Some Subordination and Superordination Results Associated with Generalized Srivastava-Attiya Operator

A. A. Attiya ${ }^{\text {a }}$, M. F. Yassen ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura 35516, Egypt Current address: Department of Mathematics, Faculty of Science, University of Hail, Hail, Saudi Arabia
${ }^{b}$ Department of Mathematics, Faculty of Science, Damietta University, Damietta El-Gedida, Egypt Current address: Department of Mathematics, Faculty of Sciences and Humanities Aflaj, Prince Sattam bin Abdulaziz University, Kingdom of Saudi Arabia

Abstract

By using the generalized Srivastava-Attiya operator we give some results of differential subordination and superordination of analytic functions. Some applications and examples are also obtained.

1. Introduction

Let $A(p)$ denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p} z^{k+p} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. Also, let $A=A(1)$.
Moreover, we denote by $\mathcal{H}[a, n]$, the class of analytic functions in \mathbb{U} in the form

$$
f(z)=a+\sum_{k=n}^{\infty} a_{k} z^{k} \quad(a \in \mathbb{C} ; n \in \mathbb{N}=\{1,2, \cdots\})
$$

Furthermore, Let \mathbb{Q} be the set of analytic functions $q(z)$ and univalent on $\overline{\mathbb{U}} \backslash E(q)$, where

$$
E(q)=\left\{\zeta \in \partial \mathbb{U}: \lim _{z \rightarrow \zeta} q(z)=\infty\right\},
$$

is such that $\min q^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial \mathbb{U} \backslash E(q)$.
The general Hurwitz-Lerch Zeta function $\Phi(z, s, b)$ defined by (cf., eg., [24, P. 121 et seq.])

[^0]\[

$$
\begin{equation*}
\Phi(z, s, b)=\sum_{k=0}^{\infty} \frac{z^{k}}{(k+b)^{s}} \tag{1.2}
\end{equation*}
$$

\]

$\left(b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}, \mathbb{Z}_{0}^{-}=\mathbb{Z}^{-} \cup\{0\}=\{0,-1,-2, \ldots\}, s \in \mathbb{C}\right.$ when $z \in \mathbb{U}, \operatorname{Re}(s)>1$ when $\left.|z|=1\right)$
Several properties of $\Phi(z, s, b)$ can be found in many papers, for example Attiya and Hakami [2], Attiya et el.[3], Choi et al. [6], Ferreira and López [11], Gupta et al. [12] and Luo and Srivastava [18]. See, also Kutbi and Attiya ([14], [15]), Srivastava and Attiya [23], Srivastava and Gaboury [25], Srivastava et al. [26], Srivastava et al. [27], and Owa and Attiya [21].

We define the function $G_{s, b, t}$ by

$$
\begin{align*}
& G_{s, b, t}=1+(t+b)^{s} z \Phi(z, s, 1+t+b) \tag{1.3}\\
& \left(z \in \mathbb{U} ; b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; s \in \mathbb{C} ; t \in \mathbb{R}\right)
\end{align*}
$$

Attiya and Alhakami [2], defined the operator $\mathcal{J}_{s, b}^{t}(f)$ by

$$
\begin{equation*}
\mathcal{J}_{s, b}^{t}(f): A(p) \longrightarrow A(p), \tag{1.4}
\end{equation*}
$$

and

$$
\begin{align*}
& \mathcal{J}_{s, b}^{t}(f)(z)=z^{p} G_{s, b, t} * f(z) \tag{1.5}\\
& \left(z \in \mathbb{U} ; f \in A(p) ; b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; s \in \mathbb{C} ; t \in \mathbb{R}\right)
\end{align*}
$$

where $*$ denotes the convolution or Hadamard product.
Attiya and Alhakami [2] showed that

$$
\begin{gather*}
\mathcal{J}_{s, b}^{t}(f)(z)=z^{p}+\sum_{k=1}^{\infty}\left(\frac{t+b}{k+t+b}\right)^{s} a_{k+p} z^{k+p} \tag{1.6}\\
\left(z \in \mathbb{U} ; f \in A(p) ; b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; s \in \mathbb{C} ; t \in \mathbb{R}\right)
\end{gather*}
$$

The operator $\mathcal{J}_{s, b}^{t}(f)$ generalizes many well known operators in Geometric Function Theory eg. Alexander operator $A(f)$ [1], Libera operator $L(f)$ [16], Bernardi operator $L_{n}(f)$ [4], Jung-Kim-Srivastava integral operator $I^{\sigma}(f)$ [13], Salagean operator $D^{n}(f)$ [22], the operator $I_{\lambda}^{n}(f)$ was studied in ([9], [7]), the operator $I_{n}(f)$ was studied in [28], the operator $J_{s, b}^{p}(f)$ was studied in [17] and others.

Definition 1.1. Let $f(z)$ and $F(z)$ be analytic functions. The function $f(z)$ is said to be subordinate to $F(z)$, written $f(z)<F(z)$, if there exists a function $w(z)$ analytic in \mathbb{U}, with $w(0)=0$ and $|w(z)| \leq 1$, and such that $f(z)=$ $F(w(z))$. If $F(z)$ is univalent, then $f(z)<F(z)$ if and only if $f(0)=F(0)$ and $f(\mathbb{U}) \subset F(\mathbb{U})$.

In our investigations we need the following results:
Theorem 1.1. [5] Let $q(z)$ be an univalent function in \mathbb{U} and $\gamma \in \mathbb{C}^{*}$ such that

$$
\operatorname{Re}\left(\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+1\right) \geq \max \left\{0,-\frac{1}{\gamma}\right\}
$$

If $p(z)$ is an analytic function in \mathbb{U} with $p(0)=q(0)$ and

$$
\begin{equation*}
p(z)+\gamma z p^{\prime}(z)<q(z)+\gamma z q^{\prime}(z) \tag{1.7}
\end{equation*}
$$

then $p(z)<q(z)$ and $q(z)$ is the best dominant of (1.7).

Corollary 1.1. [5] Let $q(z)$ be a convex function in \mathbb{U} with $q(0)=a$ and $\gamma \in \mathbb{C}^{*}$ such that $\operatorname{Re}(\gamma)>0$.If $p(z) \in$ $\mathcal{H}[a, 1] \cap \mathbb{Q}$ and $p(z)+\gamma z p^{\prime}(z)$ is univalent function in \mathbb{U}, and

$$
\begin{equation*}
q(z)+\gamma z q^{\prime}(z)<p(z)+\gamma z p^{\prime}(z) \tag{1.8}
\end{equation*}
$$

then $q(z)<p(z)$ and $q(z)$ is the best subordinant of (1.8).
Lemma 1.1. [2] Let $f(z)$ be in the class $A(p)$, then

$$
\begin{align*}
& z\left(\mathcal{J}_{s+1, b}^{t} f(z)\right)^{\prime}=(t+b) \mathcal{J}_{s, b}^{t} f(z)-(t+b-p) \mathcal{J}_{s+1, b}^{t} f(z) \tag{1.9}\\
& \left(z \in \mathbb{U} ; b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; s \in \mathbb{C} ; t \in \mathbb{R}\right)
\end{align*}
$$

In this paper, we give some results of differential subordination and superordination of analytic functions associated with the operator $\mathcal{J}_{s, b}^{t}(f)$.Also, we give some applications and examples of our results.

2. Main Results

Theorem 2.1. Let $q(z)$ be an univalent function in \mathbb{U}, with $q(0)=1$ and

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+1\right)>\max \left\{0,-\operatorname{Re}\left(\frac{1}{\gamma}\right)\right\} \quad\left(\gamma \in \mathbb{C}^{*}\right) \tag{2.1}
\end{equation*}
$$

If $f(z) \in A(p)$ and

$$
\begin{align*}
& \frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{\mathcal{J}_{s, b}^{t}(f)(z)}+\gamma(t+b)\left(1-\frac{\mathcal{J}_{s-1, b}^{t}(f)(z) \mathcal{J}_{s+1, b}^{t}(f)(z)}{\left(\mathcal{J}_{s, b}^{t}(f)(z)\right)^{2}}\right) \tag{2.2}\\
& <q(z)+\gamma z q^{\prime}(z),
\end{align*}
$$

then

$$
\begin{equation*}
\frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{\mathcal{J}_{s, b}^{t}(f)(z)}<q(z) \tag{2.3}
\end{equation*}
$$

and $q(z)$ is the best dominant of (2.3).
Proof. If we define the function

$$
p(z)=\frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{\mathcal{J}_{s, b}^{t}(f)(z)}
$$

by differentiating logarithmically with respect to z, and using (??), we have

$$
\frac{z p^{\prime}(z)}{p(z)}=(t+b)\left(\frac{\mathcal{J}_{s, b}^{t}(f)(z)}{\mathcal{J}_{s+1, b}^{t}(f)(z)}-\frac{\mathcal{J}_{s-1, b}^{t}(f)(z)}{\mathcal{J}_{s, b}^{t}(f)(z)}\right)
$$

which gives

$$
\frac{z p^{\prime}(z)}{p(z)}=(t+b)\left(\frac{1}{p(z)}-\frac{\mathcal{J}_{s-1, b}^{t}(f)(z)}{\mathcal{J}_{s, b}^{t}(f)(z)}\right)
$$

therefore,

$$
\begin{aligned}
& p(z)+\gamma z p^{\prime}(z)= \\
& \frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{\mathcal{J}_{s, b}^{t}(f)(z)}+\gamma(t+b)\left(1-\frac{\mathcal{J}_{s-1, b}^{t}(f)(z) \mathcal{J}_{s+1, b}^{t}(f)(z)}{\left(\mathcal{J}_{s, b}^{t}(f)(z)\right)^{2}}\right),
\end{aligned}
$$

applying Theorem 1.1, we deduce the result of the theorem.
The following example is an application of Theorem 1.1 , when we put $q(z)=\frac{1+(1-2 \alpha) z}{1-z}, \alpha \in[0,1)$.
Example 2.1. Let $\alpha \in[0,1)$ and $\gamma \in \mathbb{C}^{*}$ with $\operatorname{Re}(\gamma) \geq 0$, for $f(z) \in A(p)$ satisfies

$$
\begin{align*}
& \frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{\mathcal{J}_{s, b}^{t}(f)(z)}+\gamma(t+b)\left(1-\frac{\mathcal{J}_{s-1, b}^{t}(f)(z) \mathcal{J}_{s+1, b}^{t}(f)(z)}{\left(\mathcal{J}_{s, b}^{t}(f)(z)\right)^{2}}\right) \tag{2.4}\\
& <\frac{1+(1-2 \alpha) z}{1-z}+\frac{2(1-\alpha) \gamma z}{(1-z)^{2}}
\end{align*}
$$

then

$$
\operatorname{Re}\left(\frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{\mathcal{J}_{s, b}^{t}(f)(z)}\right)>\alpha
$$

and α is the best possible.
Theorem 2.2. Let $q(z)$ be a convex function in \mathbb{U} with $q(0)=1$ and $\gamma \in \mathbb{C}^{*}$ such that $\operatorname{Re}(\gamma)>0$.If $f(z) \in A(p)$ satisfies

$$
\frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{\mathcal{J}_{s, b}^{t}(f)(z)} \in \mathbb{Q}
$$

also, let

$$
\begin{equation*}
\frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{\mathcal{J}_{s, b}^{t}(f)(z)}+\gamma(t+b)\left(1-\frac{\mathcal{J}_{s-1, b}^{t}(f)(z) \mathcal{J}_{s+1, b}^{t}(f)(z)}{\left(\mathcal{J}_{s, b}^{t}(f)(z)\right)^{2}}\right) \tag{2.5}
\end{equation*}
$$

is univalent in \mathbb{U} and

$$
\begin{equation*}
q(z)+\gamma z q^{\prime}(z)<\frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{\mathcal{J}_{s, b}^{t}(f)(z)}+\gamma(t+b)\left(1-\frac{\mathcal{J}_{s-1, b}^{t}(f)(z) \mathcal{J}_{s+1, b}^{t}(f)(z)}{\left(\mathcal{J}_{s, b}^{t}(f)(z)\right)^{2}}\right) \tag{2.6}
\end{equation*}
$$

then

$$
\begin{equation*}
q(z)<\frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{\mathcal{J}_{s, b}^{t}(f)(z)} \tag{2.7}
\end{equation*}
$$

and $q(z)$ is the best subordinant of (2.7).

Proof. Define the function

$$
p(z)=\frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{\mathcal{J}_{s, b}^{t}(f)(z)}
$$

therefore, $p(z)$ and $q(z)$ satisfy the following subordination relation

$$
q(z)+\gamma z q^{\prime}(z)<p(z)+\gamma z p^{\prime}(z)
$$

applying Corollary 1.1, we have the result of the corollary.
Combining Theorem 2.1 and Theorem 2.2, we obtain the following sandwich result:
Theorem 2.3. Let $q_{1}(z)$ and $q_{2}(z)$ be convex function in \mathbb{U}, with $q_{1}(0)=q_{2}(0)=1$ and $\gamma \in \mathbb{C}$ such that $\operatorname{Re}(\gamma)>$ 0 .Also, let $f(z) \in A(p)$ and

$$
\frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{\mathcal{J}_{s, b}^{t}(f)(z)}+\gamma(t+b)\left(1-\frac{\mathcal{J}_{s-1, b}^{t}(f)(z) \mathcal{J}_{s+1, b}^{t}(f)(z)}{\left(\mathcal{J}_{s, b}^{t}(f)(z)\right)^{2}}\right)
$$

is univalent in \mathbb{U} and

$$
\begin{gathered}
q_{1}(z)+\gamma z q_{1}^{\prime}(z) \prec \\
\frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{\mathcal{J}_{s, b}^{t}(f)(z)}+\gamma(t+b)\left(1-\frac{\mathcal{J}_{s-1, b}^{t}(f)(z) \mathcal{J}_{s+1, b}^{t}(f)(z)}{\left(\mathcal{J}_{s, b}^{t}(f)(z)\right)^{2}}\right) \prec \\
q_{2}(z)+\gamma z q_{2}^{\prime}(z)
\end{gathered}
$$

then

$$
\begin{equation*}
q_{1}(z)<\frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{\mathcal{J}_{s, b}^{t}(f)(z)}<q_{2}(z) \tag{2.8}
\end{equation*}
$$

and $q_{1}(z)$ and $q_{2}(z)$ are the best subordinant and the best dominant of (2.8).
Alternating $p(z)$ in Theorem 2.1 and Theorem 2.2 by $p(z)=\frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{z^{p}}$, we obtain Theorem 2.4, Example 2.2, Theorem 2.5 and Theorem 2.6 as follows:

Theorem 2.4. Let $q(z)$ be an univalent function in \mathbb{U}, with $q(0)=1$ and

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+1\right)>\max \left\{0,-\operatorname{Re}\left(\frac{1}{\gamma}\right)\right\} \quad\left(\gamma \in \mathbb{C}^{*}\right) \tag{2.9}
\end{equation*}
$$

If $f(z) \in A(p)$ and

$$
\begin{aligned}
& \gamma(t+b) \frac{\mathcal{J}_{s, b}^{t}(f)(z)}{z^{p}}+(1-\gamma(t+b)) \frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{z^{p}} \\
& <q(z)+\gamma z q^{\prime}(z),
\end{aligned}
$$

then

$$
\begin{equation*}
\frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{z^{p}}<q(z) \tag{2.11}
\end{equation*}
$$

and $q(z)$ is the best dominant of (2.11).

Example 2.2. Let $\alpha \in[0,1)$ and $\gamma \in \mathbb{C}^{*}$ with $\operatorname{Re}(\gamma) \geq 0$, for $f(z) \in A(p)$ satisfies

$$
\begin{align*}
& \gamma(t+b) \frac{\mathcal{J}_{s, b}^{t}(f)(z)}{z^{p}}+(1-\gamma(t+b)) \frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{z^{p}} \tag{2.12}\\
& <\frac{1+(1-2 \alpha) z}{1-z}+\frac{2(1-\alpha) \gamma z}{(1-z)^{2}}
\end{align*}
$$

then

$$
\operatorname{Re}\left(\frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{z^{p}}\right)>\alpha
$$

and α is the best possible.
Theorem 2.5. Let $q(z)$ be a convex function in \mathbb{U} with $q(0)=1$ and $\gamma \in \mathbb{C}^{*}$ such that $\operatorname{Re}(\gamma)>0$.If $f(z) \in A(p)$ satisfies

$$
\frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{z^{p}} \in \mathbb{Q}
$$

also, let

$$
\begin{equation*}
\gamma(t+b) \frac{\mathcal{J}_{s, b}^{t}(f)(z)}{z^{p}}+(1-\gamma(t+b)) \frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{z^{p}} \tag{2.13}
\end{equation*}
$$

is univalent in \mathbb{U} and

$$
\begin{equation*}
q(z)+\gamma z q^{\prime}(z)<\gamma(t+b) \frac{\mathcal{J}_{s, b}^{t}(f)(z)}{z^{p}}+(1-\gamma(t+b)) \frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{z^{p}} \tag{2.14}
\end{equation*}
$$

then

$$
\begin{equation*}
q(z)<\frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{z^{p}} \tag{2.15}
\end{equation*}
$$

and $q(z)$ is the best subordinant of (2.15).
Theorem 2.6. Let $q_{1}(z)$ and $q_{2}(z)$ be convex function in \mathbb{U}, with $q_{1}(0)=q_{2}(0)=1$ and $\gamma \in \mathbb{C}$ such that $\operatorname{Re}(\gamma)>$ 0. Also, let $f(z) \in A(p)$ and

$$
\gamma(t+b) \frac{\mathcal{J}_{s, b}^{t}(f)(z)}{z^{p}}+(1-\gamma(t+b)) \frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{z^{p}}
$$

is univalent in \mathbb{U} and

$$
\begin{gathered}
q_{1}(z)+\gamma z q_{1}^{\prime}(z) \prec \\
\gamma(t+b) \frac{\mathcal{J}_{s, b}^{t}(f)(z)}{z^{p}}+(1-\gamma(t+b)) \frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{z^{p}} \prec \\
q_{2}(z)+\gamma z q_{2}^{\prime}(z)
\end{gathered}
$$

then

$$
\begin{equation*}
q_{1}(z)<\frac{\mathcal{J}_{s+1, b}^{t}(f)(z)}{z^{p}}<q_{2}(z) \tag{2.16}
\end{equation*}
$$

and $q_{1}(z)$ and $q_{2}(z)$ are the best subordinant and the best dominant of (2.16).

Theorem 2.7. Let $q(z)$ be a convex function in \mathbb{U} with $q(0)=1$ and $\gamma \in \mathbb{C}^{*}$ such that $\operatorname{Re}(\gamma)>0$.If $f(z) \in A(p)$ satisfies

$$
\frac{\mathcal{J}_{s, b}^{t}(f)(z)}{z^{p}}<q(z)+\gamma z q^{\prime}(z)
$$

then

$$
\begin{equation*}
\frac{1}{z^{p}} \mathcal{J}_{1, \frac{1}{\gamma}-t}^{t}\left(\mathcal{J}_{s, b}^{t}(f)\right)(z)<q(z) \tag{2.17}
\end{equation*}
$$

and $q(z)$ is the best dominant of (2.17).
Proof. Let we define the function

$$
\begin{equation*}
p(z)=\frac{1}{z^{p}} \mathcal{J}_{1, \frac{1}{\gamma}-t}^{t}(\mathcal{F})(z) \tag{2.18}
\end{equation*}
$$

where $\mathcal{F}(z)=\mathcal{J}_{s, b}^{t}(f)(z)$, then by using 1.1 we have,

$$
z\left(\mathcal{J}_{1, \frac{1}{\gamma}-t}^{t}(\mathcal{F})(z)\right)^{\prime}=\frac{1}{\gamma}\left(\mathcal{J}_{0, \frac{1}{\gamma}-t}^{t}(\mathcal{F})(z)\right)-\left(\frac{1}{\gamma}-p\right) \mathcal{J}_{1, \frac{1}{\gamma}-t}^{t}(\mathcal{F})(z)
$$

by using (2.18), we have

$$
p(z)+\gamma z p^{\prime}(z)=\frac{\mathcal{F}(z)}{z^{p}}
$$

since $q(z)$ is convex function, therefore

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+1\right)>0>\max \left\{0,-\operatorname{Re}\left(\frac{1}{\gamma}\right)\right\} \quad(\operatorname{Re}(\gamma)>0) \tag{2.19}
\end{equation*}
$$

using Theorem 1.1, we have the theorem.
Remark 2.1. The operator $\mathcal{J}_{s, b}^{t}(f)(z)$ generalizes the generalized Bernardi operator as follows:

$$
\begin{gather*}
\mathcal{J}_{1, p+\beta-t}^{t}(f)(z)=L_{\beta}(f)(z)=\frac{p+\beta}{z^{\beta}} \int_{0}^{z} f(u) u^{\beta-1} d u \tag{2.20}\\
(z \in \mathbb{U} ;(z) \in A(p) ; \operatorname{Re}(\gamma)>0)
\end{gather*}
$$

By using the above remark and Theorem 2.7 , we get the following corollary.
Corollary 2.1. Let $q(z)$ be a convex function in \mathbb{U} with $q(0)=1$ and $\gamma \in \mathbb{C}^{*}$ such that $\operatorname{Re}(\gamma)>0$. If $f(z) \in A(p)$ satisfies

$$
\frac{\mathcal{J}_{s, b}^{t}(f)(z)}{z^{p}}<q(z)+\gamma z q^{\prime}(z),
$$

then

$$
\begin{equation*}
\frac{1}{z^{p}} L_{\frac{1}{\gamma}-p}\left(\mathcal{J}_{s, b}^{t}(f)\right)(z)<q(z) \tag{2.21}
\end{equation*}
$$

where $L_{\beta}(f)$ is generalized Bernardi operator defined by (2.20) and $q(z)$ is the best dominant of (2.21).

Acknowledgement. The authors would like to thank Professor H.M. Srivastava, University of Victoria, for his valuable suggestions.

References

[1] J.W. Alexander, Functions which map the interior of the unit circle upon simple region, Annals of Math. 17(1915), 12-22.
[2] A.A. Attiya and A. Hakami, Some subordination results associated with generalized Srivastava-Attiya operator, Adv. Difference Equ. 2013, 2013:105, 14 pp.
[3] A.Attiya, Oh Sang Kwon, Park Ji Hyang and Nak Eun Cho, An integrodifferential operator for meromorphic functions associated with the Hurwitz-Lerch Zeta Function, Filomat, in Press
[4] S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135(1969), 429-449.N. E. Cho and T. H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc. 40 (2003), no. 3, 399- 410.
[5] T. Bulboaca, Differential Subordinations and Superordinaions, Casa Cartii de Stiinta, Cluj-Napoca, 2005.
[6] J. Choi, D.S. Jang and H.M. Srivastava, A generalization of the Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct. 19(2008), no. 1-2, 65-79.
[7] N. E. Cho and T. H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc. 40 (2003), no. 3, 399-410.
[8] N.E. Cho, I.H. Kim and H.M. Srivastava, Sandwich-type theorems for multivalent functions associated with the Srivastava-Attiya operator, Appl. Math. Comput. 217 (2010), no. 2, 918-928.
[9] N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling 37 (2003), no. 1-2, 39-49.
[10] E.A. Elrifai and H.E and A.R. Ahmed, Some applications of Srivastava-Attiya operator to p-valent starlike functions. J. Inequal. Appl. 2010(2010), 1-11.
[11] C. Ferreira and J.L. Lopez, Asymptotic expansions of the Hurwitz-Lerch zeta function, J. Math. Anal. Appl. 298(2004), 210-224.
[12] P.L. Gupta, R.C. Gupta, S. Ong and H.M. Srivastava, A class of Hurwitz-Lerch zeta distributions and their applications in reliability, Appl. Math. Comput. 196 (2008), no. 2, 521-531.
[13] J.B. Jung, Y.C. Kim and H.M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operator, J. Math. Anal. Appl. 176(1993), 138-147.
[14] M.A. Kutbi and A.A. Attiya, Differential subordination result with the Srivastava-Attiya integral operator, J. Inequal. Appl. 2010(2010), 1-10.
[15] M.A. Kutbi and A.A. Attiya, Differential subordination results for certain integrodifferential operator and it's applications, Abs. Appl. Anal., 2012(2012), 13 pp.
[16] R.J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16(1965), 755-758.
[17] Jin-Lin Liu, Subordinations for certain multivalent analytic functions associated with the generalized Srivastava-Attiya operator, Integral Transforms Spec. Funct. 19 (2008), no. 11-12, 893-901.
[18] Q.M. Luo and H.M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl. 308(2005), 290-302.
[19] S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, Series in Pure and Applied Mathematics, No. 225, Marcel Dekker, Inc., New York, 2000.
[20] K.I. Noor and S.Z. Bukhari, Some subclasses of analytic and spiral-like functions of complex order involving the Srivastava-Attiya integral operator, Integral Transforms Spec. Funct. 21 (2010), no. 12, 907-916.
[21] S. Owa and A.A. Attiya, An application of differential subordinations to the class of certain analytic functions, Taiwanese J. Math., 13(2009), no. 2A, 369-375.
[22] G.S. Salagean, Subclasses of univalent functions, Complex analysis, fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin, 1983.
[23] H.M. Srivastava and A.A. Attiya, An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination, Integral Transforms Spec. Funct. 18 (2007), no. 3-4, 207-216.
[24] H.M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, 2001.
[25] H. M. Srivastava and S. Gaboury, A new class of analytic functions defined by means of a generalization of the Srivastava-Attiya operator, J. Inequal. Appl. 2015 (2015), Article ID 39, 1-15.
[26] H.M. Srivastava, D. Răducanu and G. Sălăgean, A new class of generalized close-to-starlike functions defined by the SrivastavaAttiya operator, Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 5, 833-840.
[27] H. M. Srivastava, S. Gaboury and F. Ghanim, A unified class of analytic functions involving a generalization of the SrivastavaAttiya operator, Appl. Math. Comput. 251 (2015), 35-45.
[28] B. A. Uralegaddi and C. Somanatha, Certain classes of univalent functions, Current topics in analytic function theory, 371-374, World Sci. Publ., River Edge, NJ, 1992.

[^0]: 2010 Mathematics Subject Classification. 30C80; 30C10; 11M35
 Keywords. analytic functions; differential subordination; differential superordination; Hurwitz-Lerch zeta function; Hadamard product; Srivastava-Attiya operator.

 Received: 20 December 2015; Accepted: 16 May 2016
 Communicated by Hari M. Srivastava
 Email addresses: aattiy@mans.edu.eg (A. A. Attiya), mansouralieg@yahoo.com (M. F. Yassen)

