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Decomposition of the Laplacian and Pluriharmonic Bloch Functions

Ern Gun Kwona

aDepartment of Mathematics-Education, Andong National University, Andong 760-749 Korea

Abstract. We decompose the invariant Laplacian of the deleted unit complex ball by two directional
Laplacians, tangential one and radial one. We give a characterization of pluriharmonic Bloch function in
terms of the growth of these Laplacians.

1. Preliminaries

Let B = Bn denote the open unit ball of Cn and S denote the boundary of B : S = {z ∈ Cn : |z| = 1}.
The group of all automorphisms, that is, one to one biholomorphic onto self-maps, of B is denoted by

M. It consists of all maps of the form Uϕa, where U is a unitary operator of Cn and ϕa is defined by

ϕa(z) =

 a−Paz−
√

1−|a|2Qaz
1−<z,a> , if a , 0

0, if a = 0.

Here < , > is the Hermitian inner product of Cn: < z, w >=
∑n

j=1 z jw̄ j, z, w ∈ Cn, Paz is the projection of
Cn onto the subspace generated by B :

Paz =
< z, a >
< a, a >

a, if a , 0 and P0z = 0,

and Qa(z) = z − Paz.
∆ denotes the complex Laplacian of Cn : ∆ = 4

∑n
j=1 D jD̄ j, where D j = ∂

∂z j
and D̄ j = ∂

∂z̄ j
, j = 1, 2, . . . ,n. ∆̃

denotes theM-invariant Laplacian defined for f ∈ C2(B) and a ∈ B by

∆̃ f (a) = ∆( f ◦ ϕa)(0).

A C2(B) function f is said to be M-harmonic if ∆̃ f = 0 in B, pluriharmonic if D jD̄k f = 0 in B for all
j, k = 1, ..,n.

Compared with the Laplace operator ∆, the Laplace-Beltrami operator is, in a sense, more convenient
in descriving properties (of functions) related to the geometric structure of the domain. Accompanying
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the reason, M-harmonic function theory has been progressively developing recent years. It gives rise to
interesting and meaningful results not only in the field of function theory but also in the field of potential
theory and operator theory etc. See [1 ∼ 20] for some of the recent developments of this vein on B.

For a ∈ B, let fa be defined by fa(λ) = f (λa), λ ∈ B1. Then it is straightforward and known that

∆̃ f (a) = (1 − r2)
{
∆ f (a) − ∆ fa(1)

}
(1.1)

for f ∈ C2(B) (see for example [22, 4.1.3]). Concerning (1.1), W. Rudin (in [22, 19.3.16]) asked why ∆̃ is a
difference of two ordinary Laplacians. We, in this note, give a viewpoint of (1.1) in connection with the
question.

We refer to [21] and [22] for undefined terminologies and notations.

2. Decomposition of ∆̃

For f ∈ C2(B) and z = rζ ∈ B with 0 < r < 1, ζ ∈ S, the complex radial Laplacian of f , denoted by ∆rad f (z),
is defined to be the Laplacian of the function λ → f (z + λζ) at the origin of C (see [22, 17.3.2]). And the
tangential Laplacian of f , denoted by ∆tan f (z), is defined to be ∆tan f (z) = ∆ f (z) − ∆rad f (z). Then ∆ can be
decomposed into the complex tangential Laplacian and the complex radial Laplacian as

∆ = ∆tan + ∆rad.

We have a similar decomposition for ∆̃ as the following.

Theorem 2.1. For f ∈ C2(B),

∆̃ f (z) = (1 − |z|2)∆tan f (z) + (1 − |z|2)2∆rad f (z), z ∈ B − {0}. (2.1)

Proof. Let a = rζ, 0 < r < 1, ζ = (ζ1, ..., ζn) ∈ S and Let F(λ) = f (a + λζ), λ ∈ B1. Then calculating ∆F(0) via
chain rule gives the identity

∆rad f (a) = 4
n∑

j,k=1

ζkζ̄ jDkD̄ j f (a) (2.2)

and from the fact ∆tan = ∆ − ∆rad follows

∆tan f (a) = 4
n∑

j,k=1

(δk, j − ζkζ̄ j)DkD̄ j f (a), (2.3)

where δk, j = 1 if k = j and δk, j = 0 if k , j.
On the other hand, it is straightforward and known [22, 4.1.3]) that

∆̃ f (a) = 4(1 − |a|2)
n∑

i, j=1

(δi, j − āia j)(D̄iD j f )(a) (2.4)

for f ∈ C2(B) and a = (a1, a2, ..., an) ∈ B.
Comparing (2.2), (2.3), with (2.4), it is simple to check that

∆̃ f (a) = 4(1 − |a|2)
n∑

j,k=1

(δk, j − ζkζ̄ j + ζkζ̄ j − |a|2ζkζ̄ j)DkD̄ j f (a)

=4(1 − |a|2)
n∑

j,k=1

(δk, j − ζkζ̄ j)DkD̄ j f (a) + 4(1 − |a|2)2
n∑

j,k=1

ζkζ̄ jDkD̄ j f (a)

=(1 − |a|2)∆tan f (a) + (1 − |a|2)2∆rad f (a).
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It is known that f is pluriharmonic in B if and only if ∆ f = 0 = ∆̃ f in B [22, 4.4.9]. Since a C2(B) function
f satisfying ∆ f = 0 = ∆̃ f in B − {0} also satisfies ∆ f = 0 = ∆̃ f at 0, we have

Corollary 2.2. A C2(B) function f is pluriharmonic in B if and only if ∆tan f = 0 = ∆rad f in B − {0}.

Remark 2.3. (1). Straightforward calculation shows |a|2∆rad f (a) = ∆ fa(1), so that

∆̃ f (a) =(1 − |a|2)∆tan f (a) + (1 − |a|2)2∆rad f (a)

=(1 − |a|2)
{
∆tan f (a) + ∆rad f (a) − |a|2∆rad f (a)

}
=(1 − |a|2)

{
∆ f (a) − ∆ fa(1)

}
,

which means the representations (1.1) and (2.1) have same nature. We stress here that the equation (2.1) is a natural
and geometrical expression of ∆̃ in the sense that ∆̃ can be decomposed into two (orthogonal) directional Laplacians
with the growth properly controlled (by powers of 1 − r2):

∆̃ = (1 − r2)∆tan + (1 − r2)2∆rad in B − {0}. (2.5)

This observation may give an answer to the question of Rudin.
(2). If n = 1, then ∆tan = 0 and ∆rad = ∆ so that ∆ can be expressed as

∆ =
∆̃

(1 − r2)2

as is well-known, and is n = 1 case of

∆ =
∆̃

1 − r2 + r2∆rad =
∆̃

(1 − r2)2 +
r2

1 − r2 ∆tan

which is equivalent to (2.5).
(3) If f ∈ C2(B) and a = rζ, 0 ≤ r < 1, ζ ∈ S, then the Taylor expansion gives

∆rad f (a) = lim
ρ→0

4
ρ2

∫ 2π

0

{
f (a + ρeiθζ) − f (a)

} dθ
2π
.

From this we see that ∆rad commutes with the action of the unitary group. Since ∆ commutes with the action of the
unitary group, we see that ∆,∆rad,∆tan, ∆̃ all commutes with the action of the unitary group. On the other hand, if f
is radial then

∆rad f =
∂ f 2

∂2r
+

1
r
∂ f
∂r

and ∆tan f =
2(n − 1)

r
∂ f
∂r
.

3. Pluriharmonic Bloch Function

The “properly controlled growth” in Remark 2.3-(1) concerned with the growth principle of “twice as
well (regular) in the complex tangential direction”. We check this for Bloch functions in this section. We let
D and ∇ denote respectively the complex gradient of Cn and the real gradient of Cn identified with R2n :

D = (D1,D2, ..,Dn), D̄ = (D̄1, D̄2, .., D̄n),

∇ =

(
∂
∂x1

,
∂
∂y1

, ..,
∂
∂xn

,
∂
∂yn

)
, z j = x j + iy j, j = 1, 2, ..,n.

M-invariant form of ∇ is defined as

∇̃ f (a) = ∇ ( f ◦ ϕa)(0), a ∈ B,

for f ∈ C1(B). Let R denote the radial derivative : R =
∑n

j=1 z jD j, and let R̄ =
∑n

j=1 z̄ jD̄ j. Let Tk, j be usual
tangential derivatives Tk, j = z̄kD j − z̄ jDk and T̄k, j = zkD̄ j − z jD̄k.
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Theorem 3.1. Let f be pluriharmonic in B = Bn with n ≥ 2 and let B′ = B − {0}. Then the following are mutually
equivalent.

(a) f is a Bloch function, which means by definition sup
z∈B

∣∣∣∣∇̃ f (z)
∣∣∣∣ < ∞

(b) sup
z∈B

∆̃
∣∣∣ f (z)

∣∣∣2 < ∞
(c) sup

z∈B
(1 − |z|2)2

(
|R f (z)|2 + |R̄ f (z)|2

)
< ∞

(d) sup
z∈B′

(1 − |z|2)2∆rad| f (z)|2 < ∞

(e) sup
z∈B′

(1 − |z|2)
∑
k< j

(∣∣∣Tk, j f
∣∣∣2 +

∣∣∣T̄k, j f
∣∣∣2) (z) < ∞

( f ) sup
z∈B′

(1 − |z|2)∆tan| f (z)|2 < ∞

Proof. That (a) ⇐⇒ (b) follows from elementary equality

4|∇̃ f |2 =
1
2

∆̃| f |2 − Re
(

f̄ ∆̃ f
)

withM-harmonicity of f . That (b) ⇐⇒ (c) follows from [10, Theorem 1]. Simple calculation shows for
r , 0 that

(∆rad| f |2)(rζ) =4
n∑

k, j=1

ζkζ̄ j

(
Dk f D̄ j f̄ + Dk f̄ D̄ j f + f DkD̄ j f̄ + f̄ DkD̄ j f

)
(rζ)

=
4
r2 (|R f |2 + |R̄ f |2)(rζ) + ( f∆rad f̄ + f̄∆rad f )(rζ)

which equals

4
r2 (|R f |2 + |R̄ f |2)(rζ) (3.1)

if f is pluriharmonic. Noting that |R f (z)| ≤ |z||D f | and |R̄ f (z)| ≤ |z||D̄ f |, (3.1) is uniformly bounded in a
compact neighborhood of 0 in B, so that (c) ⇐⇒ (d) follows. When f is pluriharmonic, another simple
calculation shows for z , 0 that

∆tan| f |2(z) =∆| f |2(z) − ∆rad| f |2(z)

=4
(
|D f |2 + |D̄ f |2 −

1
|z|2
|R f |2 −

1
|z|2
|R̄ f |2

)
(z)

=
4
|z|2

∑
k< j

(∣∣∣Tk, j f
∣∣∣2 +

∣∣∣T̄k, j f
∣∣∣2) (z).

(3.2)

Noting that the last quantity of (3.2) is uniformly bounded in a compact neighborhood of 0 in B, we have

sup
z∈B′

(1 − |z|2)∆tan| f (z)|2 < ∞

if and only if

sup
z∈B′

(1 − |z|2)
∑
k< j

(∣∣∣Tk, j f
∣∣∣2 +

∣∣∣T̄k, j f
∣∣∣2) (z) < ∞,
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that is, (e) ⇐⇒ ( f ).
Since

|z|2∆̃
∣∣∣ f (z)

∣∣∣2
=4(1 − |z|2)2

(
|R f |2 + |R̄ f |2

)
(z) + 4(1 − |z|2)

(∣∣∣Tk, j f
∣∣∣2 +

∣∣∣T̄k, j f
∣∣∣2) (z),

that (b) =⇒ (e) is obvious.
We are to prove (e) =⇒ (c). Suppose f is pluriharmonic satisfying (e) . Fix z ∈ B′ for a moment. There

is, say j such that z j , 0. Take ζ having j-th coordinate z̄k√
|z j |2+|zk |

2
and k-th coordinate −z̄ j

√
|z j |2+|zk |

2
and other

coordinates 0. Then ζ ∈ ∂B with < z, ζ >= 0. Now let

F(λ) = T̄k, j f (z + λζ), λ ∈ C, |λ|2 < 1 − |z|2 (3.3)

for simplicity. Then by the hypothesis (e)

|F(λ)| ≤ C
(
1 − |z|2 − |λ|2

)−1/2
.

Straightforward differentiation with plurisubharmonicity of f shows that dF/dλ̄ = 0, so that F is holomor-
phic in |λ|2 < 1 − |z|2. Applying the Cauchy formula, we have

F′(0) =
1

2πi

∫
|λ|2= 1−|z|2

2

F(λ)
λ2 dλ,

whence

|F′(0)| ≤ C(1 − |z|2)−1.

But in our case of (3.3)

Tk, jT̄k, j f (z) =
√
|z j|

2 + |zk|
2F′(0).

Hence ∣∣∣Tk, jT̄k, j f (z)
∣∣∣ ≤ C(1 − |z|2)−1.

Since f is pluriharmonic, then it follows by a direct computation that

2(n − 1)R f = −
∑
i, j

T̄i jTi j f .

Whence we have
(1 − |z|2)|R f (z)| ≤ C < ∞.

By a similar argument we have

(1 − |z|2)|R̄ f (z)| = (1 − |z|2)|R f̄ (z)| ≤ C < ∞.

We therefore have (c).
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