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Abstract. In the present paper, we obtain some new results by applying well-known Jack’s lemma. More-
over, the second-order differential subordinations associated with convex functions are also considered.

1. Introduction

Let E = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C and H be the class of analytic
functions in E.

For analytic functions f , 1 ∈ H , we say that f is subordinate to 1 in E, written f ≺ 1 or f (z) ≺ 1(z) if and
only if there exists an analytic functions w ∈ H such that |w(z)| ≤ |z| and f (z) = 1(w(z)) for z ∈ E. Therefore
we note that f ≺ 1 in E implies that f (E) ⊂ 1(E). Furthermore, if 1 is univalent in E, then the subordination
principle [1] says that

f ≺ 1 if and only if f (0) = 1(0) and f (|z| < r) ⊂ 1(|z| < r) for all r ∈ (0, 1].

For a positive integer p, we denote byA(p) the class of functions of the form

f (z) = zp +

∞∑
n=p+1

anzn,

which are analytic inE andA(1) ≡ A. The subclass ofA consisting of convex functions of orderα (0 ≤ α < 1)
is denoted byK (α). An analytic characterization ofK (α) is given by

K (α) :=
{

f ∈ A : R
{

1 +
z f ′′(z)
f ′(z)

}
> α (0 ≤ α < 1; z ∈ E)

}
.

In this paper, we obtain some interesting properties of certain analytic functions by using Fukui and
Sakaguchi’s [2] results, which is a generalization of well-known Jack’s lemma [3]. Furthermore, we improve
a result obtained by Miller and Mocanu [5] in connection with the second-order differential subordination.
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2. Main Results

To prove the main results, we need the following lemma due to Fukui and Sakaguchi [2].

Lemma 2.1. (Fukui and Sakaguchi [2]) Let w ∈ A(p). If |w(z)| attains its maximum value on the circle
|z| = r < 1 at a point z = z0, then we have

z0w′(z0)
w(z0)

= k ≥ p,

where k is a real number.

Applying Lemma 2.1 (see, also [3] and [2]), we will obtain some results.

Theorem 2.2. Let α ∈ C and p ∈N with R {α} ≥ −p. And let w ∈ A(p). Suppose that

|αw(z) + zw′(z)| < R {α} + p, z ∈ E.

Then we have

|w(z)| < 1, z ∈ E.

Proof. If there exists a point z0 in E such that

|w(z)| < 1 for |z| < |z0|

and

|w(z0)| = 1,

then from Lemma 2.1, we have

z0w′(z0)
w(z0)

= k ≥ p.

Then it follows that

|αw(z0) + z0w′(z0)| = |w(z0)|
∣∣∣∣∣α +

z0w′(z0)
w(z0)

∣∣∣∣∣
= |α + k| ≥ R {α} + p.

It contradicts hypothesis and therefore it completes the proof.

Corollary 2.3. (Miller [4]) Let w(z) be analytic in E with w(0) = 0 and suppose that∣∣∣∣∣12w(z) + zw′(z)
∣∣∣∣∣ < 1, z ∈ E.

Then we have

|w(z)| < 1, z ∈ E.

Theorem 2.4. Let w ∈ A(p) and suppose that∣∣∣w(z)2 + w(z) + zw′(z)
∣∣∣ < p, z ∈ E.

Then we have

|w(z)| < 1, z ∈ E.
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Proof. If there exists a point z0 ∈ E such that

|w(z)| < 1 for |z| < |z0|

and

|w(z0)| = 1.

If we take w(z0) = eiθ, where θ is a real number, then from Lemma 1, we have

z0w′(z0)
w(z0)

= k ≥ p.

Let us put

u(z) = w(z)e−iθ.

Then it follows that |u(z0)| = |w(z0)| and |u(z)| = |w(z)|. Therefore, we have

z0u′(z0)
u(z0)

= k ≥ p.

Then it follows that

w(z)2 + w(z) + zw′(z) = u(z)2ei2θ + u(z)eiθ + zu′(z)eiθ

=u(z)eiθ

(
u(z)eiθ + 1 +

zu′(z)
u(z)

)
and so, we have∣∣∣w(z0)2 + w(z0) + z0w′(z0)

∣∣∣
=

∣∣∣u(z0)eiθ
∣∣∣ ∣∣∣∣∣u(z0)eiθ + 1 +

z0u′(z0)
u(z0)

∣∣∣∣∣
=

∣∣∣eiθ + 1 + k
∣∣∣ ≥ |1 + k| −

∣∣∣eiθ
∣∣∣

≥1 + p − |w(z0)| = p.

This contradicts hypothesis of Theorem 2.4 and therefore, it completes the proof.

Corollary 2.5. (Miller [4]) Let w(z) be analytic in E with w(0) = 0 and suppose that∣∣∣w(z)2 + w(z) + zw′(z)
∣∣∣ < 1, z ∈ E.

Then we have

|w(z)| < 1, z ∈ E.

Applying the same method as in the proof of Theorem 2.4, we have the following theorems.

Theorem 2.6. Let w ∈ A(p) and suppose that∣∣∣w(z)2 + w(z) + zw′(z)
∣∣∣ < R

∣∣∣R − 1 − p
∣∣∣ , z ∈ E,

where 0 < R and R , 1 + p. Then we have

|w(z)| < R, z ∈ E.
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Theorem 2.7. Let w ∈ A(p) and suppose that

|w(z)| e|zw′(z)| < ep, z ∈ E.

Then we have

|w(z)| < 1, z ∈ E.

Corollary 2.8. (Miller [4]) Let w(z) be analytic in E with w(0) = 0. Then

|w(z)| e|zw′(z)| < 1

implies that

|w(z)| < 1, z ∈ E.

Theorem 2.9. Let h ∈ K (α). Suppose that B(z) is analytic in E with R {B(z)} ≥ A(1 − α), where A ≥ 0. If q ∈ A,
then

Az2q′′(z) + B(z)zq′(z) + q(z) ≺ h(z), z ∈ E

implies that

q(z) ≺ h(z), z ∈ E.

Proof. Assume that q ⊀ h. Then there exist points z0 ∈ E and ζ0 ∈ ∂E, and m ≥ 1 such that

q(z0) = h(ζ0),

z0q′(z0) = mζ0h′(ζ0) (1)

and

R

{
1 +

z0q′′(z0)
q′(z0)

}
≥ mR

{
1 +

ζ0h′′(ζ0)
h′(ζ0)

}
. (2)

Since h ∈ K (α), we have

R

{
1 +

ζ0h′′(ζ0)
h′(ζ0)

}
≥ α, for |ζ0| = 1, (3)

and therefore, from (1), (2) and (3), we obtain

R

z2
0q′′(z0)

ζ0h′(ζ0)

 ≥ m(mα − 1). (4)

From (4), we have

R

Az2
0q′′(z0) + B(z0)z0q′(z0) + q(z0) − h(ζ0)

ζ0h′(ζ0)


≥ m(A(mα − 1) +R {B(z0)})
≥ m(m − 1)Aα ≥ 0.

(5)

Using (5), we have

Az2
0q′′(z0) + B(z0)z0q′(z0) + q(z0) = h(ζ0) + λζ0h′(ζ0),

where R(λ) ≥ 0. Since ζ0h′(ζ0) is the outward normal to the boundary of the convex domain h(E) at h(ζ0),
we obtain

Az2q′′(z) + B(z)zq′(z) + q(z) ⊀ h(z) (z ∈ E),

which contradicts to our hypothesis. This completes the proof of theorem.
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Corollary 2.10. (Miller and Mocanu [7]) Let h(z) be convex in E and let A ≥ 0. Suppose that B(z) is analytic
in E with R {B(z)} ≥ A. If q(z) is analytic in E and q(0) = h(0) = 0, then the condition

Az2q′′(z) + B(z)zq′(z) + q(z) ≺ h(z), z ∈ E

implies that

q(z) ≺ h(z), z ∈ E.

Theorem 2.11. Let A ≥ 0 and let B(z) be analytic in E with R {B(z)} ≥ −A in E. If q ∈ A(p) and∣∣∣Az2q′′(z) + B(z)zq′(z) + (1 − B(z))q(z)
∣∣∣ < 1 + A(p − 1)2, z ∈ E, (6)

then we have

q(z) ≺ zp, z ∈ E.

Proof. The left hand side of (6) has a zero of order p at z = 0 and so, applying the Schwarz’s lemma, we have∣∣∣Az2q′′(z) + B(z)zq′(z) + (1 − B(z))q(z)
∣∣∣ ≤ (1 + A(p − 1)2)|z|p.

If there exists a point z0 ∈ E such that∣∣∣q(z)
∣∣∣ < |z0|

p for |z| < |z0|

and

|q(z0)| = |z0|
p

as the Fig. 1, then from Lemma 2.1, we have

z0q′(z0)
q(z0)

= k ≥ p.

-

6

O

i

1−1

−i

−|z0|
p

|z0|
p

q(z0)

q(|z| ≤ |z0|)
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Fig. 1
Then the function w(z) = zp takes the following equalities

z0w′(z0)
w(z0)

= p
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and

R

{
1 +

z0w′′(z0)
w′(z0)

}
= p.

On the other hand, we suppose that the image curve of the circle |z| = |z0|
p under the mapping W(z) = q(z)

comes in touch at the point W = q(z0) on the circle |z| = |z0|
p. Therefore, from Lemma 2.1, we have

z0q′(z0)
q(z0)

= k ≥ p

and from the geometric property of analytic function and Miller and Mocanu [5, p. 158] (see, also [6, p.
201]),

R

{
1 +

z0p′′(z0)
p′(z0)

}
≥ k ≥ p.

Then it follows that∣∣∣Az2
0q′′(z0) + B(z0)z0q′(z0) + (1 − B(z0))q(z0)

∣∣∣
=

∣∣∣q(z0)
∣∣∣ ∣∣∣∣∣Az0q′′(z0)

q′(z0)
z0q′(z0)

q(z0)
+ B(z0)

z0q′(z0)
q(z0)

+ (1 − B(z0))
∣∣∣∣∣

=
∣∣∣q(z0)

∣∣∣ ∣∣∣∣∣Az0q′′(z0)
q′(z0)

k + B(z0)k + (1 − B(z0))
∣∣∣∣∣

≥

∣∣∣q(z0)
∣∣∣ (R{

A
(
1 +

z0q′′(z0)
q′(z0)

)
k − Ak + B(z0)k + 1 − B(z0)

})
≥

∣∣∣q(z0)
∣∣∣ (Ak2

− Ak + 1 + (k − 1)RB(z0)
)

≥

∣∣∣q(z0)
∣∣∣ ∣∣∣1 + Ak2

− Ak − (k − 1)A
∣∣∣

= |z0|
p
{
1 + A(k − 1)2

}
≥ |z0|

p
{
1 + A(p − 1)2

}
.

This contradicts hypothesis and therefore, it completes the proof.
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