Existence of Nonoscillatory Solutions of Higher Order Neutral Differential Equations

T. Candan ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Faculty of Arts and Sciences, Niğde University, Niğde 51200, Turkey

Abstract

This article is concerned with nonoscillatory solutions of higher order nonlinear neutral differential equations with deviating and distributed deviating arguments. By using Knaster-Tarski fixed point theorem, new sufficient conditions are established. Illustrative example is given to show applicability of results.

1. Introduction

In this paper, we give some new sufficient conditions for the existence of nonoscillatory solutions of the following higher-order nonlinear neutral differential equations

$$
\begin{align*}
& {\left[r(t)\left[\left[x(t)-p_{1}(t) x(t-\tau)\right]^{(n-1)}\right]^{\gamma}\right]^{\prime}+(-1)^{n} Q_{1}(t) G(x(t-\sigma))=0} \tag{1}\\
& {\left[r(t)\left[\left[x(t)-p_{1}(t) x(t-\tau)\right]^{(n-1)}\right]^{\gamma}\right]^{\prime}+(-1)^{n} \int_{c}^{d} Q_{2}(t, \xi) G(x(t-\xi)) d \xi=0} \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
\left[r(t)\left[\left[x(t)-\int_{a}^{b} p_{2}(t, \xi) x(t-\xi) d \xi\right]^{(n-1)}\right]^{\gamma}\right]^{\prime}+(-1)^{n} \int_{c}^{d} Q_{2}(t, \xi) G(x(t-\xi)) d \xi=0 \tag{3}
\end{equation*}
$$

where $n \geqslant 2$ is a positive integer, γ is a ratio of odd positive integers, $\tau>0, \sigma \geqslant 0, d>c \geqslant 0, b>$ $a \geqslant 0, r \in C\left(\left[t_{0}, \infty\right),(0, \infty)\right), p_{1} \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right), p_{2} \in C\left(\left[t_{0}, \infty\right) \times[a, b],[0, \infty)\right), Q_{1} \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right)$, $Q_{2} \in C\left(\left[t_{0}, \infty\right) \times[c, d],[0, \infty)\right), G \in C(\mathbb{R}, \mathbb{R}), x G(x)>0$ for $x \neq 0$.

During the last two decades, a good deal of work has been done on the existence of nonoscillatory solutions of first, second and higher order neutral differential equations. In [6, 8, 16, 21] and [15] the authors have studied existence of nonoscillatory solutions of first order neutral differential equations and system of first order neutral differential equations, respectively. In $[9,13,19,20]$ the authors have considered existence of nonoscillatory solutions of second order neutral differential equations. Finally, in [4, 5, 10, 17, 18, 22] and [7] the authors have studied existence of nonoscillatory solutions of higher order neutral differential

[^0]equations and system of higher order neutral differential equations, respectively. For related books, we refer the reader to $[1-3,11,12,14]$. Our motivation for present article came from the recent work of Candan [6], the author studied existence of nonoscillatory solutions of first order neutral differential equations. In this article we extend Candan's [6] results to higher order neutral differential equations. Also since γ makes the left part of the equations (1)-(3) nonlinear, our results include and extend some well known results in the literature.

Let $m_{1}=\max \{\tau, \sigma\}$. By a solution of (1) we understand a function $x \in C\left(\left[t_{1}-m_{1}, \infty\right), \mathbb{R}\right)$, for some $t_{1} \geqslant t_{0}$, such that $x(t)-p_{1}(t) x(t-\tau)$ is $n-1$ times continuously differentiable and $r(t)\left[\left[x(t)-p_{1}(t) x(t-\tau)\right]^{(n-1)}\right]^{\gamma}$ is continuously differentiable on $\left[t_{1}, \infty\right)$ and (1) is satisfied for $t \geqslant t_{1}$.

Similarly, let $m_{2}=\max \{\tau, d\}$. By a solution of (2) we mean a function $x \in C\left(\left[t_{1}-m_{2}, \infty\right), \mathbb{R}\right)$, for some $t_{1} \geqslant t_{0}$, such that $x(t)-p_{1}(t) x(t-\tau)$ is $n-1$ times continuously differentiable and $r(t)\left[\left[x(t)-p_{1}(t) x(t-\tau)\right]^{(n-1)}\right]^{\gamma}$ is continuously differentiable on $\left[t_{1}, \infty\right)$ and (2) is satisfied for $t \geqslant t_{1}$.

Finally, let $m_{3}=\max \{b, d\}$. By a solution of (3) we understand a function $x \in C\left(\left[t_{1}-m_{3}, \infty\right), \mathbb{R}\right)$, for some $t_{1} \geqslant t_{0}$, such that $x(t)-\int_{a}^{b} p_{2}(t, \xi) x(t-\xi) d \xi$ is $n-1$ times continuously differentiable and $r(t)\left[\left[x(t)-\int_{a}^{b} p_{2}(t, \xi) x(t-\xi) d \xi\right]^{(n-1)}\right]^{\gamma}$ is continuously differentiable on $\left[t_{1}, \infty\right)$ and (3) is satisfied for $t \geqslant t_{1}$.

As is customary, a solution of (1)-(3) is said to be oscillatory if it has arbitrarily large zeros. Otherwise, it is called nonoscillatory.

The following fixed point theorem will be used in proofs.
Theorem 1.1. (Knaster-Tarski Fixed Point Theorem [1]). Let X be partially ordered Banach space with ordering \leqslant. Let M be subset of X with the following properties: The infimum of M belongs to M and every nonempty subset of M has a supremum which belongs to M. Let $T: M \rightarrow M$ be an increasing mapping, i.e., $x \leqslant y$ implies $T x \leqslant T y$. Then T has a fixed point in M.

2. Main Results

Theorem 2.1. Suppose that G is nondecreasing, $0 \leqslant p_{1}(t) \leqslant p<1$ and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} s^{n-2}\left[\frac{1}{r(s)} \int_{t_{1}}^{s} Q_{1}(u) d u\right]^{\frac{1}{\gamma}} d s<\infty \tag{4}
\end{equation*}
$$

Then (1) has a bounded nonoscillatory solution.
Proof. From condition (4) there exists $t_{1}>t_{0}$ with

$$
\begin{equation*}
t_{1} \geqslant t_{0}+\max \{\tau, \sigma\} \tag{5}
\end{equation*}
$$

sufficiently large such that

$$
\begin{equation*}
\frac{1}{(n-2)!} \int_{t}^{\infty} s^{n-2}\left[\frac{1}{r(s)} \int_{t_{1}}^{s} Q_{1}(u) d u\right]^{\frac{1}{\gamma}} d s \leqslant \frac{(1-p) M_{2}-\alpha}{\left[G\left(M_{2}\right)\right]^{\frac{1}{\gamma}}}, \quad t \geqslant t_{1} \tag{6}
\end{equation*}
$$

where α and M_{2} are positive constants such that

$$
0<M_{1} \leqslant \alpha<(1-p) M_{2}
$$

Let Φ be the partially ordered Banach space of all bounded, continuous and real-valued functions x on $\left[t_{0}, \infty\right)$ with the sup norm and usual pointwise ordering $\leqslant:$ for given $x_{1}, x_{2} \in \Phi, x_{1} \leqslant x_{2}$ means that $x_{1}(t) \leqslant x_{2}(t)$ for $t \geqslant t_{0}$. Set

$$
\Omega=\left\{x \in \Phi: M_{1} \leqslant x(t) \leqslant M_{2}, \quad t \geqslant t_{0}\right\} .
$$

If $\tilde{x}_{1}(t)=M_{1}, t \geqslant t_{0}$, then $\tilde{x}_{1} \in \Omega$ and $\tilde{x}_{1}=\inf \Omega$. In addition, if $\emptyset \subset \Omega^{*} \subset \Omega$, then

$$
\Omega^{*}=\left\{x \in \Phi: \lambda \leqslant x(t) \leqslant \mu, \quad M_{1} \leqslant \lambda, \quad \mu \leqslant M_{2}, \quad t \geqslant t_{0}\right\} .
$$

Let $\tilde{x}_{2}(t)=\mu_{0}=\sup \left\{\mu: M_{1} \leqslant \mu \leqslant M_{2}, \quad t \geqslant t_{0}\right\}$. Then $\tilde{x}_{2} \in \Omega$ and $\tilde{x}_{2}=\sup \Omega^{*}$. For $x \in \Omega$, we define

$$
(T x)(t)=\left\{\begin{array}{l}
\alpha+p_{1}(t) x(t-\tau)+\frac{1}{(n-2)!} \int_{t}^{\infty}(s-t)^{n-2}\left[\frac{1}{r(s)} \int_{t_{1}}^{s} Q_{1}(u) G(x(u-\sigma)) d u\right]^{\frac{1}{\gamma}} d s, \quad t \geqslant t_{1}, \\
(T x)\left(t_{1}\right),
\end{array} \quad t_{0} \leqslant t \leqslant t_{1} .\right.
$$

Thus $T x$ is a real-valued continuous function on $\left[t_{0}, \infty\right)$ for every $x \in \Omega$. For $t \geqslant t_{1}$ and $x \in \Omega$, by making use of (6), we obtain

$$
\begin{aligned}
(T x)(t) & \leqslant \alpha+p M_{2}+\frac{\left[G\left(M_{2}\right)\right]^{\frac{1}{\gamma}}}{(n-2)!} \int_{t}^{\infty}(s-t)^{n-2}\left[\frac{1}{r(s)} \int_{t_{1}}^{s} Q_{1}(u) d u\right]^{\frac{1}{\gamma}} d s \\
& \leqslant \alpha+p M_{2}+\frac{\left[G\left(M_{2}\right)\right]^{\frac{1}{\gamma}}}{(n-2)!} \int_{t}^{\infty} s^{n-2}\left[\frac{1}{r(s)} \int_{t_{1}}^{s} Q_{1}(u) d u\right]^{\frac{1}{\gamma}} d s \\
& \leqslant \alpha+p M_{2}+\left[G\left(M_{2}\right)\right]^{\frac{1}{\gamma}}\left[\frac{(1-p) M_{2}-\alpha}{\left[G\left(M_{2}\right)\right]^{\frac{1}{\gamma}}}\right] \\
& =M_{2}
\end{aligned}
$$

and

$$
(T x)(t) \geqslant \alpha \geqslant M_{1} .
$$

Hence, $T x \in \Omega$ for every $x \in \Omega$. Since G is nondecreasing, T is an increasing mapping. That is, for any $x_{1}, x_{2} \in \Omega$ with $x_{1} \leqslant x_{2}$ implies $T x_{1} \leqslant T x_{2}$. Hence, the mapping T satisfies the assumptions of KnasterTarski's fixed point theorem and therefore there exists a positive $x \in \Omega$ such that $T x=x$. This completes the proof.

Theorem 2.2. Suppose that G is nonincreasing, $1<p \leqslant p_{1}(t) \leqslant p_{0}<\infty$ and (4) holds; then (1) has a bounded nonoscillatory solution.

Proof. From condition (4) there exists $t_{1}>t_{0}$ with

$$
\begin{equation*}
t_{1}+\tau \geqslant t_{0}+\sigma \tag{7}
\end{equation*}
$$

sufficiently large such that

$$
\begin{equation*}
\frac{1}{(n-2)!} \int_{t}^{\infty} s^{n-2}\left[\frac{1}{r(s)} \int_{t_{1}}^{s} Q_{1}(u) d u\right]^{\frac{1}{\gamma}} d s \leqslant \frac{\alpha-\left(p_{0}-1\right) M_{3}}{\left[G\left(M_{3}\right)\right]^{\frac{1}{\gamma}}}, \quad t \geqslant t_{1} \tag{8}
\end{equation*}
$$

where α and M_{3} are positive constants such that

$$
\left(p_{0}-1\right) M_{3}<\alpha \leqslant(p-1) M_{4} .
$$

Let Φ be the partially ordered Banach space of all bounded, continuous and real-valued functions x on $\left[t_{0}, \infty\right)$ with the sup norm and usual pointwise ordering $\leqslant:$ for given $x_{1}, x_{2} \in \Phi, x_{1} \leqslant x_{2}$ means that $x_{1}(t) \leqslant x_{2}(t)$ for $t \geqslant t_{0}$. Set

$$
\Omega=\left\{x \in \Phi: M_{3} \leqslant x(t) \leqslant M_{4}, \quad t \geqslant t_{0}\right\} .
$$

If $\tilde{x}_{1}(t)=M_{3}, t \geqslant t_{0}$, then $\tilde{x}_{1} \in \Omega$ and $\tilde{x}_{1}=\inf \Omega$. In addition, if $\emptyset \subset \Omega^{*} \subset \Omega$, then

$$
\Omega^{*}=\left\{x \in \Phi: \lambda \leqslant x(t) \leqslant \mu, \quad M_{3} \leqslant \lambda, \quad \mu \leqslant M_{4}, \quad t \geqslant t_{0}\right\} .
$$

Let $\tilde{x}_{2}(t)=\mu_{0}=\sup \left\{\mu: M_{3} \leqslant \mu \leqslant M_{4}, \quad t \geqslant t_{0}\right\}$. Then $\tilde{x}_{2} \in \Omega$ and $\tilde{x}_{2}=\sup \Omega^{*}$. For $x \in \Omega$, we define

$$
(T x)(t)=\left\{\begin{array}{lr}
\frac{1}{p_{1}(t+\tau)}\{\alpha+x(t+\tau) \\
\left.-\frac{1}{(n-2)!} \int_{t+\tau}^{\infty}(s-t-\tau)^{n-2}\left[\frac{1}{r(s)} \int_{t_{1}+\tau}^{s} Q_{1}(u) G(x(u-\sigma)) d u\right]^{\frac{1}{\gamma}} d s\right\}, & t \geqslant t_{1} \\
(T x)\left(t_{1}\right), & t_{0} \leqslant t \leqslant t_{1}
\end{array}\right.
$$

Thus $T x$ is a real-valued continuous function on $\left[t_{0}, \infty\right)$ for every $x \in \Omega$. For $t \geqslant t_{1}$ and $x \in \Omega$, using (8), we obtain

$$
\begin{aligned}
(T x)(t) & \leqslant \frac{1}{p}\left[M_{4}+\alpha\right] \leqslant \frac{1}{p}\left[M_{4}+(p-1) M_{4}\right] \\
& =M_{4}
\end{aligned}
$$

and

$$
\begin{aligned}
(T x)(t) & \geqslant \frac{1}{p_{1}(t+\tau)}\left\{\alpha+M_{3}-\frac{\left[G\left(M_{3}\right)\right]^{\frac{1}{\gamma}}}{(n-2)!} \int_{t+\tau}^{\infty}(s-t-\tau)^{n-2}\left[\frac{1}{r(s)} \int_{t_{1}+\tau}^{s} Q_{1}(u) d u\right]^{\frac{1}{\gamma}} d s\right\} \\
& \geqslant \frac{1}{p_{1}(t+\tau)}\left\{\alpha+M_{3}-\frac{\left[G\left(M_{3}\right)\right]^{\frac{1}{\gamma}}}{(n-2)!} \int_{t}^{\infty} s^{n-2}\left[\frac{1}{r(s)} \int_{t_{1}}^{s} Q_{1}(u) d u\right]^{\frac{1}{\gamma}} d s\right\} \\
& \geqslant \frac{1}{p_{1}(t+\tau)}\left\{\alpha+M_{3}-\left[G\left(M_{3}\right)\right]^{\frac{1}{\gamma}}\left[\frac{\alpha-\left(p_{0}-1\right) M_{3}}{\left[G\left(M_{3}\right)\right]^{\frac{1}{\gamma}}}\right]\right\} \\
& \geqslant \frac{1}{p_{0}}\left[p_{0} M_{3}\right] \\
& =M_{3} .
\end{aligned}
$$

Hence, $T x \in \Omega$ for every $x \in \Omega$. Since G is nonincreasing, T is an increasing mapping. That is, for any $x_{1}, x_{2} \in \Omega$ with $x_{1} \leqslant x_{2}$ implies $T x_{1} \leqslant T x_{2}$. Hence, the mapping T satisfies the assumptions of KnasterTarski's fixed point theorem and therefore there exists a positive $x \in \Omega$ such that $T x=x$. This completes the proof.

Theorem 2.3. Suppose that G is nondecreasing, $0 \leqslant p_{1}(t) \leqslant p<1$ and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} s^{n-2}\left[\frac{1}{r(s)} \int_{t_{1}}^{s} \int_{c}^{d} Q_{2}(u, \xi) d \xi d u\right]^{\frac{1}{\gamma}} d s<\infty \tag{9}
\end{equation*}
$$

Then (2) has a bounded nonoscillatory solution.
Proof. From condition (9) there exists $t_{1}>t_{0}$ with

$$
t_{1} \geqslant t_{0}+\max \{\tau, d\}
$$

sufficiently large such that

$$
\frac{1}{(n-2)!} \int_{t}^{\infty} s^{n-2}\left[\frac{1}{r(s)} \int_{t_{1}}^{s} \int_{c}^{d} Q_{2}(u, \xi) d \xi d u\right]^{\frac{1}{\gamma}} d s \leqslant \frac{(1-p) M_{6}-\alpha}{\left[G\left(M_{6}\right)\right]^{\frac{1}{\gamma}}}, \quad t \geqslant t_{1}
$$

where α and M_{6} are positive constants such that

$$
0<M_{5} \leqslant \alpha<(1-p) M_{6}
$$

Let Φ be the partially ordered Banach space of all bounded, continuous and real-valued functions x on $\left[t_{0}, \infty\right)$ with the sup norm and usual pointwise ordering $\leqslant:$ for given $x_{1}, x_{2} \in \Phi, x_{1} \leqslant x_{2}$ means that $x_{1}(t) \leqslant x_{2}(t)$ for $t \geqslant t_{0}$. Set

$$
\Omega=\left\{x \in \Phi: M_{5} \leqslant x(t) \leqslant M_{6}, \quad t \geqslant t_{0}\right\} .
$$

If $\tilde{x}_{1}(t)=M_{5}, t \geqslant t_{0}$, then $\tilde{x}_{1} \in \Omega$ and $\tilde{x}_{1}=\inf \Omega$. In addition, if $\emptyset \subset \Omega^{*} \subset \Omega$, then

$$
\Omega^{*}=\left\{x \in \Phi: \lambda \leqslant x(t) \leqslant \mu, \quad M_{5} \leqslant \lambda, \quad \mu \leqslant M_{6}, \quad t \geqslant t_{0}\right\} .
$$

Let $\tilde{x}_{2}(t)=\mu_{0}=\sup \left\{\mu: M_{5} \leqslant \mu \leqslant M_{6}, \quad t \geqslant t_{0}\right\}$. Then $\tilde{x}_{2} \in \Omega$ and $\tilde{x}_{2}=\sup \Omega^{*}$. For $x \in \Omega$, we define

$$
(T x)(t)= \begin{cases}\alpha+p_{1}(t) x(t-\tau)+\frac{1}{(n-2)!} \int_{t}^{\infty}(s-t)^{n-2}\left[\frac{1}{r(s)} \int_{t_{1}}^{s} \int_{c}^{d} Q_{2}(u, \xi) G(x(u-\xi)) d \xi d u\right]^{\frac{1}{\gamma}} d s, & t \geqslant t_{1} \\ (T x)\left(t_{1}\right), & t_{0} \leqslant t \leqslant t_{1}\end{cases}
$$

Hence $T x$ is a real-valued continuous function on $\left[t_{0}, \infty\right)$ for every $x \in \Omega$. Since the rest of the proof is similar to that of Theorem 2.1, it is omitted and the proof is complete.

Theorem 2.4. Suppose that G is nonincreasing, $1<p \leqslant p_{1}(t) \leqslant p_{0}<\infty$ and (9) holds; then (2) has a bounded nonoscillatory solution.

Proof. From condition (9) there exists $t_{1}>t_{0}$ with

$$
t_{1}+\tau \geqslant t_{0}+d
$$

sufficiently large such that

$$
\frac{1}{(n-2)!} \int_{t}^{\infty} s^{n-2}\left[\frac{1}{r(s)} \int_{t_{1}}^{s} \int_{c}^{d} Q_{2}(u, \xi) d \xi d u\right]^{\frac{1}{\gamma}} d s \leqslant \frac{\alpha-\left(p_{0}-1\right) M_{7}}{\left[G\left(M_{7}\right)\right]^{\frac{1}{\gamma}}}, \quad t \geqslant t_{1}
$$

where α and M_{7} are positive constants such that

$$
\left(p_{0}-1\right) M_{7}<\alpha \leqslant(p-1) M_{8}
$$

Let Φ be the partially ordered Banach space of all bounded, continuous and real-valued functions x on $\left[t_{0}, \infty\right)$ with the sup norm and usual pointwise ordering $\leqslant:$ for given $x_{1}, x_{2} \in \Phi, x_{1} \leqslant x_{2}$ means that $x_{1}(t) \leqslant x_{2}(t)$ for $t \geqslant t_{0}$. Set

$$
\Omega=\left\{x \in \Phi: M_{7} \leqslant x(t) \leqslant M_{8}, \quad t \geqslant t_{0}\right\} .
$$

If $\tilde{x}_{1}(t)=M_{7}, t \geqslant t_{0}$, then $\tilde{x}_{1} \in \Omega$ and $\tilde{x}_{1}=\inf \Omega$. In addition, if $\emptyset \subset \Omega^{*} \subset \Omega$, then

$$
\Omega^{*}=\left\{x \in \Phi: \lambda \leqslant x(t) \leqslant \mu, \quad M_{7} \leqslant \lambda, \quad \mu \leqslant M_{8}, \quad t \geqslant t_{0}\right\} .
$$

Let $\tilde{x}_{2}(t)=\mu_{0}=\sup \left\{\mu: M_{7} \leqslant \mu \leqslant M_{8}, \quad t \geqslant t_{0}\right\}$. Then $\tilde{x}_{2} \in \Omega$ and $\tilde{x}_{2}=\sup \Omega^{*}$. For $x \in \Omega$, we define

$$
(T x)(t)=\left\{\begin{array}{l}
\frac{1}{p_{1}(t+\tau)}\{\alpha+x(t+\tau) \\
\left.-\frac{1}{(n-2)!} \int_{t+\tau}^{\infty}(s-t-\tau)^{n-2}\left[\frac{1}{r(s)} \int_{t_{1}+\tau}^{s} \int_{c}^{d} Q_{2}(u, \xi) G(x(u-\xi)) d \xi d u\right]^{\frac{1}{\gamma}} d s\right\}, \quad t \geqslant t_{1}, \\
(T x)\left(t_{1}\right), \\
t_{0} \leqslant t \leqslant t_{1}
\end{array}\right.
$$

Clearly $T x$ is a real-valued continuous function on $\left[t_{0}, \infty\right)$ for every $x \in \Omega$. Since the rest of the proof is similar to that of Theorem 2.2, it is omitted and the theorem is proved.

Theorem 2.5. Suppose that G is nondecreasing, $0 \leqslant \int_{a}^{b} p_{2}(t, \xi) d \xi \leqslant p<1$ and (9) holds; then (3) has a bounded nonoscillatory solution.

Proof. From condition (9) there exists $t_{1}>t_{0}$ with

$$
t_{1} \geqslant t_{0}+\max \{b, d\}
$$

sufficiently large such that

$$
\frac{1}{(n-2)!} \int_{t}^{\infty} s^{n-2}\left[\frac{1}{r(s)} \int_{t_{1}}^{s} \int_{c}^{d} Q_{2}(u, \xi) d \xi d u\right]^{\frac{1}{\gamma}} d s \leqslant \frac{(1-p) M_{10}-\alpha}{\left[G\left(M_{10}\right)\right]^{\frac{1}{\gamma}}}, \quad t \geqslant t_{1}
$$

where α and M_{10} are positive constants such that

$$
0<M_{9} \leqslant \alpha<(1-p) M_{10}
$$

Let Φ be the partially ordered Banach space of all bounded, continuous and real-valued functions x on $\left[t_{0}, \infty\right)$ with the sup norm and usual pointwise ordering \leqslant : for given $x_{1}, x_{2} \in \Phi, x_{1} \leqslant x_{2}$ means that $x_{1}(t) \leqslant x_{2}(t)$ for $t \geqslant t_{0}$. Set

$$
\Omega=\left\{x \in \Phi: M_{9} \leqslant x(t) \leqslant M_{10}, \quad t \geqslant t_{0}\right\} .
$$

If $\tilde{x}_{1}(t)=M_{9}, t \geqslant t_{0}$, then $\tilde{x}_{1} \in \Omega$ and $\tilde{x}_{1}=\inf \Omega$. In addition, if $\emptyset \subset \Omega^{*} \subset \Omega$, then

$$
\Omega^{*}=\left\{x \in \Phi: \lambda \leqslant x(t) \leqslant \mu, \quad M_{9} \leqslant \lambda, \quad \mu \leqslant M_{10}, \quad t \geqslant t_{0}\right\} .
$$

Let $\tilde{x}_{2}(t)=\mu_{0}=\sup \left\{\mu: M_{9} \leqslant \mu \leqslant M_{10}, \quad t \geqslant t_{0}\right\}$. Then $\tilde{x}_{2} \in \Omega$ and $\tilde{x}_{2}=\sup \Omega^{*}$. For $x \in \Omega$, we define

$$
(T x)(t)=\left\{\begin{array}{l}
\alpha+\int_{a}^{b} p_{2}(t, \xi) x(t-\xi) d \xi \\
+\frac{1}{(n-2)!} \int_{t}^{\infty}(s-t)^{n-2}\left[\frac{1}{r(s)} \int_{t_{1}}^{s} \int_{c}^{d} Q_{2}(u, \xi) G(x(u-\xi)) d \xi d u\right]^{\frac{1}{\gamma}} d s, \quad t \geqslant t_{1} \\
(T x)\left(t_{1}\right),
\end{array}\right.
$$

Obviously $T x$ is a real-valued continuous function on $\left[t_{0}, \infty\right)$ for every $x \in \Omega$. The rest of the proof is similar to the proof of Theorem 2.1, therefore it is omitted. Hence the theorem is proved.

Example 2.6. Consider the equation

$$
\begin{equation*}
\left[e^{t}\left[\left[x(t)-\frac{5}{e} x(t-1)\right]^{(2)}\right]^{3}\right]^{\prime}-\frac{128 e^{-t}}{e^{2}} x(t-2)=0 \tag{10}
\end{equation*}
$$

and note that $n=3, \gamma=3, r(t)=e^{t}, p_{1}(t)=\frac{5}{e}, Q_{1}(t)=\frac{128 e^{-t}}{e^{2}}$ and $G(x)=x$. A straightforward verification yields that the conditions of Theorem 2.2 are satisfied. We note that $x(t)=e^{-t}$ is a nonoscillatory solution of (10).

References

[1] R. P. Agarwal, S. R. Grace and D. O'Regan, Oscillation Theory for Difference and Functional Differential Equations, Kluwer Academic, 2000.
[2] Ravi. P. Agarwal, Martin Bohner and Wan-Tong Li, Nonoscillation and Oscillation: Theorey for Functional Differential Equations, Marcel Dekker, Inc., New York, 2004.
[3] D. D. Bainov, D. P. Mishev, Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, 1991.
[4] T. Candan, The existence of nonoscillatory solutions of higher order nonlinear neutral equations, Appl. Math. Lett. 25 (2012) 412-416.
[5] T. Candan and R. S Dahiya, Existence of nonoscillatory solutions of higher order neutral differential equations with distributed deviating arguments, Math. Slovaca. 63 (2013) 183-190.
[6] T. Candan, Existence of nonoscillatory solutions of first -order nonlinear neutral differential equations, Appl. Math. Lett. 26 (2013) 1182-1186.
[7] T. Candan, Existence of nonoscillatory solutions for system of higher order neutral differential equations, Math. Comput. Modelling. 57 (2013) 375-381.
[8] T. Candan and R. S. Dahiya, Existence of nonoscillatory solutions of first and second order neutral differential equations with distributed deviating arguments, J. Franklin Inst. 347 (2010) 1309-1316.
[9] I. Culáková, L'. Hanuštiaková and Rudolf Olach, Existence for positive solutions of second-order neutral nonlinear differential equations, Appl. Math. Lett. 22 (2009) 1007-1010.
[10] J. G. Dix, B. Karpuz and R. N. Rath, Necessary and sufficient conditions for the oscillation of differential equations involving distributed arguments, Electron. J. Qual. Theory Differ. Equ. 19 (2011), 15 pp.
[11] L. H. Erbe, Q. K. Kong and B. G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, Inc., New York, 1995.
[12] I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations With Applications, Clarendon Press, Oxford, 1991.
[13] M. R.S. Kulenović and S. Hadžiomerspahić, Existence of Nonoscillatory Solution of Second-Order Linear Neutral Delay Equation, J. Math. Anal. Appl. 228 (1998) 436-448.
[14] G. S. Ladde, V. Lakshmikantham and B. G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, Inc., New York, 1987.
[15] H. El-Metwally, M. R. S. Kulenović and S. Hadžiomerspahić, Nonoscillatory solution for system of neutral delay equation, Nonlinear Anal. 54, (2003) 63-81.
[16] N. Parhi and R. N. Rath, Oscillation criteria for forced first order neutral differential equations with variable coefficients, J. Math. Anal. Appl. 256 (2001) 525-541.
[17] N. Parhi and R. N. Rath, On oscillation of solutions of forced nonlinear neutral differential equations of higher order, Czechoslovak Math. J. 53 (128) (2003) 805-825.
[18] Y. Y. Şahiner and A. Zafer, Bounded oscillation of nonlinear neutral differential equations of arbitrary order, Czechoslovak Math. J. 51(126) (2001), no. 1, 185-195.
[19] Patricia J. Y. Wong and Ravi P. Agarwal, The oscillation and asymptotically monotone solutions of second-order quasilinear differential equations, Appl. Math. Comput. 79 (1996) 207-237.
[20] Y. Yu and H. Wang, Nonoscillatory solutions of second-order nonlinear neutral delay equations, J. Math. Anal. Appl. 311 (2005) 445-456.
[21] W. Zhang, W. Feng, J. Yan and J. Song, Existence of Nonoscillatory Solutions of First-Order Linear Neutral Delay Differential Equations, Comput. Math. Appl. 49 (2005) 1021-1027.
[22] Y. Zhou and B. G. Zhang, Existence of Nonoscillatory Solutions of Higher-Order Neutral Differential Equations with Positive and Negative Coefficients, Appl. Math. Lett. 15 (2002) 867-874.

[^0]: 2010 Mathematics Subject Classification. Primary 34K40; Secondary 34K11
 Keywords. Neutral equations, Fixed point, Nonoscillatory solution.
 Received: 20 May 2014; Accepted: 24 September 2014
 Communicated by Jelena Manojlović
 Email address: tcandan@nigde.edu.tr (T. Candan)

