A Fixed Point Theorem for JS-contraction Type Mappings with Applications to Polynomial Approximations

Ishak Altuna,b, Nassir Al Arific, Mohamed Jlelid, Aref Lashine,f, Bessem Sametd

aKing Saud University, College of Science, Riyadh, Saudi Arabia
bDepartment of Mathematics, Faculty of Science and Arts, Kirikkale University, 71450 Yahsihan, Kirikkale, Turkey
cCollege of Science, Geology and Geophysics Department, King Saud University, Riyadh 11451, Saudi Arabia
dDepartment of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
eCollege of Engineering, Petroleum and Natural Gas Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia
fFaculty of Science, Geology Department, Benha University, Benha 13518, Egypt

Abstract. A fixed point theorem is established for a new class of JS-contraction type mappings. As applications, some Kelisky-Rivlin type results are obtained for linear and nonlinear \(q\)-Bernstein-Stancu operators.

1. Introduction

Let \(\Theta\) be the set of functions \(\theta : (0, \infty) \to (1, \infty)\) satisfying the following conditions:

\((\Theta_1)\) \(\theta\) is non-decreasing;

\((\Theta_2)\) For each sequence \(\{t_n\} \subset (0, \infty)\), we have

\[
\lim_{n \to \infty} \theta(t_n) = 1 \iff \lim_{n \to \infty} t_n = 0^+;
\]

\((\Theta_3)\) There exist \(r \in (0, 1)\) and \(\ell \in (0, \infty]\) such that \(\lim_{t \to 0^+} \frac{\theta(t)-1}{t} = \ell\).

Recently, Jleli and Samet [4] introduced the class of JS-contraction mappings as follows.

Definition 1.1. Let \((X, d)\) be a metric space, and let \(T : X \to X\) be a given mapping. The mapping \(T\) is said to be a JS-contraction if there exist \(\theta \in \Theta\) and \(k \in (0, 1)\) such that

\[(x, y) \in X \times X, d(Tx, Ty) > 0 \implies \theta(d(Tx, Ty)) \leq [\theta(d(x, y))]^k.\]

In [4], the following generalization of Banach contraction principle was established.

2010 Mathematics Subject Classification. Primary 47H10; Secondary 41A36

Keywords. JS-contraction, Picard iteration, \(q\)-Bernstein-Stancu operator, nonlinear \(q\)-Bernstein-Stancu operator
Theorem 1.2. Let \((X,d)\) be a complete metric space, and let \(T : X \to X\) be JS-contraction. Then \(T\) has a unique fixed point.

Observe that Banach contraction principle follows from Theorem 1.2 by taking \(\theta(t) = e^{\sqrt{t}}\). For other related results, we refer the reader to [13, 16].

In this paper, a fixed point theorem for a new class of JS-contraction type mappings is presented. Next, this theorem is used to study the iterates properties of some polynomial operators including \(q\)-Bernstein-Stancu operators and \(q\)-Bernstein-Stancu operators of nonlinear type.

2. A Fixed Point Theorem

In this section, a new fixed point theorem is established for a new class of JS-contraction type mappings. The obtained result is an extension of Theorem 1.2.

At first, let us introduce some notations. Let \(M\) be a nonempty set, and let \(T : M \to M\) be a given mapping. We denote by \(\text{Fix}(T)\) the set of all the fixed points of \(T\), that is,

\[
\text{Fix}(T) = \{x \in M : x = Tx\}.
\]

Suppose that \(M\) is a group with respect to a certain operation \(+\). For \(x \in M\) and \(N \subset M\), we denote by \(x + N\) the subset of \(M\) defined by

\[
x + N = \{x + y : y \in N\}.
\]

We denote by \(\mathbb{N}\) the set of positive integers, that is,

\[
\mathbb{N} = \{0, 1, 2, \cdots\}.
\]

We denote by \(\mathbb{N}^\ast\) the set defined by

\[
\mathbb{N}^\ast = \{1, 2, 3, \cdots\}.
\]

Our fixed point theorem can be stated as follows.

Theorem 2.1. Let \(E\) be a group with respect to a certain operation \(+\). Let \(X\) be a subset of \(E\) endowed with a certain metric \(d\) such that \((X,d)\) is complete. Let \(X_0 \subset X\) be a closed subset of \(X\) such that \(X_0\) is a subgroup of \(E\). Let \(T : X \to X\) be a given mapping satisfying

\[
(x,y) \in X \times X, \ x - y \in X_0, \ d(Tx,Ty) \neq 0 \implies \theta(d(Tx,Ty)) \leq [\theta(d(x, y))]^k,
\]

where \(k \in (0, 1)\) is a constant and \(\theta \in \Theta\). Suppose that the operation mapping \(\pm : X \times X \to X\) defined by

\[
\pm(x,y) = x \pm y, \quad (x,y) \in X \times X
\]

is continuous with respect to the metric \(d\). Moreover, suppose that

\[
x - Tx \in X_0, \quad x \in X.
\]

Then we have

(i) For every \(x \in X\), the Picard sequence \(\{T^n x\}\) converges to a fixed point of \(T\).

(ii) For every \(x \in X\),

\[
(x + X_0) \cap \text{Fix}(T) = \left\{ \lim_{n \to \infty} T^n x \right\}.
\]
Proof. Let \(x \in X \) be an arbitrary point in \(X \). If for some \(p \in \mathbb{N} \), we have \(T^p x = T^{p+1} x \), then \(T^p x \) will be a fixed point of \(T \). So, without restriction of the generality, we can suppose that \(d(T^n x, T^{n+1} x) > 0 \), for all \(n \in \mathbb{N} \).

From (2), we have
\[
x - T x \in X_0.
\]
Using (1), we obtain
\[
\theta(d(T x, T^2 x)) = [\theta(d(x, T x))]^k.
\]
Again, using (2), we obtain
\[
T x - T^2 x = T x - T(T x) \in X_0,
\]
which implies from (1) that
\[
\theta(d(T^2 x, T^3 x)) \leq [\theta(d(T x, T^2 x))]^k \leq [\theta(d(x, T x))]^{k^2}.
\]
Therefore, by induction we obtain
\[
T^n x - T^{n+1} x \in X_0, \quad n \in \mathbb{N},
\]
and
\[
\theta(d(T^n x, T^{n+1} x)) \leq [\theta(d(x, T x))]^{k^n}, \quad n \in \mathbb{N}.
\]
Thus, we have
\[
1 \leq \theta(d(T^n x, T^{n+1} x)) \leq [\theta(d(x, T x))]^{k^n}, \quad n \in \mathbb{N}.
\]
Passing to the limit as \(n \to \infty \) in (4), we obtain
\[
\lim_{n \to \infty} \theta(d(T^n x, T^{n+1} x)) = 1,
\]
which implies from \((\Theta_2)\) that
\[
\lim_{n \to \infty} d(T^n x, T^{n+1} x) = 0.
\]
From condition \((\Theta_3)\), there exist \(r \in (0, 1) \) and \(\ell \in (0, \infty) \) such that
\[
\lim_{n \to \infty} \frac{\theta(d(T^n x, T^{n+1} x)) - 1}{[d(T^n x, T^{n+1} x)]^r} = \ell.
\]
Suppose that \(\ell < \infty \). In this case, let \(B = \ell/2 > 0 \). From the definition of the limit, there exists \(n_0 \in \mathbb{N} \) such that
\[
\left| \frac{\theta(d(T^n x, T^{n+1} x)) - 1}{[d(T^n x, T^{n+1} x)]^r} - \ell \right| \leq B, \quad n \geq n_0.
\]
This implies that
\[
\frac{\theta(d(T^n x, T^{n+1} x)) - 1}{[d(T^n x, T^{n+1} x)]^r} \geq \ell - B = B, \quad n \geq n_0.
\]
Then,
\[
n[d(T^n x, T^{n+1} x)]^r \leq An[\theta(d(T^n x, T^{n+1} x)) - 1], \quad n \geq n_0,
\]
where \(A = 1/B \).

Suppose now that \(\ell = \infty \). Let \(B > 0 \) be an arbitrary positive number. From the definition of the limit, there exists \(n_0 \in \mathbb{N} \) such that
\[
\frac{\theta(d(T^n x, T^{n+1} x)) - 1}{[d(T^n x, T^{n+1} x)]^r} \geq B, \quad n \geq n_0.
\]
This implies that
\[n[d(T^n, T^{n+1})] \leq An[\theta(d(T^n, T^{n+1})) - 1], \quad n \geq n_0, \]
where \(A = 1/B. \)

Thus, in all cases, there exists \(A > 0 \) and \(n_0 \in \mathbb{N} \) such that
\[n[d(T^n, T^{n+1})] \leq An[\theta(d(T^n, T^{n+1})) - 1], \quad n \geq n_0. \]
Using (4), we obtain
\[n[d(T^n, T^{n+1})] \leq An(\theta(d(T^n, T^{n+1}))^k - 1), \quad n \geq n_0. \]
Letting \(n \to \infty \) in the above inequality, we obtain
\[\lim_{n \to \infty} n[d(T^n, T^{n+1})] = 0. \]
Therefore, by (3) and using the fact that (4), (8) and (1), we have
\[T^n \to \infty, \quad n, p \geq 1. \]
Passing to the limit as \(n \to \infty \), using (7), the continuity of the operation mapping \(+ \), and the closure of \(X_0 \), we obtain that
\[T^n x - T^{n+p} x \in X_0, \quad n, p \geq 1. \]
Without restriction of the generality, we may suppose that \(d(T^n, T\omega) > 0 \), for all \(n \in \mathbb{N} \). Therefore, using (8) and (1), we have
\[1 \leq \theta(d(T^n+1, T\omega)) \leq \theta(T^n, \omega)^k, \quad n \in \mathbb{N}. \]
Passing to the limit as \(n \to \infty \), using (7) and (\(\Theta_2 \)), we deduce that
\[\lim_{n \to \infty} d(T^n+1, T\omega) = 0. \]
Next, (7), (9) and the uniqueness of the limit yield $\omega = T\omega$, that is, ω is a fixed point of T. Then (i) is proved. In order to prove (ii), let $x \in X$ be fixed. We know that the Picard sequence $\{T^n x\}$ converges to $\omega \in X$, a fixed point of T. Moreover, from (8), we have $\omega - x \in X_0$, that is, $\omega \in x + X_0$. Therefore, we have

$$\left\{ \lim_{n \to \infty} T^n x \right\} \subset (x + X_0) \cap \text{Fix}(T).$$

Now, let $z \in (x + X_0) \cap \text{Fix}(T)$ be fixed. Then

$$Tz = z \quad \text{and} \quad z - x \in X_0.$$

Therefore, we have

$$z - Tx = Tz - Tx = (Tz - z) + (x - Tx) + (z - x) \in X_0.$$

Again,

$$z - T^2 x = T^2 z - T^2 x = (T^2 z - Tz) + (Tx - T^2 x) + (z - Tz) \in X_0.$$

Hence, by induction we obtain

$$z - T^n x \in X_0, \quad n \in \mathbb{N}.$$

Without restriction of the generality, we may suppose that $z \neq T^n x$, for all $n \in \mathbb{N}$. Therefore, by (1) we have

$$1 \leq \theta(d(z, T^{n+1} x)) = \theta(d(Tz, T^{n+1} x)) \leq [\theta(d(z, Tx))]^k \leq \cdots \leq [\theta(d(z, x))]^{k^{n+1}}, \quad n \in \mathbb{N}.$$

Passing to the limit as $n \to \infty$ and using (Θ_2), we deduce that

$$\lim_{n \to \infty} d(T^n x, z) = 0,$$

which yields $z \in \left\{ \lim_{n \to \infty} T^n x \right\}$. Then we proved that

$$(x + X_0) \cap \text{Fix}(T) \subset \left\{ \lim_{n \to \infty} T^n x \right\}.$$

The proof is complete. \square

The following result follows immediately from Theorem 2.1 with $\theta(t) = e^{\sqrt{t}}$.

Corollary 2.2. Let E be a group with respect to a certain operation \neq. Let X be a subset of E endowed with a certain metric d such that (X, d) is complete. Let $X_0 \subset X$ be a closed subset of X such that X_0 is a subgroup of E. Let $T : X \to X$ be a given mapping satisfying

$$(x, y) \in X \times X, \quad x - y \in X_0 \implies d(Tx, Ty) \leq kd(x, y),$$

where $k \in (0, 1)$ is a constant. Suppose that the operation mapping $\pm : X \times X \to X$ defined by

$$\pm(x, y) = x \pm y, \quad (x, y) \in X \times X$$

is continuous with respect to the metric d. Moreover, suppose that

$$x - Tx \in X_0, \quad x \in X.$$

Then we have

(i) For every $x \in X$, the Picard sequence $\{T^n x\}$ converges to a fixed point of T.

(ii) For every $x \in X$,

$$(x + X_0) \cap \text{Fix}(T) = \left\{ \lim_{n \to \infty} T^n x \right\}.$$
3. Applications: Iterates Properties of Some Polynomial Operators

In this section, as applications of Theorem 2.1, the iterates properties of some polynomial operators are investigated. Two types of polynomial operators are discussed: \(q \)-Bernstein-Stancu operators and \(q \)-Bernstein-Stancu operators of nonlinear type. For each kind of operators, a Kelisky-Rivlin type result is established. Let us mention some well known contributions in this topic. In [6], via some linear algebra tools, Kelisky and Rivlin studied the iterates properties of the class of Bernstein operators. Another proof of Kelisky-Rivlin theorem was presented by I.A. Rus [10] with the help of some trick with the Contraction principle. Another possibility to establish Kelisky-Rivlin theorem, which is based on a fixed point theorem for linear operators on a Banach space, was suggested by Jachymski [3]. For other related works, we refer to [1, 2, 8, 14, 15] and references therein.

The following basic notations in quantum calculus will be used. Let \(q > 0 \). For any \(n \in \mathbb{N} \), the \(q \)-integer \(n_q \) is defined by
\[
[n]_q = 1 + q + q^2 + \cdots + q^{n-1} \quad (n \geq 1), \quad [0]_q = 0.
\]
The \(q \)-factorial \(n_q! \) is defined by
\[
[n]_q! = [1]_q[n]_q \cdots [n]_q \quad (n \geq 1), \quad [0]_q! = 1.
\]
For integers \(0 \leq k \leq n \), the \(q \)-binomial is defined by
\[
\binom{n}{k}_q = \frac{[n]_q!}{[n-k]_q![k]_q!}.
\]
It is clear that for \(q = 1 \), we have
\[
[n]_1 = n, \quad [n]_1! = n!, \quad \binom{n}{k}_1 = \binom{n}{k}.
\]
For more details on quantum calculus, we refer to [5].

3.1. A Kelisky-Rivlin type result for \(q \)-Bernstein-Stancu operators

Let \(C([0, 1]; \mathbb{R}) \) be the set of real valued and continuous functions \(f : [0, 1] \to \mathbb{R} \). For \(f \in C([0, 1]; \mathbb{R}) \), \(q > 0 \), \(\alpha \geq 0 \) and each \(n \in \mathbb{N}^* \), the \(q \)-Bernstein-Stancu operator of order \(n \) is defined by [7]
\[
B_n(q, \alpha)(f)(t) = \sum_{i=0}^{n} f\left(\frac{[i]_q}{[n]_q} \right) B_{n,i}^{q,\alpha}(t), \quad t \in [0, 1],
\]
where
\[
B_{n,i}^{q,\alpha}(t) = \binom{n}{i}_q \prod_{s=0}^{i-1} \left(t + \alpha[s]_q \right) \prod_{j=0}^{n-i-1} \left(1 - q^j t + \alpha[j]_q \right).
\]
From here on an empty product is taken to be equal to 1.

If \(\alpha = 0 \), \(B_n(q, 0) \) reduces to the \(q \)-Bernstein polynomial of order \(n \) introduced by Phillips [9]
\[
B_n(q, 0)(f)(t) = \sum_{i=0}^{n} f\left(\frac{[i]_q}{[n]_q} \right) \binom{n}{i}_q t^i \prod_{j=0}^{n-i-1} \left(1 - q^j t \right), \quad t \in [0, 1].
\]
If \(q = 1 \), \(B_n(1, \alpha) \) reduces to the Bernstein-Stancu polynomial of order \(n \) introduced by Stancu [11]
\[
B_n(1, \alpha)(f)(t) = \sum_{i=0}^{n} f \left(\frac{i}{n} \right) \left(\begin{array}{c} n \\ i \end{array} \right) \frac{t^i (1 + \alpha f)^n}{\prod_{j=0}^{n-i-1} (1 - t + \alpha f)} , \quad t \in [0, 1].
\]
If \((\alpha, q) = (0, 1)\), we obtain the standard Bernstein polynomial of order \(n \)
\[
B_n(1, 0)(f)(t) = \sum_{i=0}^{n} f \left(\frac{i}{n} \right) t^i (1 - t)^{n-i} , \quad t \in [0, 1].
\]

The following lemmas will be useful later (see [2, 15]).

Lemma 3.1. Let \(n \in \mathbb{N}^* \), \(q \in (0, 1) \) and \(\alpha \geq 0 \). Then
\[
\sum_{i=0}^{n} B_{n,i}^{q,\alpha}(t) = 1.
\]

Lemma 3.2. Let \(n \in \mathbb{N}^* \), \(q \in (0, 1) \) and \(\alpha \geq 0 \). Then
\[
\min \{ B_{n,0}^{q,\alpha}(t) + B_{n,n}^{q,\alpha}(t) : t \in [0, 1] \} > 0.
\]

We have the following Kelisky-Rivlin type result for \(q \)-Bernstein-Stancu operators.

Theorem 3.3. Let \(n \in \mathbb{N}^* \), \(\alpha \geq 0 \) and \(0 < q < 1 \). Then, for every \(f \in C([0, 1]; \mathbb{R}) \),
\[
\lim_{n \to \infty} [B_n(q, \alpha)]^{\otimes n}(f)(t) = f(0) + [f(1) - f(0)]t , \quad t \in [0, 1].
\]

Proof. Let \(X = E = C([0, 1]; \mathbb{R}) \). We endow \(X \) with the metric \(d \) defined by
\[
d(f, g) = \max \{|f(t) - g(t)| : t \in [0, 1]\}, \quad (f, g) \in X \times X.
\]
Then \((X, d)\) is a complete metric space. Let \(X_0 \) be the subset of \(X \) defined by
\[
X_0 = \{ f \in X : f(0) = f(1) = 0 \}.
\]
Then \(X_0 \) is a closed linear subspace of \(X \). Let \((f, g) \in X \times X\) be such that \(f - g \in X_0 \), that is,
\[
(f, g) \in X \times X \quad \text{and} \quad f(0) = g(0), f(1) = g(1).
\]
Let \(t \in [0, 1] \) be fixed. Then we have
\[
|B_n(q, \alpha)(f)(t) - B_n(q, \alpha)(g)(t)|
\]
\[
= \sum_{i=0}^{n} f \left(\frac{i}{n} \right) \left[\frac{[\alpha]}{n} \right] B_{n,i}^{q,\alpha}(t) - \sum_{i=0}^{n} g \left(\frac{i}{n} \right) \left[\frac{[\alpha]}{n} \right] B_{n,i}^{q,\alpha}(t)
\]
\[
\leq \sum_{i=0}^{n} \left| f \left(\frac{i}{n} \right) \left[\frac{[\alpha]}{n} \right] B_{n,i}^{q,\alpha}(t) - g \left(\frac{i}{n} \right) \left[\frac{[\alpha]}{n} \right] B_{n,i}^{q,\alpha}(t) \right|
\]
\[
= \sum_{i=1}^{n-1} \left| f \left(\frac{i}{n} \right) \left[\frac{[\alpha]}{n} \right] B_{n,i}^{q,\alpha}(t) - g \left(\frac{i}{n} \right) \left[\frac{[\alpha]}{n} \right] B_{n,i}^{q,\alpha}(t) \right|
\]
\[
\leq \sum_{i=1}^{n-1} B_{n,i}^{q,\alpha}(t) d(f, g).
\]
On the other hand, using Lemmas 3.1 and 3.2, we get
\[\sum_{i=1}^{n-1} B_{n,q}^{\alpha,\gamma}(t) = 1 - \left(B_{n,q}^{\alpha}\left(1\right) + B_{n,q}^{\alpha}(t) \right) \]
\[\leq 1 - \lambda, \]
where
\[\lambda = \min \left\{ B_{n,q}^{\alpha}(t) + B_{n,q}^{\alpha}(t) : t \in [0,1] \right\} > 0. \tag{10} \]

Therefore, we have
\[(f, 1) \in X \times X, \quad f - g \in X_0 \implies d\left(B_{n,q}(q,\alpha)(f), B_{n,q}(q,\alpha)(g) \right) \leq kd(f, g), \]
where \(k = 1 - \lambda \in (0,1) \). Next, using lemma 3.1, for every \(f \in X \) we have
\[\gamma(t) := f(t) - B_n(q,\alpha)(f)(t) = \sum_{i=0}^{n-1} \left(f(t) - f\left(\frac{i}{n} \right) \right) B_{n,q}^{\alpha}(t), \quad t \in [0,1]. \]
We can check easily that
\[\gamma(0) = \gamma(1) = 0, \]
which yields
\[f - B_n(q,\alpha)(f) \in X_0, \quad f \in X. \]

Applying Theorem 2.1 (or Corollary 2.2), we deduce that
\[(f + X_0) \cap \text{Fix}(B_n(q,\alpha)) = \left\{ \lim_{N \to \infty} \left[B_n(q,\alpha)^N(f) \right] \right\}, \quad f \in X. \]

Let \(f \in X \). It is not difficult to observe that the function \(\omega : [0,1] \to \mathbb{R} \) defined by
\[\omega(t) = f(0)(1 - t) + f(1)t, \quad t \in [0,1] \]
belongs to \(\text{Fix}(B_n(q,\alpha)) \). Moreover, for all \(t \in [0,1] \),
\[\mu(t) := \omega(t) - f(t) = f(0)(1 - t) + f(1)t - f(t). \]

Observe that
\[\mu(0) = f(0) - f(0) = 0 \]
and
\[\mu(1) = f(1) - f(1) = 0. \]

Therefore, \(\omega \in f + X_0 \). As consequence, we get
\[\lim_{N \to \infty} d\left(B_n(q,\alpha)^N(f), \omega \right) = 0, \]
which yields the desired result. \(\square \)

Remark 3.4. Another proof of Theorem 3.3 can be found in [15]. This proof is based on some linear algebra tools. In our opinion, the presented proof in this paper is more easy and more simplified.
3.2. A Kelisky-Rivlin type result for nonlinear q-Bernstein-Stancu operators

For $f \in C([0, 1]; \mathbb{R})$, $q > 0$, $\alpha \geq 0$ and each $n \in \mathbb{N}^*$, we define the nonlinear q-Bernstein-Stancu operator of order n by

$$T_n(q, \alpha)(f)(t) = \sum_{i=0}^{n} \left| f \left(\frac{[i]_q}{[n]_q} \right) \right| B_{n,j}^{\alpha,q}(t), \quad t \in [0, 1].$$

Using Theorem 2.1, we shall establish the following Kelisky-Rivlin type result.

Theorem 3.5. Let $n \in \mathbb{N}^*$, $\alpha \geq 0$ and $0 < q < 1$. Then, for every $f \in C([0, 1]; \mathbb{R})$ such that $f(0) \geq 0$ and $f(1) \geq 0$,

$$\lim_{N \to \infty} [T_n(q, \alpha)]^N(f)(t) = f(0) + [f(1) - f(0)]t, \quad t \in [0, 1].$$

Proof. Let $E = C([0, 1]; \mathbb{R})$ and X be the subset if E defined by

$$X = \{ f \in E : f(0) \geq 0, f(1) \geq 0 \}.$$

We endow X with the metric d defined by

$$d(f, g) = \max \{|f(t) - g(t)| : t \in [0, 1] \}, \quad (f, g) \in X \times X.$$ Then (X, d) is a complete metric space. Let X_0 be the subset of X defined by

$$X_0 = \{ f \in E : f(0) = f(1) = 0 \}.$$ Then X_0 is a closed subgroup of E. Let $(f, g) \in X \times X$ be such that $f - g \in X_0$, that is,

$$(f, g) \in X \times X \quad \text{and} \quad f(0) = g(0), f(1) = g(1).$$

Let $t \in [0, 1]$ be fixed. Then we have

$$|T_n(q, \alpha)(f)(t) - T_n(q, \alpha)(g)(t)|$$

$$= \sum_{i=0}^{n} \left| f \left(\frac{[i]_q}{[n]_q} \right) \right| B_{n,j}^{\alpha,q}(t) - \sum_{i=0}^{n} \left| g \left(\frac{[i]_q}{[n]_q} \right) \right| B_{n,j}^{\alpha,q}(t)$$

$$= \sum_{i=0}^{n} \left| f \left(\frac{[i]_q}{[n]_q} \right) \right| - \left| g \left(\frac{[i]_q}{[n]_q} \right) \right| B_{n,j}^{\alpha,q}(t)$$

$$\leq \sum_{i=0}^{n} f \left(\frac{[i]_q}{[n]_q} \right) - g \left(\frac{[i]_q}{[n]_q} \right) B_{n,j}^{\alpha,q}(t)$$

$$= \sum_{i=1}^{n} f \left(\frac{[i]_q}{[n]_q} \right) - g \left(\frac{[i]_q}{[n]_q} \right) B_{n,j}^{\alpha,q}(t)$$

$$\leq \sum_{i=1}^{n-1} B_{n,j}^{\alpha,q}(t) d(f, g)$$

$$= (1 - \lambda) d(f, g),$$

where λ is given by (10). Therefore, we have

$$(f, g) \in X \times X, \quad f - g \in X_0 \implies d(T_n(q, \alpha)(f), T_n(q, \alpha)(g)) \leq kd(f, g),$$

where $k = 1 - \lambda \in (0, 1)$. Next, for every $f \in X$ we have

$$\gamma'(t) := f(t) - T_n(q, \alpha)(f)(t) = \sum_{i=0}^{n} \left(f(t) - \left| f \left(\frac{[i]_q}{[n]_q} \right) \right| \right) B_{n,j}^{\alpha,q}(t), \quad t \in [0, 1].$$
Observe that
\[\gamma'(0) = f(0) - |f(0)| = f(0) - f(0) = 0\]
and
\[\gamma'(1) = f(1) - |f(1)| = f(1) - f(1) = 0.\]
Then
\[f - T_n(q, \alpha)(f) \in X_0, \quad f \in X.\]
Applying Theorem 2.1 (or Corollary 2.2), we deduce that
\[(f + X_0) \cap \text{Fix}(T_n(q, \alpha)) = \left\{ \lim_{N \to \infty} [T_n(q, \alpha)]^N(f) \right\}, \quad f \in X.\]
Let \(f \in X\). It is not difficult to observe that the function \(\omega : [0, 1] \to \mathbb{R}\) defined by
\[\omega(t) = f(0)(1 - t) + f(1)t, \quad t \in [0, 1]\]
belongs to \((f + X_0) \cap \text{Fix}(T_n(q, \alpha))\). As consequence, we get
\[\lim_{N \to \infty} d([T_n(q, \alpha)]^N(f), \omega) = 0,\]
which yields the desired result. \(\square\)

Remark 3.6. Note that Theorem 4.1 in [3] cannot be applied in our case since it requires linear operators defined on a certain Banach space \(X\). Observe that in our case, \(X\) is not a linear space.

Remark 3.7. The case \((\alpha, q) = (0, 1)\) was considered in [12]. The authors claimed that if \(n \in \mathbb{N}\), for every \(f \in X = C([0, 1]; \mathbb{R})\), the Picard sequence \([T_n(0, 1)]^N(f)\) converges uniformly to a fixed point of \(T_n(0, 1)\) (see Corollary 4 in [12]). For the proof of this claim, the authors used that \(f - T_n(0, 1)(f) \in X_0\) for every \(f \in X\), where \(X_0\) is the set of functions \(u \in X\) such that \(u(0) = u(1) = 0\). Unfortunately, the above property is not true. To observe this fact, we have just to consider a function \(f \in X\) such that \(f(0) < 0\) or \(f(1) < 0\). Our Theorem 3.5 for the case \((\alpha, q) = (0, 1)\) is a corrected version of Corollary 4 in [12].

References

