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Existence of Nonoscillatory Solutions of
Higher Order Neutral Differential Equations
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Abstract. This article is concerned with nonoscillatory solutions of higher order nonlinear neutral differ-
ential equations with deviating and distributed deviating arguments. By using Knaster-Tarski fixed point
theorem, new sufficient conditions are established. Illustrative example is given to show applicability of
results.

1. Introduction

In this paper, we give some new sufficient conditions for the existence of nonoscillatory solutions of the
following higher-order nonlinear neutral differential equations[

r(t)
[[

x(t) − p1(t)x(t − τ)
](n−1)

]γ]′
+ (−1)nQ1(t)G(x(t − σ)) = 0, (1)

[
r(t)

[[
x(t) − p1(t)x(t − τ)

](n−1)
]γ]′

+ (−1)n
∫ d

c
Q2(t, ξ)G(x(t − ξ))dξ = 0 (2)

and r(t)

[x(t) −
∫ b

a
p2(t, ξ)x(t − ξ)dξ

](n−1)
γ
′

+ (−1)n
∫ d

c
Q2(t, ξ)G(x(t − ξ))dξ = 0, (3)

where n > 2 is a positive integer, γ is a ratio of odd positive integers, τ > 0, σ > 0, d > c > 0, b >
a > 0, r ∈ C([t0,∞), (0,∞)), p1 ∈ C([t0,∞), [0,∞)), p2 ∈ C([t0,∞) × [a, b], [0,∞)), Q1 ∈ C([t0,∞), [0,∞)),
Q2 ∈ C([t0,∞) × [c, d], [0,∞)), G ∈ C(R,R), xG(x) > 0 for x , 0.

During the last two decades, a good deal of work has been done on the existence of nonoscillatory
solutions of first, second and higher order neutral differential equations. In [6, 8, 16, 21] and [15] the authors
have studied existence of nonoscillatory solutions of first order neutral differential equations and system of
first order neutral differential equations, respectively. In [9, 13, 19, 20] the authors have considered existence
of nonoscillatory solutions of second order neutral differential equations. Finally, in [4, 5, 10, 17, 18, 22]
and [7] the authors have studied existence of nonoscillatory solutions of higher order neutral differential
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equations and system of higher order neutral differential equations, respectively. For related books, we
refer the reader to [1–3, 11, 12, 14]. Our motivation for present article came from the recent work of Candan
[6], the author studied existence of nonoscillatory solutions of first order neutral differential equations. In
this article we extend Candan’s [6] results to higher order neutral differential equations. Also since γmakes
the left part of the equations (1)-(3) nonlinear, our results include and extend some well known results in
the literature.

Let m1 = max{τ, σ}. By a solution of (1) we understand a function x ∈ C([t1 −m1,∞),R), for some t1 > t0,
such that x(t) − p1(t)x(t − τ) is n − 1 times continuously differentiable and r(t)

[
[x(t) − p1(t)x(t − τ)](n−1)

]γ
is

continuously differentiable on [t1,∞) and (1) is satisfied for t > t1.
Similarly, let m2 = max{τ, d}. By a solution of (2) we mean a function x ∈ C([t1 − m2,∞),R), for some

t1 > t0, such that x(t)−p1(t)x(t−τ) is n−1 times continuously differentiable and r(t)
[
[x(t) − p1(t)x(t − τ)](n−1)

]γ
is continuously differentiable on [t1,∞) and (2) is satisfied for t > t1.

Finally, let m3 = max{b, d}. By a solution of (3) we understand a function x ∈ C([t1 − m3,∞),R),

for some t1 > t0, such that x(t) −
∫ b

a p2(t, ξ)x(t − ξ)dξ is n − 1 times continuously differentiable and

r(t)
[
[x(t) −

∫ b

a p2(t, ξ)x(t − ξ)dξ](n−1)
]γ

is continuously differentiable on [t1,∞) and (3) is satisfied for t > t1.

As is customary, a solution of (1)-(3) is said to be oscillatory if it has arbitrarily large zeros. Otherwise,
it is called nonoscillatory.

The following fixed point theorem will be used in proofs.

Theorem 1.1. (Knaster-Tarski Fixed Point Theorem [1]). Let X be partially ordered Banach space with ordering 6.
Let M be subset of X with the following properties: The infimum of M belongs to M and every nonempty subset of M
has a supremum which belongs to M. Let T : M→ M be an increasing mapping, i.e., x 6 y implies Tx 6 Ty. Then
T has a fixed point in M.

2. Main Results

Theorem 2.1. Suppose that G is nondecreasing, 0 6 p1(t) 6 p < 1 and∫
∞

t0

sn−2

[
1

r(s)

∫ s

t1

Q1(u)du
] 1
γ

ds < ∞. (4)

Then (1) has a bounded nonoscillatory solution.

Proof. From condition (4) there exists t1 > t0 with

t1 > t0 + max{τ, σ} (5)

sufficiently large such that

1
(n − 2)!

∫
∞

t
sn−2

[
1

r(s)

∫ s

t1

Q1(u)du
] 1
γ

ds 6
(1 − p)M2 − α

[G(M2)]
1
γ

, t > t1, (6)

where α and M2 are positive constants such that

0 < M1 6 α < (1 − p)M2.

Let Φ be the partially ordered Banach space of all bounded, continuous and real-valued functions x on [t0,∞)
with the sup norm and usual pointwise ordering 6: for given x1, x2 ∈ Φ, x1 6 x2 means that x1(t) 6 x2(t) for
t > t0. Set

Ω = {x ∈ Φ : M1 6 x(t) 6M2, t > t0}.

If x̃1(t) = M1, t > t0, then x̃1 ∈ Ω and x̃1 = inf Ω. In addition, if ∅ ⊂ Ω∗ ⊂ Ω, then

Ω∗ = {x ∈ Φ : λ 6 x(t) 6 µ, M1 6 λ, µ 6M2, t > t0}.
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Let x̃2(t) = µ0 = sup{µ : M1 6 µ 6M2, t > t0}. Then x̃2 ∈ Ω and x̃2 = sup Ω∗. For x ∈ Ω, we define

(Tx)(t) =

 α + p1(t)x(t − τ) + 1
(n−2)!

∫
∞

t (s − t)n−2
[

1
r(s)

∫ s

t1
Q1(u)G(x(u − σ))du

] 1
γ ds, t > t1,

(Tx)(t1), t0 6 t 6 t1.

Thus Tx is a real-valued continuous function on [t0,∞) for every x ∈ Ω. For t > t1 and x ∈ Ω, by making
use of (6), we obtain

(Tx)(t) 6 α + pM2 +
[G(M2)]

1
γ

(n − 2)!

∫
∞

t
(s − t)n−2

[
1

r(s)

∫ s

t1

Q1(u)du
] 1
γ

ds

6 α + pM2 +
[G(M2)]

1
γ

(n − 2)!

∫
∞

t
sn−2

[
1

r(s)

∫ s

t1

Q1(u)du
] 1
γ

ds

6 α + pM2 + [G(M2)]
1
γ

[ (1 − p)M2 − α

[G(M2)]
1
γ

]
= M2

and

(Tx)(t) > α >M1.

Hence, Tx ∈ Ω for every x ∈ Ω. Since G is nondecreasing, T is an increasing mapping. That is, for any
x1, x2 ∈ Ω with x1 6 x2 implies Tx1 6 Tx2. Hence, the mapping T satisfies the assumptions of Knaster-
Tarski’s fixed point theorem and therefore there exists a positive x ∈ Ω such that Tx = x. This completes the
proof.

Theorem 2.2. Suppose that G is nonincreasing, 1 < p 6 p1(t) 6 p0 < ∞ and (4) holds; then (1) has a bounded
nonoscillatory solution.

Proof. From condition (4) there exists t1 > t0 with

t1 + τ > t0 + σ (7)

sufficiently large such that

1
(n − 2)!

∫
∞

t
sn−2

[
1

r(s)

∫ s

t1

Q1(u)du
] 1
γ

ds 6
α − (p0 − 1)M3

[G(M3)]
1
γ

, t > t1, (8)

where α and M3 are positive constants such that

(p0 − 1)M3 < α 6 (p − 1)M4.

Let Φ be the partially ordered Banach space of all bounded, continuous and real-valued functions x on [t0,∞)
with the sup norm and usual pointwise ordering 6: for given x1, x2 ∈ Φ, x1 6 x2 means that x1(t) 6 x2(t) for
t > t0. Set

Ω = {x ∈ Φ : M3 6 x(t) 6M4, t > t0}.

If x̃1(t) = M3, t > t0, then x̃1 ∈ Ω and x̃1 = inf Ω. In addition, if ∅ ⊂ Ω∗ ⊂ Ω, then

Ω∗ = {x ∈ Φ : λ 6 x(t) 6 µ, M3 6 λ, µ 6M4, t > t0}.

Let x̃2(t) = µ0 = sup{µ : M3 6 µ 6M4, t > t0}. Then x̃2 ∈ Ω and x̃2 = sup Ω∗. For x ∈ Ω, we define

(Tx)(t) =


1

p1(t+τ)

{
α + x(t + τ)

−
1

(n−2)!

∫
∞

t+τ(s − t − τ)n−2
[

1
r(s)

∫ s

t1+τ
Q1(u)G(x(u − σ))du

] 1
γ ds

}
, t > t1,

(Tx)(t1), t0 6 t 6 t1.
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Thus Tx is a real-valued continuous function on [t0,∞) for every x ∈ Ω. For t > t1 and x ∈ Ω, using (8), we
obtain

(Tx)(t) 6
1
p

[
M4 + α

]
6

1
p

[
M4 + (p − 1)M4

]
= M4

and

(Tx)(t) >
1

p1(t + τ)

{
α + M3 −

[G(M3)]
1
γ

(n − 2)!

∫
∞

t+τ
(s − t − τ)n−2

[
1

r(s)

∫ s

t1+τ
Q1(u)du

] 1
γ

ds
}

>
1

p1(t + τ)

{
α + M3 −

[G(M3)]
1
γ

(n − 2)!

∫
∞

t
sn−2

[
1

r(s)

∫ s

t1

Q1(u)du
] 1
γ

ds
}

>
1

p1(t + τ)

{
α + M3 − [G(M3)]

1
γ

α − (p0 − 1)M3

[G(M3)]
1
γ

}
>

1
p0

[p0M3]

= M3.

Hence, Tx ∈ Ω for every x ∈ Ω. Since G is nonincreasing, T is an increasing mapping. That is, for any
x1, x2 ∈ Ω with x1 6 x2 implies Tx1 6 Tx2. Hence, the mapping T satisfies the assumptions of Knaster-
Tarski’s fixed point theorem and therefore there exists a positive x ∈ Ω such that Tx = x. This completes the
proof.

Theorem 2.3. Suppose that G is nondecreasing, 0 6 p1(t) 6 p < 1 and∫
∞

t0

sn−2

[
1

r(s)

∫ s

t1

∫ d

c
Q2(u, ξ)dξdu

] 1
γ

ds < ∞. (9)

Then (2) has a bounded nonoscillatory solution.

Proof. From condition (9) there exists t1 > t0 with

t1 > t0 + max{τ, d}

sufficiently large such that

1
(n − 2)!

∫
∞

t
sn−2

[
1

r(s)

∫ s

t1

∫ d

c
Q2(u, ξ)dξdu

] 1
γ

ds 6
(1 − p)M6 − α

[G(M6)]
1
γ

, t > t1,

where α and M6 are positive constants such that

0 < M5 6 α < (1 − p)M6.

Let Φ be the partially ordered Banach space of all bounded, continuous and real-valued functions x on [t0,∞)
with the sup norm and usual pointwise ordering 6: for given x1, x2 ∈ Φ, x1 6 x2 means that x1(t) 6 x2(t) for
t > t0. Set

Ω = {x ∈ Φ : M5 6 x(t) 6M6, t > t0}.

If x̃1(t) = M5, t > t0, then x̃1 ∈ Ω and x̃1 = inf Ω. In addition, if ∅ ⊂ Ω∗ ⊂ Ω, then

Ω∗ = {x ∈ Φ : λ 6 x(t) 6 µ, M5 6 λ, µ 6M6, t > t0}.
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Let x̃2(t) = µ0 = sup{µ : M5 6 µ 6M6, t > t0}. Then x̃2 ∈ Ω and x̃2 = sup Ω∗. For x ∈ Ω, we define

(Tx)(t) =

 α + p1(t)x(t − τ) + 1
(n−2)!

∫
∞

t (s − t)n−2
[

1
r(s)

∫ s

t1

∫ d

c Q2(u, ξ)G(x(u − ξ))dξdu
] 1
γ

ds, t > t1,

(Tx)(t1), t0 6 t 6 t1.

Hence Tx is a real-valued continuous function on [t0,∞) for every x ∈ Ω. Since the rest of the proof is similar
to that of Theorem 2.1, it is omitted and the proof is complete.

Theorem 2.4. Suppose that G is nonincreasing, 1 < p 6 p1(t) 6 p0 < ∞ and (9) holds; then (2) has a bounded
nonoscillatory solution.

Proof. From condition (9) there exists t1 > t0 with

t1 + τ > t0 + d

sufficiently large such that

1
(n − 2)!

∫
∞

t
sn−2

[
1

r(s)

∫ s

t1

∫ d

c
Q2(u, ξ)dξdu

] 1
γ

ds 6
α − (p0 − 1)M7

[G(M7)]
1
γ

, t > t1,

where α and M7 are positive constants such that

(p0 − 1)M7 < α 6 (p − 1)M8.

Let Φ be the partially ordered Banach space of all bounded, continuous and real-valued functions x on [t0,∞)
with the sup norm and usual pointwise ordering 6: for given x1, x2 ∈ Φ, x1 6 x2 means that x1(t) 6 x2(t) for
t > t0. Set

Ω = {x ∈ Φ : M7 6 x(t) 6M8, t > t0}.

If x̃1(t) = M7, t > t0, then x̃1 ∈ Ω and x̃1 = inf Ω. In addition, if ∅ ⊂ Ω∗ ⊂ Ω, then

Ω∗ = {x ∈ Φ : λ 6 x(t) 6 µ, M7 6 λ, µ 6M8, t > t0}.

Let x̃2(t) = µ0 = sup{µ : M7 6 µ 6M8, t > t0}. Then x̃2 ∈ Ω and x̃2 = sup Ω∗. For x ∈ Ω, we define

(Tx)(t) =


1

p1(t+τ)

{
α + x(t + τ)

−
1

(n−2)!

∫
∞

t+τ(s − t − τ)n−2
[

1
r(s)

∫ s

t1+τ

∫ d

c Q2(u, ξ)G(x(u − ξ))dξdu
] 1
γ

ds
}
, t > t1,

(Tx)(t1), t0 6 t 6 t1.

Clearly Tx is a real-valued continuous function on [t0,∞) for every x ∈ Ω. Since the rest of the proof is
similar to that of Theorem 2.2, it is omitted and the theorem is proved.

Theorem 2.5. Suppose that G is nondecreasing, 0 6
∫ b

a p2(t, ξ)dξ 6 p < 1 and (9) holds; then (3) has a bounded
nonoscillatory solution.

Proof. From condition (9) there exists t1 > t0 with

t1 > t0 + max{b, d}

sufficiently large such that

1
(n − 2)!

∫
∞

t
sn−2

[
1

r(s)

∫ s

t1

∫ d

c
Q2(u, ξ)dξdu

] 1
γ

ds 6
(1 − p)M10 − α

[G(M10)]
1
γ

, t > t1,
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where α and M10 are positive constants such that

0 < M9 6 α < (1 − p)M10.

Let Φ be the partially ordered Banach space of all bounded, continuous and real-valued functions x on [t0,∞)
with the sup norm and usual pointwise ordering 6: for given x1, x2 ∈ Φ, x1 6 x2 means that x1(t) 6 x2(t) for
t > t0. Set

Ω = {x ∈ Φ : M9 6 x(t) 6M10, t > t0}.

If x̃1(t) = M9, t > t0, then x̃1 ∈ Ω and x̃1 = inf Ω. In addition, if ∅ ⊂ Ω∗ ⊂ Ω, then

Ω∗ = {x ∈ Φ : λ 6 x(t) 6 µ, M9 6 λ, µ 6M10, t > t0}.

Let x̃2(t) = µ0 = sup{µ : M9 6 µ 6M10, t > t0}. Then x̃2 ∈ Ω and x̃2 = sup Ω∗. For x ∈ Ω, we define

(Tx)(t) =


α +

∫ b

a p2(t, ξ)x(t − ξ)dξ

+ 1
(n−2)!

∫
∞

t (s − t)n−2
[

1
r(s)

∫ s

t1

∫ d

c Q2(u, ξ)G(x(u − ξ))dξdu
] 1
γ

ds, t > t1,

(Tx)(t1), t0 6 t 6 t1.

Obviously Tx is a real-valued continuous function on [t0,∞) for every x ∈ Ω. The rest of the proof is similar
to the proof of Theorem 2.1, therefore it is omitted. Hence the theorem is proved.

Example 2.6. Consider the equationet
[[

x(t) −
5
e

x(t − 1)
](2)]3′ − 128e−t

e2 x(t − 2) = 0, (10)

and note that n = 3, γ = 3, r(t) = et, p1(t) = 5
e , Q1(t) = 128e−t

e2 and G(x) = x. A straightforward verification yields
that the conditions of Theorem 2.2 are satisfied. We note that x(t) = e−t is a nonoscillatory solution of (10).
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