H) be positive definite operators and p > q > 1 such that 1/p + 1/q = 1. Then for all
r > 1

q ,

ω2r(A]B) 6 ω(
Arp

p
+

Brq

q
) −

1
p

inf
‖x‖=1

δ(x), (7)

where δ(x) =
(
〈Ax, x〉rp/2

− 〈Bx, x〉rq/2
)2
.

Remark 2.8. Note that, if we set r = 1 and p = q = 2 in (7), then we have

ω2(A]B) 6 ω
(

A2 + B2

2

)
−

1
2

inf
‖x‖=1

δ(x), (8)

where δ(x) = 〈(A − B)x, x〉2 . Notice that (8) is an operator numerical radius version for arithmetic-geometric mean
and moreover if, 0 <W(A − B), then inf‖x‖=1 δ(x) > 0.

In the proof of Theorem 2.3, if we put r = 2 and X = I, then we have the following corollary.

Corollary 2.9. Let A,B ∈ B(H), be positive definite operators. Then

‖A]B‖2 6 ‖A‖‖B‖.

Let T,U ∈ B(H). The Euclidean radius(see [4]) is defined by

ωe(T,U) = sup
‖x‖=1

(
|〈Tx, x〉|2 + |〈Ux, x〉|2

)1/2
.

Corollary 2.10. Let A,B ∈ B(H), be positive definite operators. Then
√

2‖A]B‖ 6 ωe(A,B) 6 ‖A2 + B2
‖

1/2,

inparticular,
√

2ω(A]B) 6 ωe(A,B) 6 ω1/2(A2 + B2).
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Proof. Same as, in the proof of Theorem 2.3, if we set r = p = q = 2, then we have∣∣∣〈(A]B)x, x
〉∣∣∣2 6 1

2
(〈Ax, x〉2 + 〈Bx, x〉2) (9)

and by Lemma 2.2,

1
2

(〈Ax, x〉2 + 〈Bx, x〉2) 6
1
2

(
〈
A2x, x

〉
+

〈
B2x, x

〉
) =

1
2

〈
(A2 + B2)x, x

〉
. (10)

Now, the result follows by taking the supremum in (9) and (10) over all unit vectors in H.

3. Additional Results

Proposition 3.1. Let A,B,X ∈ B(H) such that A,B > 0 and p > q > 1 such that 1/p + 1/q = 1. Then for all r > 2
q

‖(A]B)X‖r 6 ‖
Arp/2

p
‖ + ‖

(X∗BX)rq/2

q
‖ −

1
p

inf
‖x‖=‖y‖=1

δ(x, y),

where δ(x, y) =
(〈

Ay, y
〉rp/4
− 〈X∗BXx, x〉rq/4

)2
.

Proof. Let x, y ∈ H, such that ‖x‖ = ‖y‖ = 1. By the Schwarz inequality in the Hilbert space (H; 〈., .〉),we have∣∣∣〈(A]B)Xx, y
〉∣∣∣r = ∣∣∣∣〈A1/2(A−1/2BA−1/2)1/2A1/2Xx, y

〉∣∣∣∣r
=

∣∣∣∣〈(A−1/2BA−1/2)1/2A1/2Xx,A1/2y
〉∣∣∣∣r

6 ‖(A−1/2BA−1/2)1/2A1/2Xx‖r.‖A1/2y‖r

=
〈
(A−1/2BA−1/2)1/2A1/2Xx, (A−1/2BA−1/2)1/2A1/2Xx

〉r/2

×

〈
A1/2y,A1/2y

〉r/2

=
〈
Ay, y

〉r/2
〈X∗BXx, x〉r/2 .

Now, by Young’s inequality and (2) we have〈
Ay, y

〉r/2
〈X∗BXx, x〉r/2

6
1
p
〈
Ay, y

〉rp/2 +
1
q
〈X∗BXx, x〉rq/2

−
1
p

(〈
Ay, y

〉rp/4
− 〈X∗BXx, x〉rq/4

)2

and by (5) we have
1
p
〈
Ay, y

〉rp/2 +
1
q
〈X∗BXx, x〉rq/2

−
1
p

(〈
Ay, y

〉rp/4
− 〈X∗BXx, x〉rq/4

)2

6
1
p

〈
Arp/2y, y

〉
+

1
q

〈
(X∗BX)rq/2x, x

〉
−

1
p

(〈
Ay, y

〉rp/4
− 〈X∗BXx, x〉rq/4

)2
.

Now, the result follows by taking the supremum over all unit vectors x, y ∈ H.

Corollary 3.2. Let A,B,X ∈ B(H) be such that A,B > 0. Then for all r > 1

2‖(A]B)X‖r 6 ‖Ar
‖ + ‖(X∗BX)r

‖ − inf
‖x‖=‖y‖=1

δ(x, y), (11)

where δ(x, y) =
(〈

Ay, y
〉r/2
− 〈X∗BXx, x〉r/2

)2
.

If in relation (11) we set X = I we obtain the following corollary.
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Corollary 3.3. Let A,B ∈ B(H) be positive definite operators. Then for all r > 1

2‖A]B‖r 6 ‖Ar
‖ + ‖Br

‖ − inf
‖x‖=‖y‖=1

δ(x, y),

where δ(x, y) =
(〈

Ay, y
〉r/2
− 〈Bx, x〉r/2

)2
.

Proposition 3.4. Let A,B,X ∈ B(H) such that A,B > 0 and p > q > 1 such that 1/p+1/q = 1. Then for all r > 2/q

(‖A‖‖X∗BX‖)r/2 6 ‖
Arp/2

p
‖ + ‖

(X∗BX)rq/2

q
‖ −

1
p

inf
‖x‖=‖y‖=1

δ(x, y), (12)

where δ(x, y) =
(〈

Ay, y
〉rp/4
− 〈X∗BXx, x〉rq/4

)2
.

Proof. Let x, y ∈ H with ‖x‖ = ‖y‖ = 1. By the inequality (2), we have〈
Ay, y

〉r/2
〈X∗BXx, x〉r/2

6
1
p
〈
Ay, y

〉rp/2 +
1
q
〈X∗BXx, x〉rq/2

−
1
p

(〈
Ay, y

〉rp/4
− 〈X∗BXx, x〉rq/4

)2

and by (5) we have
1
p
〈
Ay, y

〉rp/2 +
1
q
〈X∗BXx, x〉rq/2

−
1
p

(〈
Ay, y

〉rp/4
− 〈X∗BXx, x〉rq/4

)2

6
1
p

〈
Arp/2y, y

〉
+

1
q

〈
(X∗BX)rq/2x, x

〉
−

1
p

(〈
Ay, y

〉rp/4
− 〈X∗BXx, x〉rq/4

)2
.

Now, the result follows by taking the supremum over all unit vectors x, y ∈ H.

If in relation (12), we set X = I and r = 2, then we obtain the following corollary.

Corollary 3.5. Let A,B ∈ B(H) be positive definite operators and p > q > 1 such that 1/p + 1/q = 1. Then

‖A‖‖B‖ 6 ‖
Ap

p
‖ + ‖

Bq

q
‖ −

1
p

inf
‖x‖=‖y‖=1

δ(x, y), (13)

where δ(x, y) =
(〈

Ay, y
〉p/2
− 〈Bx, x〉q/2

)2
.

Remark 3.6. Note that, if we set p = q = 2 in (13), then we have

‖A‖‖B‖ 6
1
2

(‖A2
‖ + ‖B2

‖) −
1
2

inf
‖x‖=‖y‖=1

δ(x, y), (14)

where δ(x, y) =
(〈

Ay, y
〉
− 〈Bx, x〉

)2 .Notice that (14) is an operator norm version for arithmetic-geometric mean and
moreover if, W(A) and W(B) are separated, then inf‖x‖=‖y‖=1 δ(x, y) > 0.

Example 3.7. Let p = q = 2 and A = dia1(1, 2),B = dia1(5, 6) in the inequality (13). Then inf‖x‖=‖y‖=1 δ(x, y) =
9 > 0 and hence,

12 = ‖A‖‖B‖ 6
1
2

(‖A2
‖ + ‖B2

‖) −
1
2

inf
‖x‖=‖y‖=1

δ(x, y) =
31
2
.

Whereas, if we set this values in the inequality (4), with the spectral norm, then we obtain

12 = ‖AB‖ 6 ‖
Ap

p
+

Bq

q
‖ = 20.

Thus, in this case, we have

‖AB‖ = ‖A‖‖B‖ < ‖
Ap

p
‖ + ‖

Bq

q
‖ −

1
p

inf
‖x‖=‖y‖=1

δ(x, y) < ‖
Ap

p
+

Bq

q
‖.
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