Expressions and Perturbations for the Moore-Penrose Inverse of Bounded Linear Operators in Hilbert Spaces

Fapeng Du ${ }^{\text {a,b }}$
${ }^{a}$ Department of Mathematics, Southeast University, Nanjing, 211100, Jiangsu Province, P. R. China
${ }^{b}$ School of mathematical E Physical Sciences, Xuzhou Institute of Technology, Xuzhou, 221008, Jiangsu Province, P. R. China

Abstract

Let A, X, Y be bounded linear operators. In this paper, we present the explicit expression for the Moore-Penrose inverse of $A-X Y$. In virtue of the expression of $(A+X)^{\dagger}$, we get the upper bounds of $\left\|(A+X)^{\dagger}\right\|$ and $\left\|(A+X)^{\dagger}-A^{\dagger}\right\|$.

1. Introduction

Let $H_{1}, H_{2}, K, K_{1}, K_{2}$ be Hilbert spaces. $B\left(H_{1}, H_{2}\right)$ denote the set of the bounded linear operators from H_{1} to H_{2}. $B(K, K)$ is abbreviated to $B(K)$. Let $A \in B\left(H_{1}, H_{2}\right)$. We denote the rang and the kernel of A by $R(A)$ and $\operatorname{ker}(A)$, respectively.

The operator $B \in B\left(H_{2}, H_{1}\right)$ which satisfied $A B A=A$ is called the inner inverse of A, denoted by A^{-}. If B is an inner inverse and satisfied $B A B=B$, then B is called a generalized inverse of A, denoted by A^{+}. The Moore-Penrose inverse of A, denoted by A^{\dagger}, is the unique solution to the following equations:

$$
A A^{\dagger} A=A, \quad A^{\dagger} A A^{\dagger}=A^{\dagger}, \quad\left(A A^{\dagger}\right)^{*}=A A^{\dagger}, \quad\left(A^{\dagger} A\right)^{*}=A^{\dagger} A,
$$

in which A^{*} denote the adjoint operator of A. It is well known that A has an Moore-Penrose inverse iff $R(A)$ is closed. From [17, Proposition 3.5.3], we know $A^{\dagger}=A^{*}\left(A A^{*}\right)^{\dagger}=\left(A^{*} A\right)^{\dagger} A^{*}$ if A^{\dagger} exists.

The perturbation for the Moore-Penrose inverse of bounded linear operators has been studying by many authors. G.Chen and Y.Xue introduce the notation so-called the stable perturbation in [2, 4]. This notation is an extension of the rank-preserving perturbation of matrices. Using this notation, they give the estimation of upper bounds about the perturbation of Moore-Penrose and Drazin inverse in the work of Chen and Xue et al (cf.[2-4, 17-20]). A classical results for the perturbation analysis of the Moore-Penrose inverse is

$$
\left\|\bar{T}^{\dagger}\right\| \leq \frac{\left\|T^{\dagger}\right\|}{1-\left\|T^{\dagger}\right\|\|\delta T\|^{\prime}}, \quad \frac{\left\|\bar{T}^{\dagger}-T^{\dagger}\right\|}{\left\|T^{\dagger}\right\|} \leq \frac{1+\sqrt{5}}{2} \frac{\left\|T^{\dagger}\right\|}{1-\left\|T^{\dagger}\right\|\|\delta T\|}
$$

when $\left\|T^{\dagger} \mid\right\| \delta T \|<1$ and \bar{T} is a stable perturbation of T, i.e., $R(\bar{T}) \cap R(T)^{\perp}=\{0\}(T \in B(H, K), \bar{T}=T+\delta T \in$ $B(H, K))$.

[^0]Later this notation is generalized to the set of Banach algebras by Y.Xue in [18] and to the set of Hilbert $C^{*}-$ module by Xu et al. in [16]. Motivated by the stable perturbation, we want to investigate the general perturbation analysis for the Moore-Penrose inverse of bounded linear operators. In order to do this, we must study the expression for the Moore-Penrose inverse of $A-X Y$.

The Moore-Penrose inverse of $A-X Y$ has many applications in statistics, networks, optimizations etc. (see [10, 11, 14]). For a long time, the expression of $(A-X Y)^{\dagger}$ has been studied by many authors and been obtained lots of results under certain conditions(see [1,5-7,9, 13, 15]).

In this paper, we first investigate the Moore-Penrose inverse of $A-X Y$ and give the explicit expression of the Moore-Penrose inverse $(A-X Y)^{\dagger}$ under the weaker conditions. Using the expression of $(A-X Y)^{\dagger}$, we estimate the upper bounds for the perturbation of the Moore-Penrose inverse $(A+X)^{\dagger}$. Our results are new and generalize the stable perturbation to the case $I+A^{\dagger} X$ is not invertible.

2. Preliminaries

In this section, we give some lemmas which will be used in the context. The first two lemmas which come from [3, 9, 17] play an important role in this paper.
Lemma 2.1. $[3,9,17]$ Let $S \in B(K)$ be an idempotent, then $I-S-S^{*}$ is invertible and $O(S)=S\left(S+S^{*}-I\right)^{-1}$ is a projection (i.e. $\left.(O(S))^{2}=O(S)=(O(S))^{*}\right)$ and $O(S)=S S^{\dagger}, O(I-S)=I-S^{\dagger} S$.
Lemma 2.2. [3, 9, 17] Let $A \in B\left(H_{1}, H_{2}\right)$ with $R(A)$ closed. Then

$$
A^{+}=\left[I-O\left(I-A^{+} A\right)\right] A^{+} O\left(A A^{+}\right)=\left(I-P-P^{*}\right)^{-1} A^{+}\left(I-Q-Q^{*}\right)^{-1}
$$

Here, $P=A^{+} A, Q=A A^{+}$.
From Lemma 2.2, we get A^{+}exists iff A^{+}exists and have the following equations:

$$
\begin{aligned}
& A A^{+}=O\left(A A^{+}\right)=A A^{+}\left(A A^{+}+\left(A A^{+}\right)^{*}-I\right)^{-1} \\
& A^{+} A=I-O\left(I-A^{+} A\right)=\left(A^{+} A+\left(A^{+} A\right)^{*}-I\right)^{-1} A^{+} A
\end{aligned}
$$

Remark 2.3. Assume that A^{-}is an inner inverse of A, then $A^{-} A A^{-}$is a generalized inverse of A. Thus, we have

$$
A^{+}=\left[I-O\left(I-A^{-} A\right)\right] A^{-} O\left(A A^{-}\right)
$$

when there is an inner inverse A^{-}of A. (Please see $[3,9,17]$ for details).
Lemma 2.4. [12, 17] Let $A \in B\left(H_{1}, H_{2}\right), B \in B\left(H_{2}, H_{1}\right)$. Then $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$ iff $R\left(A^{*} A B\right) \subseteq R(B)$ and $R\left(B B^{*} A^{*}\right) \subseteq$ $R\left(A^{*}\right)$.

3. The Expression for the Moore-Penrose Inverse

Let $A \in B\left(H_{1}, H_{2}\right)$ with $R(A)$ closed and $X \in B\left(K, H_{2}\right), Y \in B\left(H_{1}, K\right)$. Let $E_{A}=I-A A^{\dagger}, F_{A}=I-A^{\dagger} A, U=$ $E_{A} X, V=Y F_{A}$ with $R(U), R(V)$ closed throughout this paper.
Theorem 3.1. Let $A \in B\left(H_{1}, H_{2}\right)$ with $R(A)$ closed and $X \in B\left(K, H_{2}\right), Y \in B\left(H_{1}, K\right), Z=I-Y A^{+} X, S=E_{V} Z F_{U}$. If $R(S)$ is closed, then

$$
\begin{equation*}
\Lambda=A^{\dagger}-V^{\dagger} Y A^{\dagger}+\left(V^{\dagger} Z+A^{\dagger} X\right)\left[S^{\dagger} Y A^{\dagger}-\left(I-S^{\dagger} Z\right) U^{\dagger}\right] \tag{1}
\end{equation*}
$$

is an inner inverse of $A-X Y$ and

$$
\begin{aligned}
(A-X Y)^{\dagger} & =\left\{I-\left(A^{\dagger} X+V^{+} Z\right) F_{U} F_{S} Y-\left(\left(A^{\dagger} X+V^{+} Z\right) F_{U} F_{S} Y\right)^{*}\right\}^{-1} \\
& \times\left\{A^{\dagger}-V^{+} Y A^{\dagger}+\left(V^{\dagger} Z+A^{\dagger} X\right)\left[S^{+} Y A^{\dagger}-\left(I-S^{\dagger} Z\right) U^{\dagger}\right]\right\} \\
& \times\left\{I-X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)-\left(X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)\right)^{*}\right\}^{-1} \\
& =\left\{I-\left(\left(A^{\dagger} X+V^{+} Z\right) F_{U} F_{S} Y\right)\left(\left(A^{\dagger} X+V^{\dagger} Z\right) F_{U} F_{S} Y\right)^{\dagger}\right\} \\
& \times\left\{A^{\dagger}-V^{\dagger} Y A^{\dagger}+\left(V^{\dagger} Z+A^{\dagger} X\right)\left[S^{+} Y A^{+}-\left(I-S^{+} Z\right) U^{\dagger}\right]\right\} \\
& \times\left\{I-\left(X E_{S} E_{V}\left(Y A^{+}+Z U^{\dagger}\right)\right)^{\dagger}\left(X E_{S} E_{V}\left(Y A^{+}+Z U^{\dagger}\right)\right)\right\} .
\end{aligned}
$$

Proof. Let $\Lambda=A^{\dagger}-V^{\dagger} Y A^{\dagger}+\left(V^{\dagger} Z+A^{\dagger} X\right)\left[S^{\dagger} Y A^{\dagger}-\left(I-S^{\dagger} Z\right) U^{\dagger}\right]$. Noting that

$$
U^{\dagger}=U^{\dagger} E_{A}, \quad V^{\dagger}=F_{A} V^{\dagger}, \quad S^{\dagger}=F_{U} S^{\dagger}=S^{\dagger} E_{V}=F_{U} S^{\dagger} E_{V}
$$

we have

$$
\begin{array}{ll}
Y V^{+}=V V^{\dagger}, & A V^{\dagger}=0,
\end{array} \quad U S^{+}=0, \quad E_{V} Z S^{\dagger}=S S^{\dagger}, ~ \begin{array}{ll}
U^{\dagger} X=U^{\dagger} U, & U^{\dagger} A=0, \quad S^{\dagger} V=0, \quad S^{+} Z F_{U}=S^{+} S
\end{array}
$$

Hence,

$$
\begin{aligned}
& (A-X Y) \Lambda=A A^{\dagger}+U U^{+}-X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right) \\
& \Lambda(A-X Y)=A^{\dagger} A+V^{+} V-\left(A^{\dagger} X+V^{+} Z\right) F_{U} F_{S} Y
\end{aligned}
$$

and $(A-X Y) \Lambda(A-X Y)=(A-X Y)$. This indicate Λ is an inner inverse of $A-X Y$.
Since

$$
\begin{aligned}
& \left(I-2 A^{\dagger} A-2 V^{\dagger} V\right)^{-1}=\left(I-2 A^{\dagger} A-2 V^{\dagger} V\right) \\
& \left(I-2 A A^{\dagger}-2 U U^{\dagger}\right)^{-1}=\left(I-2 A A^{\dagger}-2 U U^{\dagger}\right)
\end{aligned}
$$

and

$$
\left(I-2 A^{\dagger} A-2 V^{\dagger} V\right) \Lambda\left(I-2 A A^{\dagger}-2 U U^{\dagger}\right)=\Lambda
$$

we have, by Lemma 2.2,

$$
\begin{aligned}
(A-X Y)^{\dagger} & =\left\{I-\left(A^{\dagger} X+V^{+} Z\right) F_{U} F_{S} Y-\left(\left(A^{\dagger} X+V^{\dagger} Z\right) F_{U} F_{S} Y\right)^{*}\right\}^{-1} \\
& \times\left\{A^{\dagger}-V^{\dagger} Y A^{\dagger}+\left(V^{+} Z+A^{\dagger} X\right)\left[S^{\dagger} Y A^{\dagger}-\left(I-S^{\dagger} Z\right) U^{\dagger}\right]\right\} \\
& \times\left\{I-X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)-\left(X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)\right)^{*}\right\}^{-1}
\end{aligned}
$$

Since

$$
\begin{aligned}
Y\left(A^{\dagger} X+V^{\dagger} Z\right) F_{U} F_{S} & =\left(Y A^{\dagger} X+V V^{+} Z\right) F_{U} F_{S} \\
& =\left(I-Z+V V^{\dagger} Z\right) F_{U} F_{S} \\
& =\left(I-E_{V} Z\right) F_{U} F_{S} \\
& =F_{U} F_{S} \\
E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right) X & =E_{S} E_{V}\left(Y A^{\dagger} X+Z U^{\dagger} X\right) \\
& =E_{S} E_{V}\left(I-Z F_{U}\right) \\
& =E_{S} E_{V},
\end{aligned}
$$

we have $\left(A^{\dagger} X+V^{\dagger} Z\right) F_{U} F_{S} Y$ and $X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)$ are idempotent, Thus, $R\left(\left(A^{\dagger} X+V^{\dagger} Z\right) F_{U} F_{S} Y\right)$ and $R\left(X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)\right)$ are closed. So, $\left[\left(A^{\dagger} X+V^{\dagger} Z\right) F_{U} F_{S} Y\right]^{\dagger}$ and $\left[X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)\right]^{\dagger}$ exist.

Noting that $I-\left(A^{\dagger} X+V^{\dagger} Z\right) F_{U} F_{S} Y$ and $I-X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)$ are idempotent too and

$$
\begin{aligned}
& \left\{I-\left(A^{\dagger} X+V^{\dagger} Z\right) F_{U} F_{S} Y\right\} \Lambda\left\{I-X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)\right\} \\
& =\left\{I-A^{\dagger} A-V^{\dagger} V+\Lambda(A-X Y)\right\} \Lambda\left\{I-A A^{\dagger}-U U^{\dagger}+(A-X Y) \Lambda\right\} \\
& =\Lambda(A-X Y) \Lambda \\
& =\Lambda\left(I-X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)\right)
\end{aligned}
$$

We get $\bar{\Lambda}=\Lambda\left(I-X E_{S} E_{V}\left(Y A^{+}+Z U^{\dagger}\right)\right)$ is a generalized inverse of $A-X Y$ and

$$
(A-X Y) \Lambda=(A-X Y) \bar{\Lambda}, \quad \bar{\Lambda}(A-X Y)=\Lambda(A-X Y)
$$

Since $\left(A A^{\dagger}+U U^{\dagger}\right) X=A A^{\dagger} X+U U^{\dagger} X=X-U+U=X$, we have

$$
\left(A A^{\dagger}+U U^{\dagger}\right) X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)=X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)=X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)\left(A A^{\dagger}+U U^{\dagger}\right)
$$

This indicate $X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)$ commute with $I-2 A A^{\dagger}-2 U U^{\dagger}$.
Noting that the result of the Lemma 2.2 is independent of the choice of A^{+}. Hence, by Lemma 2.1 and Lemma 2.2, we have

$$
\begin{aligned}
(A-X Y)^{\dagger} & =[I-O(\bar{\Lambda}(A-X Y))] \bar{\Lambda} O((A-X Y) \bar{\Lambda}) \\
& =\left\{I-\left(A^{\dagger} X+V^{+} Z\right) F_{U} F_{S} Y-\left(\left(A^{\dagger} X+V^{\dagger} Z\right) F_{U} F_{S} Y\right)^{*}\right\}^{-1} \\
& \times \Lambda\left(I-X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)\right) \\
& \times\left\{I-X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)-\left(X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)\right)^{*}\right\}^{-1} \\
& =\left\{I-\left(A^{\dagger} X+V^{\dagger} Z\right) F_{U} F_{S} Y-\left(\left(A^{\dagger} X+V^{\dagger} Z\right) F_{U} F_{S} Y\right)^{*}\right\}^{-1} \\
& \times\left\{I-\left(A^{\dagger} X+V^{\dagger} Z\right) F_{U} F_{S} Y\right\} \Lambda\left\{I-X E_{S} E_{V}\left(Y A^{+}+Z U^{\dagger}\right)\right\} \\
& \times\left\{I-X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)-\left(X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)\right)^{*}\right\}^{-1} \\
& =\left\{I-O\left[\left(A^{\dagger} X+V^{+} Z\right) F_{U} F_{S} Y\right]\right\} \Lambda O\left[I-\left(X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)\right]\right. \\
& =\left\{I-\left(\left(A^{\dagger} X+V^{\dagger} Z\right) F_{U} F_{S} Y\right)\left(\left(A^{\dagger} X+V^{\dagger} Z\right) F_{U} F_{S} Y\right)^{\dagger}\right\} \\
& \times\left\{A^{\dagger}-V^{\dagger} Y A^{\dagger}+\left(V^{\dagger} Z+A^{\dagger} X\right)\left[S^{\dagger} Y A^{\dagger}-\left(I-S^{\dagger} Z\right) U^{\dagger}\right]\right\} \\
& \times\left\{I-\left(X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)\right)^{\dagger}\left(X E_{S} E_{V}\left(Y A^{\dagger}+Z U^{\dagger}\right)\right)\right\}
\end{aligned}
$$

Corollary 3.2. Let $A \in B\left(H_{1}, H_{2}\right)$ with $R(A)$ closed and $X \in B\left(K, H_{2}\right), Y \in B\left(H_{1}, K\right), Z=I-Y A^{\dagger} X$. If $R(X) \subseteq$ $R(A), \operatorname{ker}(A) \subseteq \operatorname{ker}(Y)$ and $R(Z)$ is closed, then $A^{\dagger}+A^{\dagger} X Z^{\dagger} Y A^{\dagger}$ is an inner inverse of $A-X Y$ and

$$
\begin{aligned}
(A-X Y)^{\dagger} & =\left\{I-\left(A^{+} X F_{Z} Y\right)-\left(A^{+} X F_{Z} Y\right)^{*}\right\}^{-1}\left\{A^{\dagger}+A^{+} X Z^{\dagger} Y A^{\dagger}\right\} \\
& \times\left\{I-\left(X E_{Z} Y A^{\dagger}\right)-\left(X E_{Z} Y A^{\dagger}\right)^{*}\right\}^{-1} \\
& =\left\{I-\left(A^{+} X F_{Z} Y\right)\left(A^{+} X F_{Z} Y\right)^{\dagger}\right\}\left\{A^{\dagger}+A^{+} X Z^{+} Y A^{\dagger}\right\} \\
& \times\left\{I-\left(X E_{Z} Y A^{\dagger}\right)^{\dagger}\left(X E_{Z} Y A^{\dagger}\right)\right\} .
\end{aligned}
$$

Proof. Since $R(X) \subseteq R(A), \operatorname{ker}(A) \subseteq \operatorname{ker}(Y)$, we have $U=0=V$. Hence, the results follow by Theorem 3.1.

Corollary 3.3. Let $A, X \in B\left(H_{1}, H_{2}\right)$ with $R(A)$ closed and $Z=I+A^{+} X, S=A^{+} A Z F_{U}$. If $R(S)$ is closed, then

$$
\begin{equation*}
\Lambda=A^{\dagger}+\left(F_{A}-A^{\dagger} X\right)\left[S^{\dagger} A^{\dagger}+\left(I-S^{\dagger} Z\right) U^{\dagger}\right] \tag{2}
\end{equation*}
$$

is an inner inverse of $A+X$ and

$$
\begin{aligned}
&(A+X)^{\dagger}=\left\{I-\left(F_{U} F_{S}\right)-\left(F_{U} F_{S}\right)^{*}\right\}^{-1}\left\{A^{\dagger}+\left(F_{A}-A^{\dagger} X\right)\left[S^{\dagger} A^{\dagger}+\left(I-S^{\dagger} Z\right) U^{\dagger}\right]\right\} \\
& \times\left\{I+\left(X E_{S}\left(A^{\dagger}-A^{\dagger} A Z U^{\dagger}\right)\right)+\left(X E_{S}\left(A^{\dagger}-A^{\dagger} A Z U^{\dagger}\right)\right)^{*}\right\}^{-1} .
\end{aligned}
$$

Especially, if $U=0$, then $S=A^{\dagger} A Z$ and $\Lambda=\left(I+S^{+}-S S^{\dagger}\right) A^{\dagger}$ is an inner inverse of $A+X$ and

$$
(A+X)^{\dagger}=\left(2 S^{\dagger} S-I\right)\left(I+S^{\dagger}-S S^{\dagger}\right) A^{\dagger}\left\{I+X E_{S} A^{\dagger}+\left(X E_{S} A^{\dagger}\right)^{*}\right\}^{-1}
$$

Proof. Replacing Y by $-I$ in Eq.(1), we get Eq.(2). If $U=0$, then $S=A^{\dagger} A Z$. By Eq.(2),

$$
\begin{aligned}
\Lambda & =A^{\dagger}+\left(F_{A}-A^{\dagger} X\right) S^{\dagger} A^{\dagger} \\
& =A^{\dagger}=(I-S) S^{\dagger} A^{\dagger} \\
& =\left(I+S^{\dagger}-S S^{\dagger}\right) A^{\dagger}
\end{aligned}
$$

Thus, the results are obtained by Theorem 3.1.

Corollary 3.4. Let $A, Y \in B\left(H_{1}, H_{2}\right)$ with $R(A)$ closed and $Z=I+Y A^{\dagger}, T=E_{V} Z A A^{\dagger}$. If $R(T)$ is closed, then

$$
\begin{equation*}
\Lambda=V^{\dagger}+\left(A^{\dagger}-V^{\dagger} Z\right)\left[T^{\dagger}+\left(I-T^{\dagger} Z\right) A A^{\dagger}\right] \tag{3}
\end{equation*}
$$

is an inner inverse of $A+Y$ and

$$
\begin{aligned}
(A+Y)^{\dagger} & =\left\{I-\left(V^{\dagger} Z-A^{\dagger}\right) A A^{\dagger} F_{T} Y-\left(\left(V^{\dagger} Z-A^{\dagger}\right) A A^{\dagger} F_{T} Y\right)^{*}\right\}^{-1} \\
& \times\left\{V^{\dagger}+\left(A^{\dagger}-V^{\dagger} Z\right)\left[T^{\dagger}+\left(I-T^{\dagger} Z\right) A A^{\dagger}\right]\right\}\left\{I-E_{T} E_{V}-\left(E_{T} E_{V}\right)^{*}\right\}^{-1}
\end{aligned}
$$

Especially, if $V=0$, then $T=Z A A^{\dagger}$ and $A^{\dagger}\left(I+T^{\dagger}-T^{\dagger} T\right)$ is an inner inverse of $A+Y$ and

$$
(A+Y)^{\dagger}=\left\{I+A^{\dagger} F_{T} Y+\left(A^{\dagger} F_{T} Y\right)^{*}\right\}^{-1} A^{\dagger}\left(I+T^{\dagger}-T^{\dagger} T\right)\left(2 T T^{\dagger}-I\right) .
$$

Proof. Replacing X by $-I$ in Eq.(1), we have

$$
\begin{aligned}
\Lambda & =A^{\dagger}-V^{\dagger} Y A^{\dagger}+\left(V^{\dagger} Z-A^{\dagger}\right)\left[T^{\dagger} Y A^{\dagger}+\left(I-T^{\dagger} Z\right) E_{A}\right] \\
& =A^{\dagger}-V^{\dagger}(Z-I)+\left(V^{\dagger} Z-A^{\dagger}\right)\left[T^{+} Y A^{\dagger}-T^{\dagger} Z E_{A}+E_{A}\right] \\
& =V^{\dagger}+\left(A^{\dagger}-V^{\dagger} Z\right)\left[I-T^{\dagger} Y A^{\dagger}+T^{\dagger} Z E_{A}-E_{A}\right] \\
& =V^{\dagger}+\left(A^{\dagger}-V^{\dagger} Z\right)\left[T^{\dagger}+\left(I-T^{\dagger} Z\right) A A^{\dagger}\right] .
\end{aligned}
$$

Noting that $Y A^{+}-Z E_{A}=Z A A^{\dagger}-I$, by Theorem 3.1, the results are obtained.
Corollary 3.5. Let $X \in B\left(H_{2}, H_{1}\right), Y \in B\left(H_{1}, H_{2}\right)$. Then $R(I-X Y)$ is closed iff $R(I-Y X)$ is closed and $I+X(I-Y X)^{\dagger} Y$ is an inner inverse of $I-X Y$. Put $Z=I-Y X$, then

$$
(I-X Y)^{\dagger}=\left\{I-X F_{Z} Y-\left(X F_{Z} Y\right)^{*}\right\}^{-1}\left(I+X Z^{\dagger} Y\right)\left\{I-X E_{Z} Y-\left(X E_{Z} Y\right)^{*}\right\}^{-1}
$$

Proof. The assertion follows by Corollary 3.2.
In $[6,13]$, the expression for the Moore-Penrose inverse of $A-X G Y$ was obtained under some complex conditions, respectively. Now, we get this expression under simpler conditions.

Proposition 3.6. Let $A \in B\left(H_{1}, H_{2}\right), X \in B\left(K_{2}, H_{2}\right), Y \in B\left(H_{1}, K_{1}\right), G \in B\left(K_{1}, K_{2}\right)$ with $R(A), R(G)$ closed. If $R(X) \subseteq R(A), \operatorname{ker}(A) \subseteq \operatorname{ker}(Y)$ and $\operatorname{ker}(X)^{\perp} \subseteq R(G), R(Y) \subseteq \operatorname{ker}(G)^{\perp}$ and $R\left(G^{\dagger}-Y A^{\dagger} X\right)$ closed, then

$$
\Lambda=A^{\dagger}+A^{\dagger} X\left(G^{\dagger}-Y A^{\dagger} X\right)^{\dagger} Y A^{\dagger}
$$

is an inner inverse of $A-X G Y$ and

$$
\begin{aligned}
(A-X G Y)^{\dagger} & =\left\{I-\left(A^{\dagger} X F_{W} G Y\right)-\left(A^{\dagger} X F_{W} G Y\right)^{*}\right\}^{-1}\left\{A^{\dagger}+A^{\dagger} X W^{\dagger} Y A^{\dagger}\right\} \\
& \times\left\{I-\left(X G E_{W} Y A^{\dagger}\right)-\left(X G E_{W} Y A^{\dagger}\right)^{*}\right\}^{-1} \\
& =\left\{I-\left(A^{\dagger} X F_{W} G Y\right)\left(A^{\dagger} X F_{W} G Y\right)^{\dagger}\right\}\left\{A^{\dagger}+A^{\dagger} X W^{\dagger} Y A^{\dagger}\right\} \\
& \times\left\{I-\left(X G E_{W} Y A^{\dagger}\right)^{\dagger}\left(X G E_{W} Y A^{\dagger}\right)\right\} .
\end{aligned}
$$

Here, $W=G^{\dagger}-Y A^{\dagger} X$.
Proof. Let $W=G^{\dagger}-Y A^{\dagger} X$ and $\Lambda=A^{\dagger}+A^{\dagger} X\left(G^{\dagger}-Y A^{\dagger} X\right)^{\dagger} Y A^{\dagger}$.
Since $R(X) \subseteq R(A), \operatorname{ker}(A) \subseteq \operatorname{ker}(Y)$ and $\operatorname{ker}(X)^{\perp} \subseteq R(G), R(Y) \subseteq \operatorname{ker}(G)^{\perp}$, we have

$$
A A^{\dagger} X=X, \quad Y A^{\dagger} A=Y, \quad X G G^{\dagger}=X, \quad G^{\dagger} G Y=Y
$$

Thus,

$$
(A-X G Y) \Lambda=A A^{\dagger}-X G E_{W} Y A^{\dagger}, \quad \Lambda(A-X G Y)=A^{\dagger} A-A^{\dagger} X F_{W} G Y
$$

and $(A-X G Y) \Lambda(A-X G Y)=(A-X G Y)$. This shows Λ is an inner inverse of $A-X G Y$. By Lemma 2.2,

$$
\begin{aligned}
(A-X G Y)^{\dagger} & =\left\{I-\left(A^{\dagger} X F_{W} G Y\right)-\left(A^{\dagger} X F_{W} G Y\right)^{*}\right\}^{-1}\left\{A^{\dagger}+A^{\dagger} X W^{\dagger} Y A^{\dagger}\right\} \\
& \times\left\{I-\left(X G E_{W} Y A^{\dagger}\right)-\left(X G E_{W} Y A^{\dagger}\right)^{*}\right\}^{-1}
\end{aligned}
$$

Noting that $W=G^{\dagger}-Y A^{\dagger} X=G^{\dagger}-G^{\dagger} G Y A^{\dagger} X G G^{\dagger}$, we have $R(W) \subseteq R\left(G^{\dagger}\right)$ and $\operatorname{ker}\left(G^{\dagger}\right) \subseteq \operatorname{ker}(W)$. Thus,

$$
G^{\dagger} G W=W, \quad W G G^{\dagger}=W
$$

Again, $\operatorname{ker}(G) \subseteq \operatorname{ker}\left(W^{\dagger}\right)$ and $R\left(W^{\dagger}\right) \subseteq R(G)$ by $R(W)=\operatorname{ker}\left(W^{\dagger}\right)^{\perp}, R\left(G^{\dagger}\right)=\operatorname{ker}(G)^{\perp}, \operatorname{ker}\left(G^{\dagger}\right)=R(G)^{\perp}, \operatorname{ker}(W)=$ $R\left(G^{\dagger}\right)^{\perp}$. We have

$$
G G^{\dagger} W^{\dagger}=W^{\dagger}, \quad W^{\dagger} G^{\dagger} G=W^{\dagger}
$$

Thus,

$$
\begin{aligned}
\left(A^{\dagger} X F_{W} G Y\right)\left(A^{\dagger} X F_{W} G Y\right) & =A^{\dagger} X F_{W} G\left(Y A^{\dagger} X\right) F_{W} G Y \\
& =A^{\dagger} X F_{W} G\left(G^{\dagger}-W\right) F_{W} G Y \\
& =A^{\dagger} X F_{W} G Y .
\end{aligned}
$$

Similarly, $X G E_{W} Y A^{+}$is an idempotent too. Thus, $R\left(A^{\dagger} X F_{W} G Y\right)$ and $R\left(X G E_{W} Y A^{\dagger}\right)$ are closed.
Since $\left(I-2 A^{\dagger} A\right) \Lambda\left(I-2 A A^{+}\right)=\Lambda$ and

$$
\begin{aligned}
\left(I-A^{\dagger} X F_{W} G Y\right) \Lambda\left(I-X G E_{W} Y A^{\dagger}\right) & =\left(I-A^{\dagger} X F_{W} G Y\right)\left(I-2 A^{\dagger} A\right) \Lambda\left(I-2 A A^{\dagger}\right)\left(I-X G E_{W} Y A^{\dagger}\right) \\
& =\left(I-2 A^{\dagger} A+A^{\dagger} X F_{W} G Y\right) \Lambda\left(I-2 A A^{\dagger}+X G E_{W} Y A^{\dagger}\right) \\
& =\left(I-A^{\dagger} A-\Lambda(A-X G Y)\right) \Lambda\left(I-A A^{\dagger}-(A-X G Y)\right) \\
& =\Lambda(A-X G Y) \Lambda \\
& =\Lambda\left(I-X G E_{W} Y A^{\dagger}\right)
\end{aligned}
$$

we have $\bar{\Lambda}=\Lambda\left(I-X G E_{W} Y A^{\dagger}\right)$ is a generalized inverse of $A-X G Y$ and

$$
(A-X G Y) \bar{\Lambda}=(A-X G Y) \Lambda, \quad \bar{\Lambda}(A-X G Y)=\Lambda(A-X G Y)
$$

Noting that $I-X G E_{W} Y A^{\dagger}$ commute with $I-2 A A^{\dagger}$ and consequently, by Lemma 2.1 and Lemma 2.2,

$$
(A-X G Y)^{\dagger}=\left\{I-\left(A^{\dagger} X F_{W} G Y\right)\left(A^{\dagger} X F_{W} G Y\right)^{\dagger}\right\}\left\{A^{\dagger}+A^{\dagger} X W^{\dagger} Y A^{\dagger}\right\}\left\{I-\left(X G E_{W} Y A^{\dagger}\right)^{\dagger}\left(X G E_{W} Y A^{\dagger}\right)\right\}
$$

4. The Perturbation Analysis of the Moore-Penrose Inverse

In this section, we study the perturbation of the Moore-Penrose inverse and give the upper bound of $\left\|(A+X)^{\dagger}\right\|$ and $\left\|(A+X)^{\dagger}-A^{\dagger}\right\|$ on general case.

Theorem 4.1. Let $A, X \in B\left(H_{1}, H_{2}\right)$ with $R(A)$ closed and $Z=I+A^{\dagger} X, U=E_{A} X, F_{U}=I-U^{\dagger} U, S=A^{\dagger} A Z F_{U}$. If $R(S)$ is closed, then

$$
\begin{gathered}
\left\|(A+X)^{\dagger}\right\| \leq\left(1+\left\|S^{\dagger}\right\|\right)\left(\left\|A^{\dagger}\right\|+\|Z\|\| \| U^{\dagger} \|\right)+\left\|U^{\dagger}\right\| . \\
\left\|(A+X)^{\dagger}-A^{\dagger}\right\| \leq\left\{\left\|\left(I+S^{\dagger}-S S^{\dagger}\right)\left(A^{\dagger}-A^{\dagger} A Z U^{\dagger}\right)+U^{\dagger}\right\|^{2}+\left\|A^{\dagger}\right\|^{2}\right\}\|X\| .
\end{gathered}
$$

Proof. Since $R(S)$ is closed, we have $(A+X)^{\dagger}$ exists by Corollary 3.3. Noting that $A^{\dagger} A Z S^{\dagger}=S S^{\dagger}, S^{\dagger} A^{\dagger} A=S^{\dagger}$, by Corollary 3.3, we have

$$
\begin{aligned}
\Lambda & =A^{\dagger}+\left(F_{A}-A^{\dagger} X\right)\left[S^{\dagger}\left(A^{\dagger}-Z U^{\dagger}\right)+U^{\dagger}\right] \\
& =A^{\dagger}+\left(I-A^{\dagger} A Z\right)\left[S^{\dagger}\left(A^{\dagger}-Z U^{\dagger}\right)+U^{\dagger}\right] \\
& =A^{\dagger}+S^{\dagger}\left(A^{\dagger}-Z U^{\dagger}\right)+U^{\dagger}-A^{\dagger} A Z\left[S^{\dagger}\left(A^{\dagger}-Z U^{\dagger}\right)+U^{\dagger}\right] \\
& =A^{\dagger}+S^{\dagger}\left(A^{\dagger}-Z U^{\dagger}\right)+U^{\dagger}-A^{\dagger} A Z S^{\dagger}\left(A^{\dagger}-Z U^{\dagger}\right)-A^{\dagger} A Z U^{+} \\
& =A^{\dagger}+S^{\dagger} A^{\dagger}-S^{\dagger} Z U^{\dagger}+U^{\dagger}-S S^{\dagger}\left(A^{\dagger}-Z U^{\dagger}\right)-A^{\dagger} A Z U^{\dagger} \\
& =A^{\dagger}+S^{\dagger} A^{\dagger}-S^{\dagger} Z U^{\dagger}+U^{\dagger}-S S^{\dagger} A^{\dagger}+S S^{\dagger} Z U^{\dagger}-A^{\dagger} A Z U^{\dagger} \\
& =\left(I+S^{\dagger}-S S^{\dagger}\right) A^{\dagger}+\left(I-S^{\dagger} Z+S S^{\dagger} Z-A^{\dagger} A Z\right) U^{\dagger} \\
& =\left(I+S^{\dagger}-S S^{\dagger}\right) A^{\dagger}+\left[I-\left(I+S^{\dagger}-S S^{\dagger}\right) A^{+} A Z\right] U^{+} \\
& =\left(I+S^{\dagger}-S S^{\dagger}\right) A^{\dagger}-\left(I+S^{+}-S S^{\dagger}\right) A^{\dagger} A Z U^{\dagger}+U^{\dagger} \\
& =\left(I+S^{\dagger}-S S^{\dagger}\right)\left(A^{\dagger}-A^{\dagger} A Z U^{\dagger}\right)+U^{\dagger} .
\end{aligned}
$$

Since Λ is an inner inverse of $A+X$, we have

$$
\begin{aligned}
\left\|(A+X)^{\dagger}\right\| & \leq\left\|(A+X)^{-}\right\| \\
& =\left\|\left(I+S^{\dagger}-S S^{\dagger}\right)\left(A^{+}-A^{\dagger} A Z U^{\dagger}\right)+U^{\dagger}\right\| \\
& \leq\left(1+\left\|S^{\dagger}\right\|\right)\left(\left\|A^{\dagger}\right\|+\|Z\|\left\|U^{\dagger}\right\|\right)+\left\|U^{\dagger}\right\|
\end{aligned}
$$

From the identity(cf. [4, Eq.(21)]),

$$
(A+X)^{\dagger}-A^{\dagger}=-(A+X)^{\dagger} X A^{\dagger}+(A+X)^{\dagger}\left((A+X)^{\dagger}\right)^{*} X^{*}\left(I-A A^{\dagger}\right)+\left[I-(A+X)^{\dagger}(A+X)\right] X^{*}\left(A^{\dagger}\right)^{*} A^{\dagger}
$$

by applying the orthogonality of the operators on the right side, we get

$$
\begin{aligned}
\left\|(A+X)^{\dagger}-A^{\dagger}\right\|^{2} & =\left\|-(A+X)^{\dagger} X A^{\dagger}+(A+X)^{\dagger}\left((A+X)^{\dagger}\right)^{*} X^{\star}\left(I-A A^{\dagger}\right)\right\|^{2}+\left\|\left[I-(A+X)^{\dagger}(A+X)\right] X^{*}\left(A^{\dagger}\right)^{*} A^{\dagger}\right\|^{2} \\
& \leq\left\|-(A+X)^{\dagger} X A^{\dagger}\right\|^{2}+\left\|(A+X)^{\dagger}\left((A+X)^{\dagger}\right)^{*} X^{*}\left(I-A A^{\dagger}\right)\right\|^{2}+\|X\|^{2}\left\|A^{\dagger}\right\|^{4} \\
& \leq\left\|(A+X)^{\dagger}\right\|^{2}\|X\|^{2}\left\|A^{\dagger}\right\|^{2}+\left\|(A+X)^{\dagger}\right\|^{4}\|X\|^{2}+\|X\|^{2}\left\|A^{\dagger}\right\|^{4} \\
& \leq\left\{\left\|(A+X)^{\dagger}\right\|^{2}\left\|A^{\dagger}\right\|^{2}+\left\|(A+X)^{\dagger}\right\|^{4}+\left\|A^{\dagger}\right\|^{4}\right\}\|X\|^{2} \\
& \leq\left\{\left\|(A+X)^{\dagger}\right\|^{2}+\left\|A^{\dagger}\right\|^{2}\right\}^{2}\|X\|^{2} \\
& \leq\left\{\left\|\left(I+S^{\dagger}-S S^{\dagger}\right)\left(A^{\dagger}-A^{\dagger} A Z U^{\dagger}\right)+U^{\dagger}\right\|^{2}+\left\|A^{\dagger}\right\|^{2}\right\}^{2}\|X\|^{2} .
\end{aligned}
$$

Corollary 4.2. Let $A, X \in B\left(H_{1}, H_{2}\right)$ with $R(A)$ closed and $Z=I+A^{+} X, S=A^{+} A Z$. If $R(X) \subseteq R(A)$ and $R(S)$ are closed, then

$$
\begin{gathered}
\left\|(A+X)^{\dagger}\right\| \leq\left(1+\left\|S^{\dagger}\right\|\right)\left\|A^{\dagger}\right\| \\
\frac{\left\|(A+X)^{\dagger}-A^{\dagger}\right\|}{\left\|A^{\dagger}\right\|} \leq\left(\sqrt{2}+\left\|S^{\dagger}\right\|\right)\|X\|\left\|A^{\dagger}\right\| .
\end{gathered}
$$

Proof. Since $R(X) \subset R(A)$, we have $U=0$. By Theorem4.1, we have

$$
\left\|(A+X)^{\dagger}\right\| \leq\left(1+\left\|S^{\dagger}\right\|\right)\left\|A^{\dagger}\right\|
$$

and

$$
\begin{aligned}
\left\|(A+X)^{\dagger}-A^{\dagger}\right\| & \leq\left\{\left\|\left(I+S^{\dagger}-S S^{\dagger}\right) A^{+}\right\|^{2}+\left\|A^{+}\right\|^{2}\right\}\|X\| \\
& \leq\left\{1+\left(1+\left\|S^{+}\right\|\right)^{2}\right\}\|X\|\left\|A^{\dagger}\right\|^{2} \\
& \leq\left(\sqrt{2}+\left\|S^{\dagger}\right\|\right)\|X\|\left\|A^{\dagger}\right\|^{2} .
\end{aligned}
$$

Thus,

$$
\frac{\left\|(A+X)^{\dagger}-A^{\dagger}\right\|}{\left\|A^{\dagger}\right\|} \leq\left(\sqrt{2}+\left\|S^{\dagger}\right\|\right)\|X\|\left\|A^{\dagger}\right\| .
$$

Remark 4.3. The condition $R(X) \subseteq R(A)$ in Corollary 4.2 shows it is a perturbation of range-preserving. In additon, if $Z=I+A^{\dagger} X$ is invertible, then $(A+X)^{+}=Z^{-1} A^{\dagger}$. This is a special case of stable perturbation (Please see [17] for details).
Corollary 4.4. Let $A, X \in B\left(H_{1}, H_{2}\right)$ with $R(A)$ closed and $Z=I+X A^{\dagger}, T=Z A A^{\dagger}$. If $\operatorname{ker}(A) \subseteq \operatorname{ker}(X)$ and $R(T)$ are closed, then

$$
\begin{aligned}
\left\|(A+X)^{\dagger}\right\| & \leq\left(1+\left\|T^{\dagger}\right\|\right)\left\|A^{\dagger}\right\| . \\
\frac{\left\|(A+X)^{\dagger}-A^{\dagger}\right\|}{\left\|A^{\dagger}\right\|} & \leq\left(\sqrt{2}+\left\|T^{\dagger}\right\|\right)\|X\|\left\|A^{\dagger}\right\| .
\end{aligned}
$$

Proof. Note that $\left\|T^{\dagger}\right\|=\left\|\left(T^{*}\right)^{\dagger}\right\|$ and $A^{\dagger}\left(I+T^{\dagger}-T^{\dagger} T\right)$ is an inner inverse of $A+X$ by Corollary 3.4. Similar to the proof in Corollary 4.2, the results can be obtained easily.
Remark 4.5. The condition $\operatorname{ker}(A) \subseteq \operatorname{ker}(X)$ in Corollary 4.4 shows it is a perturbation of kernel-preserving. In additon, if $\mathrm{Z}=I+X A^{+}$is invertible, then $(A+X)^{+}=A^{+} Z^{-1}$. This is also a special cases of stable perturbation (Please see [17] for details).

Corollary 4.6. Let $A, X \in B\left(H_{1}, H_{2}\right)$ with $R(A)$ closed. If $R(X) \subseteq R(A), \operatorname{ker}(A) \subseteq \operatorname{ker}(X)$ and $R\left(I+A^{+} X\right)$ is closed, then

$$
\left\|(A+X)^{\dagger}\right\| \leq\left\|\left(I+A^{+} X\right)^{\dagger}\right\|\left\|A^{\dagger}\right\|
$$

and

$$
\frac{\left\|(A+X)^{\dagger}-A^{\dagger}\right\|}{\left\|A^{\dagger}\right\|} \leq \frac{1+\sqrt{5}}{2}\left\|\left(I+A^{\dagger} X\right)^{\dagger}\right\|\left\|A^{\dagger}\right\|\|X\| .
$$

Proof. Since $R\left(I+A^{\dagger} X\right)$ is closed, we have $R\left(I+X A^{\dagger}\right)$ is closed by Corollary 3.5. Since $R(X) \subseteq R(A), \operatorname{ker}(A) \subseteq$ $\operatorname{ker}(X)$, we have $A A^{\dagger} X=X, X A^{\dagger} A=X$. Thus,

$$
\left(I+A^{\dagger} X\right) A^{\dagger} A=A^{\dagger} A\left(I+A^{\dagger} X\right) .
$$

Combining with $\left(A^{\dagger} A\right)^{*}=A^{\dagger} A$, we get

$$
\begin{gathered}
R\left(A^{\dagger} A\left(I+A^{\dagger} X\right)\right) \subseteq R\left(I+A^{\dagger} X\right), \\
R\left(\left(I+A^{\dagger} X\right)\left(I+A^{\dagger} X\right)^{*}\left(A^{\dagger} A\right)\right) \subseteq R\left(A^{\dagger} A\right) .
\end{gathered}
$$

Hence, by Lemma 2.4

$$
\left(A^{\dagger} A+A^{\dagger} X\right)^{\dagger}=\left(I+A^{+} X\right)^{\dagger} A^{\dagger} A .
$$

Therefore,

$$
\begin{aligned}
& \left(I+A^{\dagger} X\right)^{\dagger} A^{\dagger}(A+X)\left(I+A^{\dagger} X\right)^{\dagger} A^{\dagger} \\
& =\left(I+A^{\dagger} X\right)^{\dagger} A^{\dagger} A\left(A^{\dagger} A+A^{\dagger} X\right)\left(I+A^{\dagger} X\right)^{\dagger} A^{\dagger} A A^{\dagger} \\
& =\left(I+A^{\dagger} X\right)^{\dagger} A^{\dagger} .
\end{aligned}
$$

It is easy to obtain $A+X=(A+X)\left(I+A^{\dagger} X\right)^{\dagger} A^{\dagger}(A+X)$. The above indicate $\left(I+A^{\dagger} X\right)^{\dagger} A^{\dagger}$ is a generalized inverse of $A+X$. Similarly, we get $A^{\dagger}\left(I+X A^{\dagger}\right)^{\dagger}$ is a generalized inverse of $A+X$ too. Hence,

$$
\left\|(A+X)^{\dagger}\right\| \leq\left\|(A+X)^{+}\right\| \leq\left\|\left(I+A^{\dagger} X\right)^{\dagger}\right\|\left\|A^{\dagger}\right\| .
$$

Noting that $R(X) \subseteq R(A)$ and $\operatorname{ker}(A) \subseteq \operatorname{ker}(X)$ mean $R(A+X) \cap R(A)^{\perp}=\{0\}$ and $(\operatorname{ker}(A+X))^{\perp} \cap \operatorname{ker} A=\{0\}$, respectively. Thus, from [20], we have

$$
\begin{aligned}
\frac{\left\|(A+X)^{\dagger}-A^{\dagger}\right\|}{\left\|A^{\dagger}\right\|} & \leq \frac{1+\sqrt{5}}{2}\left\|(A+X)^{\dagger}\right\|\|X\| \\
& \leq \frac{1+\sqrt{5}}{2}\left\|\left(I+A^{\dagger} X\right)^{\dagger}\right\|\left\|A^{\dagger}\right\|\|X\|
\end{aligned}
$$

Proposition 4.7. Let $A, X \in B\left(H_{1}, H_{2}\right)$ with $R(A)$ closed. Let $Z=I+A^{\dagger} X, G=A Z$. If $R(G)$ are closed and $R(A+X) \cap R(G)^{\perp}=\{0\}$, then

$$
\left\|(A+X)^{\dagger}\right\| \leq\left\|G^{\dagger}\right\|
$$

and

$$
\left\|(A+X)^{\dagger}-A^{\dagger}\right\| \leq \frac{1+\sqrt{5}}{2}\left\|G^{\dagger}\right\|^{2}\|X\|+\left(\sqrt{2}+\left\|\left(A^{\dagger} A Z\right)^{\dagger}\right\|\right)\|X\|\left\|A^{\dagger}\right\|^{2}
$$

Proof. Put $G=A Z=A\left(I+A^{+} X\right), U=E_{A} X$. Then we have $A+X=G+U$. For $\forall x \in \operatorname{ker} G$, we have $G^{\dagger}(G+U) x=0$ for $G^{\dagger} U=0$. This means $(G+U) x \in R(A+X) \cap R(G)^{\perp}=\{0\}$. Hence, we have $\operatorname{ker} G=\operatorname{ker}(G+U)$. It is easy to verify G^{+}is a generalized inverse of $G+U$, i.e.,

$$
(A+X)^{+}=(G+U)^{+}=G^{+}
$$

Thus, $\left\|(A+X)^{\dagger}\right\| \leq\left\|(A+X)^{+}\right\|=\left\|G^{\dagger}\right\|$.
Since $R(A+X) \cap R(G)^{\perp}=\{0\}$ and $\operatorname{ker}(G+U)^{\perp} \cap \operatorname{ker} G=\{0\}$, from [20], we have

$$
\begin{aligned}
\left\|(G+U)^{\dagger}-G^{\dagger}\right\| & \leq \frac{1+\sqrt{5}}{2}\left\|(G+U)^{\dagger}\right\|\left\|G^{\dagger}\right\|\|U\| \\
& \leq \frac{1+\sqrt{5}}{2}\left\|G^{\dagger}\right\|^{2}\|X\|
\end{aligned}
$$

Since $G=A Z=A+A A^{\dagger} X$ and $R\left(A A^{\dagger} X\right) \subseteq R(A)$, by Corollary 4.2, we have

$$
\left\|G^{\dagger}-A^{\dagger}\right\| \leq\left(\sqrt{2}+\left\|\left(A^{\dagger} A Z\right)^{\dagger}\right\|\right)\|X\|\left\|A^{\dagger}\right\|^{2}
$$

Thus,

$$
\begin{aligned}
\left\|(A+X)^{\dagger}-A^{\dagger}\right\| & =\left\|(A+X)^{\dagger}-G^{\dagger}+G^{\dagger}-A^{\dagger}\right\| \\
& \leq\left\|(A+X)^{\dagger}-G^{\dagger}\right\|+\left\|G^{\dagger}-A^{\dagger}\right\| \\
& \leq \frac{1+\sqrt{5}}{2}\left\|G^{\dagger}\right\|^{2}\|X\|+\left(\sqrt{2}+\left\|\left(A^{\dagger} A Z\right)^{\dagger}\right\|\right)\|X\|\left\|A^{\dagger}\right\|^{2}
\end{aligned}
$$

References

[1] Y. Chen, X. Hu and Q. Xu, The Moore-Penrose inverse of $A-X Y^{*}$, J. Shanghai Normal Univer., 38, (2009), 15-19.
[2] G. Chen and Y. Xue, Perturbation analysis for the operator equation $T x=b$ in Banach spaces, J. Math. Appl., 212, (1997), $107-125$.
[3] G. Chen and Y. Xue, The expression of generalized inverse of the perturbed operators under type I perturbation in Hilbert spaces, Linear Algebra Appl., 285, (1998), 1-6.
[4] G. Chen, M. Wei and Y. Xue, Perturbation analysis of the least square solution in Hilbert spaces, Linear Algebra Appl., 244, (1996), 68-80.
[5] C. Deng, On the invertibility of the operator $A-X B$, Num. Linear Algebra Appl., 16, (2009), 817-831.
[6] C. Deng, A generalization of the Sherman-Morrison-Woodbury formula, Appl. Math. Lett., 24, (2011), 1561-1564.
[7] C. Deng and Y. Wei, Some new results of the Sherman-Morrison-Woodbury formula, Proceeding of the sixth international conference of matrices and operators, 2, (2011), 220-223.
[8] F. Du and Y. Xue, The reverse order law for the Moore-Penrose of closed operators, Chinese Quart. J. Math., 28 (1), (2013), 139-146.
[9] F. Du and Y. Xue, The expression of the Moore-Penrose inverse of $A-X Y^{*}$, J. East China Normal Univer. (Nat. Sci.) 5, (2010), 33-37.
[10] H. V. Henderson and S. R. Searle, On deriving the inverse of a sum of matrices, SIAM Review, 23(1), (1981), 53-60.
[11] W. W. Hager, Updating the inverse of a matrix, SIAM Review, 31, (1989), 221-239.
[12] S. Izumino, The product of operators with closed range and an extension of the reverse order law, Tohoku Math. J., 34, (1982), 43-52.
[13] S. Jose and K. C. Sivakumar, Moore-Penrose inverse of perturbed operators on Hilbert spaces, Combinatorial Matrix Theory and Generalized inverse of Matrices, (2013), 119-131.
[14] A. Riedel, A Sherman-Morison-Woodbury identity for rank augmenting matrices with application to centering, SIAM J. Math. Anal., 12 (1), (1991), 80-95.
[15] T. Steerneman and F. P. Kleij, Properties of the matrix $A-X Y^{*}$, Linear Algebra Appl., 410, (2005), 70-86.
[16] Q. Xu, W. Wei and Y. Gu, Sharp norm-estimation for the Moore-Penrose inverse of stable perturbations of Hilbert $C^{*}-$ module operators, SIAM J. Numer. Anal., 47 (6), (2010), 4735-4758.
[17] Y. Xue, Stable Perturbations of Operators and Related Topics, World Scientific, 2012.
[18] Y. Xue, Stable Perturbation in Banach spaces, J. Aust. Math. Soc., 83, (2007), 1-14.
[19] Y. Xue and G. Chen, Perturbation analysis for the Drazin inverse under stable perturbation in Banach spaces, Missouri J. Math. Sci., 19 (2), (2007), 106-120.
[20] Y. Xue and G. Chen, Some equivalent conditions of stable perturbation of operators in Hilbert spaces, Applied Math. Comput., 147, (2004), 765-772.

[^0]: 2010 Mathematics Subject Classification. Primary 15A09; Secondary 65F20
 Keywords. Moore-Penrose inverse, generalized inverse, Hilbert spaces
 Received: 21 May 2014; Accepted: 13 September 2014
 Communicated by Dragana Cvetković-Ilić
 Reasearch supported by the fund for postdoctoral of China (2015M581688), supported by the Foundation of Xuzhou Institute of Technology(No.XKY2014207)

 Email address: jsdfp@163.com (Fapeng Du)

