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Fractional Optimal Control Problem
for Differential System with Control Constraints

G. M. Bahaa∗a

aDepartment of Mathematics, Faculty of Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi-Arabia

Abstract. In this paper, the fractional optimal control problem for differential system is considered. The
fractional time derivative is considered in Riemann-Liouville sense. Constraints on controls are imposed.
Necessary and sufficient optimality conditions for the fractional Dirichlet and Neumann problems with the
quadratic performance functional are derived. Some examples are analyzed in details.

Introduction

Fractional calculus deals with the generalization of differentiation and integration of non-integer orders.
In recent years, it has played a significant role in physics, chemistry, biology, electronics, and control theory.
Extensive treatment and various applications of the fractional calculus are discussed in (Agrwal 2002;
2004; 2007). It has been demonstrated that Fractional Order Differential Equations (FODEs) model dynamic
systems and processes more accurately than integer order differential equations do, and fractional controllers
perform better than integer order controllers (see, for example, (Jarad et. al. 2010; 2012) and (Mophou 2011a;
2011b) and the papers and references therein).

Various minimization problems associated with integer order optimal control of second order distributed
parameter systems were studied for example in (Lions, 1971). Also they define on spaces of function with
an infinite number of variables are initiated and proved in (Bahaa, 2003; 2005; 2008), (Bahaa & Tharwat 2011;
2012b), (Kotarski & EL-Saify & Bahaa 2002b) and (Bahaa and El-Shatery 2013).

In the area of calculus of variations and optimal control of fractional differential equations little has
been done compared to a differential equations with integer time derivatives. In (Agrwal 2002; 2004; 2007),
Agrawal presented a general formulation and solution scheme for the fractional optimal control problems
involving first and second order operators. The formulation was obtained by means of the fractional
variation principle and the lagrange multiplier technique. In (Mophou 2011a; 2011b), Mophou used the
classical control theory to a fractional diffusion equation involving second order operator (Lapalce operator)
in a bounded domain with and without a state constraints.

In this paper, we extend the previous results. We consider here a different type of equations, namely,
fractional partial differential equations involving second order operators. The existence and uniqueness of
solutions for such equations were proved. Fractional optimal control is characterized by the adjoint problem.
By using this characterization, particular properties of fractional optimal control are proved.
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This paper is organized as follows. In section 1, we introduce some definitions and preliminary results.
In section 2, we formulate the fractional Dirichlet problem. In section 3, we show that our fractional optimal
control problem holds and gives the optimality system for the optimal control. In section 4, we formulate
the fractional Neumann problem. In section 5, the minimization problem is formulated and we state some
illustrated examples. In section 6, we discuss the controllability of the fractional Dirichlet problem.

1. Some Basic Definitions

The object of this section is to give the definition of some fractional integrals and fractional derivatives of
function in the Riemann-Liouville sense.

Let n ∈ N∗ and Ω be a bounded open subset of Rn with a smooth boundary Γ of class C2. For a time T > 0,
we set Q = Ω × (0,T) and Σ = Γ × (0,T).

Definition 1.1. (see [Agrawal, 2002; 2004, Mophou 2011a; 2011b and Ahmad, Ntouyas, 2013]). Let f : R+
→ R be

a continuous function on R+ and β > 0. Then the expression

Iβ+ f (t) =
1

Γ(β)

∫ t

0
(t − s)β−1 f (s)ds, t > 0,

is called the Riemann-Liouville integral of order β.

Definition 1.2. (see [Agrawal, 2002; 2004, Mophou 2011a; 2011b and Ahmad, Ntouyas, 2013]). Let f : R+
→ R.

The Riemann-Liouville fractional derivative of order β of f is defined by:

Dβ
+ f (t) =

1
ΓΓ(n − β)

dn

dtn

∫ t

0
(t − s)n−β−1 f (s)ds, t > 0,

where β ∈ (n − 1,n),n ∈ N.

Definition 1.3. (see [Agrawal, 2002; 2004 and Mophou 2011a; 2011b]). Let f : R+
→ R. The left Caputo fractional

derivative of order β of f is defined by

Dβ
0 f (t) =

1
Γ(n − β)

∫ t

0
(t − s)n−β−1 f (n)(s)ds, t > 0,

where β ∈ (n − 1,n),n ∈ N.
The Caputo fractional derivative is a sort of regularization in the time origin for the Riemann-Liouville fractional

derivative.

Lemma 1.1. (see [Agrawal, 2002; 2004 and Mophou 2011a; 2011b]). Let T > 0,u ∈ Cm([0,T]), p ∈ (m−1,m),m ∈ N
and v ∈ C1([0,T]). Then for t ∈ [0,T], 0 < β ≤ 1 the following properties hold

Dp
+v(t) =

d
dt

I1−p
+ v(t), m = 1,

Dp
+Ip

+v(t) = v(t);

Ip
+Dp

0u(t) = u(t) −
m−1∑
k=0

tk

k!
u(k)(0);

lim
t→0+

Dp
0u(t) = lim

t→0+
Ip
+u(t) = 0.

From now on we set

Dβ f (t) =
1

Γ(1 − β)

∫ T

t
(s − t)−β f ′(s)ds.
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Remark 1.2. (see [Agrawal, 2002; 2004 and Mophou 2011a; 2011b]). −Dβ f (t) is the so-called right fractional Caputo
derivative. It represents the future state of f (t). For more details on the derivative we refer to [Agrawal, 2002; 2004
and Mophou 2011a; 2011b]. Note also that when T = +∞,Dβ f (t) is the Weyl fractional integral of order β of f ′.

Lemma 1.3. (Green’s formula) (see [Agrawal, 2002; 2004, Mophou 2011a; 2011b], Pavlovic, 2009 ). Let 0 < β ≤ 1.
Then for any φ ∈ C∞(Q) we have∫ T

0

∫
Ω

(Dβ
+y(x, t) +Ay(x, t))φ(x, t)dxdt =

∫
Ω

φ(x,T)I1−β
+ y(x,T)dx −

∫
Ω

φ(x, 0)I1−β
+ y(x, 0+)dx

+

∫ T

0

∫
∂Ω

y
∂φ

∂νA
dΓdt −

∫ T

0

∫
∂Ω

∂y
∂νA

φdΓdt +

∫ T

0

∫
Ω

y(x, t)(−Dβφ(x, t) +A∗φ(x, t))dxdt.

whereA is a given operator which is defined by (2.4) below and

∂y
∂νA

=

n∑
i, j=1

ai j
∂y
∂x j

cos(n, x j) on Γ,

cos(n, x j) is the i-th direction cosine of n,n being the normal at Γ exterior to Ω.

We also introduce the space

W(0,T) := {y : y ∈ L2(0,T; H1
0(Ω)),Dβ

+y(t) ∈ L2(0,T; H−1
0 (Ω))}

in which a solution of a differential systems is contained. The spaces considered in this paper are assumed
to be real.

2. Fractional Dirichlet Problem for Differential System

Let us consider the fractional partial differential equations:

Dβ
+y(t) +Ay(t) = f (t), t ∈ [0,T], (2.1)

I1−β
+ y(0+) = y0, x ∈ Ω, (2.2)

y(x, t) = 0, x ∈ Γ, t ∈ (0,T), (2.3)

where 0 < β < 1, y0 ∈ H2(Ω)
⋂

H1
0(Ω), the function f belongs to L2(Q). The fractional integral I1−β

+ and the
derivative Dβ

+ are understand here in the Riemann-Liouville sense, Ω has the same properties as in section 1
and I1−β

+ y(0+) = limt→0+ I1−β
+ y(t). The operator A in the state equation (2.1) is a second order operator given

by

Ay = −

n∑
i, j=1

∂
∂xi

(
ai j(x)

∂y
∂x j

)
+a0(x)y, (2.4)

where ai j, i, j = 1, 2, ...,n, be given function on Ω with the properties

a0(x), ai j(x) ∈ L∞(Ω) (with real values),

a0(x) ≥ α > 0,
n∑

i, j=1

ai j(x)ξiξ j ≥ α(ξ2
1 + ... + ξ2

n), ∀ξ ∈ Rn,

almost everywhere on Ω. The operatorA ∈ L
(
H1

0(Ω),H−1
0 (Ω)

)
.

For this operator we define the bilinear form as follows:
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Definition 2.1. For each t ∈]0,T[, we define a family of bilinear forms π(t; y, φ) on H1
0(Ω) by:

π(t; y, φ) = (Ay, φ)L2(Ω), y, φ ∈ H1
0(Ω), (2.5)

whereA maps H1
0(Ω) onto H−1

0 (Ω) and takes the form (2.4). Then

π(t; y, φ) =
(
Ay, φ

)
L2(Ω)

=
(
−

n∑
i, j=1

∂
∂xi

(
ai j(x)

∂y
∂x j

)
+a0(x)y, φ(x)

)
L2(Ω)

=

∫
Ω

n∑
i, j=1

ai j
∂
∂xi

y(x)
∂
∂x j

φ(x)dx +

∫
Ω

a0(x)y(x)φ(x)dx.

Lemma 2.1. The bilinear form π(t; y, φ) is coercive on H1
0(Ω) that is

π(t; y, y) ≥ λ ||y||2H1
0(Ω), λ > 0. (2.6)

Proof. It is well known that the ellipticity ofA is sufficient for the coerciveness of π(t; y, φ) on H1
0(Ω).

Since

π(t; y, φ) =

∫
Ω

n∑
i, j=1

ai j
∂
∂xi

y(x)
∂
∂x j

φ(x)dx +

∫
Ω

a0(x)y(x)φ(x)dx,

then we get

π(t; y, y) =

∫
Ω

n∑
i, j=1

ai j
∂
∂xi

y(x)
∂
∂x j

y(x)dx +

∫
Ω

a0(x)y(x)y(x)dx

=

n∑
i, j=1

ai j||
∂
∂xi

y(x)||2L2(Ω) + ||y(x)||2L2(Ω)

≥ λ||y||2H1
0(Ω), λ > 0.

Also we assume that ∀y, φ ∈ H1
0(Ω) the function t→ π(t; y, φ) is continuously differentiable in ]0,T[ and the

bilinear form π(t; y, φ) is symmetric,

π(t; y, φ) = π(t;φ, y) ∀y, φ ∈ H1
0(Ω). (2.7)

The equations (2.1) - (2.3) constitute a fractional Dirichlet problem. First by using the Lax-Milgram
lemma, we prove sufficient conditions for the existence of a unique solution of the mixed initial-boundary
value problem (2.1) - (2.3).

Lemma 2.2. (see [Agrawal, 2002; 2004 and Mophou 2011a; 2011b]) (Fractional Green’s formula). Let y be the
solution of system (2.1)-(2.3). Then for any φ ∈ C∞(Q) such that φ(x,T) = 0 in Ω and φ = 0 on Σ, we have∫ T

0

∫
Ω

(Dβ
+y(x, t) +Ay(x, t))φ(x, t)dxdt = −

∫
Ω

φ(x, 0)I1−β
+ y(x, 0+)dx

+

∫ T

0

∫
∂Ω

y
∂φ

∂ν
dΓdt −

∫ T

0

∫
∂Ω

∂y
∂ν
φdΓdt +

∫ T

0

∫
Ω

y(x, t)(−Dβφ(x, t) +A∗φ(x, t))dxdt.

Lemma 2.3. If (2.6) and (2.7) hold, then the problem (2.1)-(2.3) admits a unique solution y ∈ W(0,T).
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Proof. See [Lions, 1971]. From the coerciveness condition (2.6) and using the Lax-Milgram lemma, there
exists a unique element y(t) ∈ H1

0(Ω) such that

(Dβ
+y(t), φ)L2(Q) + π(t; y, φ) = L(φ) for all φ ∈ H1

0(Ω), (2.8)

which equivalent to there exists a unique solution y(t) ∈ H1
0(Ω) for

(Dβ
+y(t), φ)L2(Q) + (Ay(t), φ)L2(Q) = L(φ) for all φ ∈ H1

0(Ω),

i.e. for (
Dβ

+y(t) +Ay(t), φ(x)
)

L2(Q)
= L(φ),

which can be written as∫
Q

(Dβ
+y(t) +Ay(t))φ(x)dxdt = L(φ) for all φ ∈ H1

0(Ω). (2.9)

This know as the variational fractional Dirichlet problem, where L(φ) is a continuous linear form on H1
0(Ω)

and takes the form

L(φ) =

∫
Q

fφ dxdt +

∫
Ω

y0φ(x, 0)dx, f ∈ L2(Q), y0 ∈ L2(Ω). (2.10)

Then equation (2.9) is equivalent to∫
Q

(Dβ
+y(t) +Ay(t))φ(x)dxdt =

∫
Q

fφ dxdt +

∫
Ω

y0φ(x, 0)dx for all φ ∈ H1
0(Ω),

that is, the PDE

Dβ
+y(t) +Ay(t) = f , (2.11)

”tested” against φ(x).
Let us multiply both sides in (2.11) by φ and applying Green’s formula (Lemma 2.2), we have∫

Q
(Dβ

+y +Ay)φdxdt =

∫
Q

fφdxdt,

−

∫
Ω

φ(x, 0)I1−β
+ y(x, 0+)dx +

∫ T

0

∫
∂Ω

y
∂φ

∂ν
dΓdt −

∫ T

0

∫
∂Ω

∂y
∂ν
φdΓdt

+

∫ T

0

∫
Ω

y(x, t)(−Dβφ(x, t) +A∗φ(x, t))dxdt =

∫
Q

fφdxdt

whence comparing with (2.9), (2.10)∫
Ω

φ(x, 0)I1−β
+ y(x, 0+)dx −

∫ T

0

∫
∂Ω

y
∂φ

∂ν
dΓdt =

∫
Ω

y0φ(x, 0)dx.

From this we deduce (2.2) and (2.3).
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3. Optimization Theorem and the Control Problem

For a control u ∈ L2(Q) the state y(u) of the system is given by

Dβ
+y +Ay(u) = u, (x, t) ∈ Q (3.1)

y(u)|Σ = 0, (3.2)

I1−β
+ y(x, 0; u) = y0(x), x ∈ Ω. (3.3)

The observation equation is given by

z(u) = y(u), (3.4)

The cost function J(v) is given by

J(v) =

∫
Q

(y(v) − zd)2dxdt + (Nv, v)L2(Q)

where zd is a given element in L2(Σ) and N ∈ L(L2(Q),L2(Q)) is hermitian positive definite operator:

(Nu,u) ≥ c||u||2L2(Q), c > 0. (3.5)

Control Constraints: We define Uad (set of admissible controls) is closed, convex subset of U = L2(Q).
Control Problem: We want to minimize J over Uad i.e. find u such that

J(u) = inf
v∈Uad

J(v). (3.6)

Under the given considerations we have the following theorem:

Theorem 3.1. The problem (3.6) admits a unique solution given by (3.1)-(3.3) and∫
Q

(p(u) + Nu)(v − u) dxdt ≥ 0, (3.7)

where p(u) is the adjoint state.

Proof. By similar manner as in ([Mophou, 2011a] Proposition 4.1 and Theorem 4.2) and (Lions, 1971), the
control u ∈ Uad is optimal if and only if

J′(u)(v − u) ≥ 0 for all v ∈ Uad

The above condition, when explicitly calculated for this case, gives

(y(u) − zd, y(v) − y(u))L2(Q) + (Nu, v − u)L2(Q) ≥ 0

i.e. ∫
Q

(y(u) − zd)(y(v) − y(u))dxdt + (Nu, v − u)L2(Q) ≥ 0. (3.8)

For the control u ∈ L2(Q) the adjoint state p(u) ∈ L2(Q) is defined by

−Dβp(u) +A∗p(u) = y(u) − zd, in Q, (3.9)

p(u) = 0, on Σ, (3.10)
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p(x,T; u) = 0, in Ω, (3.11)

whereA∗ is the adjoint operator for the operatorA, which given by

A
∗p = −

n∑
i, j=1

∂
∂x j

(
ai j(x)

∂p
∂xi

)
+a0(x)p.

Now, multiplying the equation (3.9) by (y(v) − y(u)) and applying Green’s formula, we obtain∫
Q

(y(u) − zd)(y(v) − y(u))dxdt =

∫
Q

(−Dβp(u) +A∗p(u))(y(v) − y(u)) dxdt

= −

∫
Ω

p(x, 0)I1−β
+ (y(v; x, 0+) − y(u; x, 0+))dx

+

∫
Σ

p(u)(
∂y(v)
∂νA

−
∂y(u)
∂νA

) dΣ

−

∫
Σ

∂p(u)
∂νA

(y(v) − y(u)) dΣ

+

∫
Q

p(u)(Dβ
+ +A)(y(v) − y(u)) dxdt.

Since from (3.1), (3.2) we have

(Dβ
+ +A)(y(v) − y(u)) = v − u, y(u)|Σ = 0, p(u)|Σ = 0.

Then we obtain ∫
Q

(y(u) − zd)(y(v) − y(u))dxdt =

∫
Q

p(u)(v − u)dxdt,

and hence (3.8) is equivalent to ∫
Q

p(u)(v − u) dxdt + (Nu, v − u)L2(Q) ≥ 0

i.e. ∫
Q

(p(u) + Nu)(v − u) dxdt ≥ 0

which completes the proof.

4. Fractional Neumann Problem for Differential System

From (1.5) we can show that the bilinear form (2.5) is coercive in H1(Ω) that is

π(y, y) ≥ c||y||2H1(Ω), c > 0 for all y ∈ H1(Ω). (4.1)

From the above coerciveness condition (4.1) and using the Lax-Milgram lemma we have the following
lemma which define the Neumann problem for the operator A with A ∈ L(H1(Ω),H−1(Ω)) and enables us
to obtain the state of our control problem.

Lemma 4.1. If (4.1) is satisfied then there exists a unique element y ∈ H1(Ω) satisfying Neumann problem

Dβ
+y +Ay = f in Q, (4.2)

∂y
∂νA

= h on Σ, (4.3)

I1−β
+ y(0+) = y0(x), x ∈ Ω, (4.4)
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Proof. From the coerciveness condition (4.1) and using the Lax-Milgram lemma, there exists a unique element
y ∈ H1(Ω) such that∫

Q
y(−Dβψ +A∗ψ)dxdt = M(ψ) for all ψ ∈ H1(Ω). (4.5)

This know as the fractional Neumann problem, where M(ψ) is a continuous linear form on H1(Ω) and takes
the form

M(ψ) =

∫
Q

fψ dxdt +

∫
Ω

y0ψ(x, 0)dx −
∫

Σ

h
∂ψ

∂νA∗
dΣ, (4.6)

f ∈ L2(Q), y0 ∈ L2(Ω), h ∈ H1(Σ).

The equation (4.5) is equivalent to

Dβ
+y +Ay = f on Q. (4.7)

Let us multiply both sides in (4.7) by ψ and applying Green’s formula, we have∫
Q

(Dβ
+y +Ay)ψdxdt =

∫
Q

fψdxdt

−

∫
Ω

ψ(x, 0)I1−β
+ y(x, 0+)dx +

∫ T

0

∫
∂Ω

y
∂ψ

∂ν
dΓdt −

∫ T

0

∫
∂Ω

∂y
∂ν
ψdΓdt

+

∫ T

0

∫
Ω

y(x, t)(−Dβψ(x, t) +A∗ψ(x, t))dxdt =

∫
Q

fψdxdt

whence comparing with (4.5), (4.6)∫
Ω

ψ(x, 0)I1−β
+ y(x, 0+)dx +

∫ T

0

∫
∂Ω
ψ
∂y
∂ν

dΓdt =

∫
Ω

y0ψ(x, 0)dx +

∫ T

0

∫
∂Ω

hψdΓdt.

From this we deduce (4.3) and (4.4).

5. Minimization Theorem and Boundary Control Problem

We consider the space U = L2(Σ) (the space of controls), for every control u ∈ U, the state of the system
y(u) ∈ H1(Ω) is given by the solution of

Dβ
+y(u) +Ay(u) = f in Q, (5.1)

∂y(u)
∂νA

= u on Σ, (5.2)

I1−β
+ y(x, 0; u) = y0(x), x ∈ Ω. (5.3)

For the observation, we consider the following two cases:

(i)

z(u) = y(u) (5.4)

(ii) observation of final state

z(u) = y(x,T; u) (5.5)

Case (i)
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The cost function is given by

J(v) =

∫
Q

(y(v) − zd)2 dxdt + (Nv, v)L2(Σ), zd ∈ L2(Q), (5.6)

where N ∈ L(L2(Σ),L2(Σ)),N is hermitian positive definite

(Nu,u)L2(Σ) ≥ c||u||2L2(Σ), c > 0. (5.7)

Control Constraints: We define Uad( set of admissible controls) is closed, convex subset of U = L2(Σ). Control
Problem: We wish to find

inf
v∈Uad

J(v). (5.8)

Under the given considerations we have the following theorem.

Theorem 5.1. Assume that (5.7) holds and the cost function being given by (5.6). The optimal control u is characterized
by (5.1), (5.2), and (5.3) together with

−Dβp(u) +A∗p(u) = y(u) − zd in Q, (5.9)

∂p(u)
∂νA∗

= 0 on Σ, (5.10)

p(x,T; u) = 0, x ∈ Ω, (5.11)

and the optimality condition is∫
Σ

(p(u) + Nu)(v − u)dΣ ≥ 0 ∀ v ∈ Uad (5.12)

where p(u) is the adjoint state.

Proof. By similar manner as in ([Mophou, 2011a] Proposition 4.1 and Theorem 4.2) and (Lions, 1971), the
control u ∈ Uad is optimal if and only if

J′(u)(v − u) ≥ 0 ∀v ∈ Uad (5.13)

that is(
y(u) − zd, y(v) − y(u)

)
L2(Q)

+ (Nu, v − u)U ≥ 0. (5.14)

The adjoint state is given by the solution of the adjoint Neumann problem (5.9), (5.10) and (5.11). Now,
multiplying the equation in (5.9) by y(v) − y(u) and applying Green’s formula, with taking into account the
conditions in (5.1), (5.2), we obtain∫

Q
(y(u) − zd)(y(v) − y(u)) dxdt =

∫
Q

(−Dβp(u) +A∗p(u))(y(v) − y(u)) dxdt

= −

∫
Ω

p(x, 0)I1−β
+ (y(v; x, 0+)− y(u; x, 0+))dx +

∫
Σ

p(u)(
∂
∂νA

y(v)−
∂
∂νA

y(u)) dΣ−

∫
Σ

∂
∂νA∗

p(u)(y(v)− y(u)) dΣ

+

∫
Q

p(u)((Dβ
+ +A)(y(v) − y(u)) dxdt =

∫
Σ

p(u)(v − u) dΣ. (5.15)

Hence we substitute from (5.15 ) in (5.14), to get∫
Σ

p(u)(v − u) dΣ + (Nu, v − u)L2(Σ) ≥ 0

i.e. ∫
Σ

(p(u) + Nu)(v − u)dΣ ≥ 0 ∀ v ∈ Uad

which completes the proof.
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Example 5.1. In the case of no constraints on the control (Uad =U). Then (5.12) reduces to

p + Nu = 0 on Σ.

The optimal control is obtained by the simultaneous solution of the following system of fractional partial differential
equations:

Dβ
+y +Ay = f , −Dβp +A∗p = y − zd in Q,

∂y
∂νA
|Σ + N−1p|Σ = 0,

∂p
∂νA∗

= 0 on Σ,

I1−β
+ y(x, 0) = y0(x), p(x,T) = 0 x ∈ Ω,

further
u = −N−1(P|Σ).

Example 5.2. If we take

Uad =
{
u|u ∈ L2(Σ),u ≥ 0 almost everywhere on Σ

}
.

The optimal control is obtained by the solution of the fractional problem

Dβ
+y +Ay = f , −Dβp +A∗p = y − zd in Q,

∂y
∂νA

≥ 0,
∂p
∂ν∗
A

= 0 on Σ,

p + N
∂y
∂νA

≥ 0,
∂y
∂νA

[p + N
∂y
∂νA

] = 0 on Σ,

I1−β
+ y(x, 0) = y0(x), p(x,T) = 0 x ∈ Ω,

hence

u =
∂y
∂νA
|Σ.

Case (ii) observation of final state
z(u) = y(x,T; u).

The cost function is given by

J(v) =

∫
Ω

(y(x,T; v) − zd)2 dx + (Nv, v)L2(Σ), zd ∈ L2(Ω).

The adjoint state is defined by
−Dβp(u) +A∗p(u) = 0 in Q,

∂p(u)
∂νA∗

= 0 on Σ,

p(x,T; u) = y(x,T; u) − zd(x), x ∈ Ω,

and the optimality condition is∫
Σ

(p + Nu)(v − u)dΣ ≥ 0 ∀ v ∈ Uad, (5.16)

where p(u) is the adjoint state.
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Example 5.3. In the case of no constraints on the control (Uad =U). Then (5.16) reduces to

p + Nu = 0 on Σ.

The optimal control is obtained by the simultaneous solution of the following system of fractional partial differential
equations:

Dβ
+y +Ay = f , −Dβp +A∗p = 0 in Q,

∂y
∂νA
|Σ + N−1p|Σ = 0,

∂p
∂ν∗
A

= 0 on Σ,

I1−β
+ y(x, 0) = y0(x), p(x,T) = y(x,T; u) − zd(x), x ∈ Ω,

further
u = −N−1(P|Σ).

Example 5.4. If we take

Uad =
{
u|u ∈ L2(Σ),u ≥ 0 almost everywhere on Σ

}
.

Then (5.16) is equivalent to

u ≥ 0, p(u) + Nu ≥ 0, u(p(u) + Nu) = 0 on Σ.

6. Controllability

This section is devoted to study the controllability of the fractional differential system (3.1),(3.2), and (3.3).
We begin by the following definition.

Definition 6.1 (Lions, 1971). The system whose state is defined by (3.1),(3.2), and (3.3) is said to be controllable
if as u is varied without any constraints, the observation Cy(u) generates a dense (affine) subspace of the space of
observations.

Let us consider the the case of section 3. Hence for a control u ∈ L2(Q) the state of the system y(u) is given by

Dβ
+y(u) +Ay(u) = u, (x, t) ∈ Q (6.1)

y(u)|Σ = 0, (6.2)

I1−β
+ y(x, 0; u) = y0(x), x ∈ Ω. (6.3)

The observation y(y) is in L2(Q) and given by

z(u) = y(u). (6.4)

As u ranges over L2(Q), y(u) generates a dense (affine) subspace of L2(Q); hence the system is controllable.
To see this, let us first remark that by translation we may always reduce the problem to the case where

y0(x) = 0.
Let ψ ∈ L2(Q) be the orthogonal to the subspace generated by y(u);∫

Q
y(u)ψdxdt = 0 ∀u. (6.5)

We consider ξ as the solution of

−Dβξ +A∗ξ = ψ, (x, t) ∈ Q (6.6)
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ξ|Σ = 0, (6.7)

ξ(x,T) = 0, x ∈ Ω. (6.8)

Then∫
Q
ψy(u)dxdt =

∫
Q

(−Dβξ +A∗ξ)y(u)dxdt

= −

∫
Ω

ξ(x, 0)I1−β
+ y(u; x, 0+)dx +

∫
Σ

ξ
∂y(u)
∂νA

dΣ

−

∫
Σ

∂ξ
∂νA

y(u) dΣ +

∫
Q
ξ(Dβ

+ +A)y(u) dxdt

=

∫
Q
ξudxdt = 0 ∀u;

hence ξ = 0 and hence ψ = 0.

Remark 6.1. We can also study by a similar manner the controllability of the system whose state is given by (5.1),
(5.2), and (5.3).

Remark 6.2. If we take β = 1 in the previews sections we obtain the classical results in the optimal control with integer
derivatives.

Conclusions

An analytical scheme for fractional optimal control of differential systems is considered. The fractional
derivatives was defined in the Riemann-Liouville sense. The analytical results were given in terms of
Euler-Lagrange equations for the fractional optimal control problems. The formulation presented and
the resulting equations are very similar to those for classical optimal control problems. The optimization
problem presented in this paper constitutes a generalization of the optimal control problem of parabolic
systems with Dirichlet and Neumann boundary conditions considered in (Lions, 1971) to fractional optimal
control problem for second order systems. Also the main result of the paper contains necessary and sufficient
conditions of optimality for second order systems that give characterization of optimal control (Theorems
3.1 and 5.1).

Also it is evident that by modifying:
• the boundary conditions, (Dirichlet, Neumann, mixed, etc.),
• the nature of the control (distributed, boundary, etc.),
• the nature of the observation (distributed, boundary, etc.),
• the initial differential system,
• the number of variables (finite number of variables, infinite number of variables systems, etc.),
• the type of equation (elliptic, parabolic, hyperbolic, etc.),
• the order of equation (second order, Schrödinger, infinite order, etc.),
• the type of control (optimal control problem, time-optimal control problem, etc.),

an many of variations on the above problem are possible to study with the help of (Lions, 1971) and
Dubovitskii-Milyutin formalisms (Bahaa, 2003; 2005; 2007; 2008; 2012a,b,; 2013), (Bahaa and Tharwat, 2011;
2012a,b), (Bahaa and El-Shatery 2013), (Bahaa and El-Gohany 2013a, 2013b). Those problems need further
investigations and form tasks for future research. These ideas mentioned above will be developed in
forthcoming papers.
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