On Topological Complete Hypergroups

Manoranjan Singhaa, Kousik Dasa, Bijan Davvazb

aDepartment of Mathematics, University of North Bengal, India
bDepartment of Mathematics, Yazd University, Yazd, Iran

Abstract. One of the main obstacles before the development of the theory of topological hypergroups is the fact that translation of open sets may not be open in this setting. In this paper, we get rid of such obstacle by introducing the concept of topological complete hypergroups and investigate some of their properties.

1. Introduction and Preliminaries

The year 1934 saw the raise of the concept of hypergroups by Marty [12], later it was studied by Corsini [2], Corsini and Leoreanu [3], Davvaz [4], Dresher and Ore [6], Freni [7], Koskas [11], Massouros [13], R. Migliorato [15], Mittas [14], Tallini [17], Vougiouklis [18], and many others. Till now, only a few papers treated the notion of topological hyperstructures, for example see [1, 8–10, 16]. Heidari et al. [8, 9] introduced the concepts of topological hypergroups and topological polygroups, respectively. In this paper we study the concept of topological complete hypergroups, which is a special class of topological hypergroups.

Let us begin with some basic definitions and results that will be used as ready references. For any nonempty set H, a mapping $\circ : H \times H \to \mathcal{P}^*(H)$ is called a hyperoperation, where $\mathcal{P}^*(H)$ is the family of nonempty subsets of H. The ordered pair (H, \circ) is called a hypergroupoid and if A, B are two nonempty subsets of it and $x \in H$, then

$$A \circ B = \bigcup_{a \in A, b \in B} a \circ b, \quad x \circ A = \{x\} \circ A \quad \text{and} \quad A \circ x = A \circ \{x\}.$$

A hypergroupoid (H, \circ) is called a semihypergroup if for every $x, y, z \in H$, $x \circ (y \circ z) = (x \circ y) \circ z$ and is called a quasi-hypergroup if reproduction axiom holds, that is if $x \in H \Rightarrow x \circ H = H = H \circ x$. The ordered pair (H, \circ) is called a hypergroup if it is a semihypergroup as well as a quasi-hypergroup. Subhypergroup is defined as in general case, that is a nonempty subset K of a hypergroup (H, \circ) is a subhypergroup if (1) for all $a, b \in K \Rightarrow a \circ b \subseteq K$ and (2) for all a of K, we have $a \circ K = K = K \circ a$.

A subhypergroup K of a hypergroup (H, \circ) is said to be

(1) closed on the left (on the right) if for all k_1, k_2 of K and x of H, if $k_1 \in x \circ k_2$ ($k_1 \in k_2 \circ x$, respectively), it follows that $x \in K$. K is said to be closed if it is that on the both left and right;

2010 Mathematics Subject Classification. Primary 20N20; Secondary 22A30

Keywords. Complete part, regular hypergroup, complete hypergroup, topological complete hypergroup, topological regular hypergroup

Received: 13 September 2016; Revised: 29 December 2016; Accepted: 02 January 2017

Communicated by Ljubiša D. R. Kočinac

Research supported by University of North Bengal, India

Email addresses: manoranjan_singha@rediffmail.com (Manoranjan Singha), das.kousik1991@gmail.com (Kousik Das), davvaz@yazd.ac.ir (Bijan Davvaz)
(2) invertible on the left (on the right) if for all \(x, y \) of \(H \), from \(x \in K \circ y \) \((x \in y \circ K)\), it follows that \(y \in K \circ x \) \((y \in x \circ K)\), respectively. \(K \) is called invertible if it is so on the left as well as right;

(3) normal in \(H \) if for all \(x \in H, x \circ K = K \circ x \) [5].

For \(n > 1 \), \(\beta_n \) defines a relation, which is reflexive as well as symmetric, on a semihypergroup \(H \) as follows:

\[
a \beta_n b \Leftrightarrow \exists (x_1, x_2, \ldots, x_n) \in H^n : [a, b] \subseteq \prod_{i=1}^n x_i,
\]

and let \(\beta = \bigcup_{n=1}^\infty \beta_n \), where \(\beta_1 = \{(x, x) : x \in H\} \) is the diagonal relation on \(H \). Koskas [11] introduced a relation \(\beta^* \) which is the transitive closure of \(\beta \) and it is seen that if \((H, \circ)\) is a hypergroup, then \(\beta^* = \beta \) [7]. The relation \(\beta^* \) is called the fundamental relation on \(H \) and \(H/\beta^* \) is called the fundamental group. Let \((H, \circ)\) be a semihypergroup and \(A \) be a nonempty subset of \(H \). We say that \(A \) is a complete part of \(H \) if for any nonzero natural number \(n \) and for all \(a_1, a_2, \ldots, a_n \) of \(H \), the following implication holds:

\[
A \cap \prod_{i=1}^n a_i \neq \emptyset \Rightarrow \prod_{i=1}^n a_i \subseteq A.
\]

Let \((H, \circ)\) be a hypergroup and consider the canonical projection \(\phi_H : H \rightarrow H/\beta^* \). The heart of \(H \) is the set \(\omega_H = \{x \in H : \phi_H(x) = 1\} \), where 1 is the identity of the group \(H/\beta^* \). It is seen that \(\omega_H \) is a complete part as well as a subhypergroup of \(H \) [5]. A nonempty subset \(A \) of \(H \) is a complete part if and only if \(\omega_H \circ A = A \). Also, \(\omega_H = \bigcap_{K \in \text{CPS}(H)} K \), where \(\text{CPS}(H) \) denotes the class of all complete part subhypergroups of \(H \). Let \(A \) be a nonempty subset of \(H \). The intersection of the complete parts of \(H \) containing \(A \) is called the complete closure of \(A \) in \(H \); it is denoted by \(C(A) \).

A semihypergroup \(H \) is complete, if it satisfies one of the following conditions:

1. \(\forall (x, y) \in H^2, \forall a \in x \circ y, C(a) = x \circ y; \)
2. \(\forall (x, y) \in H^2, C(x \circ y) = x \circ y; \)
3. \(\forall (m, n) \in N^2, 2 \leq m, n, \forall (x_1, x_2, \ldots, x_n) \in H^n, \forall (y_1, y_2, \ldots, y_m) \in H^m, \)

\[
\prod_{i=1}^n x_i \cap \prod_{j=1}^m y_j \neq \emptyset \Rightarrow \prod_{i=1}^n x_i = \prod_{j=1}^m y_j.
\]

A hypergroup \(H \) is complete if it is a complete semihypergroup. If \((H, \circ)\) is a complete semihypergroup, then either there exist \(a, b \in H \) such that \(\beta^*(a) = a \circ b \) or \(\beta^*(x) = \{x\} \). An element \(e \) of a hypergroup \((H, \circ)\) is called an identity if \(a \circ e \cap e \circ a = e \) for all \(a \in H \). An element \(x' \) is called an inverse of \(x \) in \(H \) if there exists an identity \(e \) in \(H \) such that \(e \in x \circ x' \cap x' \circ x \). A hypergroup \(H \) is said to be regular if it has at least one identity and every element has at least one inverse. A regular hypergroup \(H \) is said to be reversible if \(\forall(a, b, x) \in H^3 \)

such that \(a \in b \circ x \) and \(a \circ b \Rightarrow \exists x', x'' \in i(x) \) such that \(b \in a \circ x' \) and \(b \in x'' \circ a \), respectively, where \(i(x) \) denote the set of inverses of \(x \) [4]. A mapping \(f \) from a hypergroup \((H_1, \circ)\) to a hypergroup \((H_2, \star)\) is called

1. a homomorphism if for all \(x, y \) of \(H \), we have \(f(x \circ y) \subseteq f(x) \star f(y) \);
2. a good homomorphism if for all \(x, y \) of \(H \), we have \(f(x \circ y) = f(x) \star f(y) \).

Theorem 1.1. ([5]) If \((H, \circ)\) is a complete hypergroup, then

1. \(\omega_H = \{e \in H : \forall x \in H, x \in e \circ e \cap e \circ x\} \), which means that \(\omega_H \) is the set of two-sided identities of \(H \).
2. \(H \) is regular and reversible.
Lemma 1.2. ([10]) Let \((H, \tau)\) be a topological space, then the family \(B\) consisting of all \(S_V = \{U \in \mathcal{P}(H) : U \subseteq V\}, V \in \tau\) is a base for a topology on \(\mathcal{P}\). This topology is denoted by \(\tau\).

Definition 1.3. ([8]) Let \((H, \circ, \tau)\) be a topological group. Then the system \((H, \circ, \tau)\) is called a topological hypergroup if with respect to the product topology on \(H \times H\) and the topology \(\tau\) on \(\mathcal{P}\).\(\)

- the mapping \((x, y) \mapsto x \circ y\) from \(H \times H\) to \(\mathcal{P}\) and
- the mapping \((x, y) \mapsto x/y\) from \(H \times H\) to \(\mathcal{P}\)

are continuous, where \(x/y := \{z \in H : x \in z \circ y\}\).

For any nonempty subsets \(A, B\) of a hypergroup \((H, \circ)\), \(A/B\) is defined as \(\cup\{a/b : a \in A, b \in B\}\).

Lemma 1.4. ([8]) Let \((H, \circ)\) be a hypergroup and \(\tau\) be a topology on \(H\). Then the following assertions hold:

1. the mapping \((x, y) \mapsto x \circ y\) is continuous if and only if for every \(x, y \in H\) and \(U \in \tau\) such that \(x \circ y \subseteq U\), there exist \(V, W \in \tau\) such that \(x \in V, y \in W\) and \(V \circ W \subseteq U\);
2. the mapping \((x, y) \mapsto x/y\) is continuous if and only if for every \(x, y \in H\) and \(U \in \tau\) such that \(x/y \subseteq U\), there exist \(V, W \in \tau\) such that \(x \in V, y \in W\) and \(V/W \subseteq U\).

2. Compactness in Topological Hypergroups with Special Emphasis on Topological Complete Hypergroups

In case of topological groups the translation maps are homeomorphisms, but for topological hypergroups they are continuous in general as shown by the following Lemma 2.1, which will be used in sequel.

Lemma 2.1. Let \((H, \circ, \tau)\) be a topological hypergroup. Then the following translation maps

\[L_a : H \rightarrow \mathcal{P} \quad \text{by} \quad x \mapsto a \circ x \quad \text{and} \quad R_a : H \rightarrow \mathcal{P} \quad \text{by} \quad x \mapsto x \circ a \]

are continuous for every \(a \in H\).

Proof. Let \(U \in \tau\) such that \(a \circ x \subseteq U\). Then by the continuity of the mapping \((x, y) \mapsto x \circ y, \exists V, W \in \tau\) such that \(a \in V\) and \(x \in W\) and \(V \circ W \subseteq U\). This implies that \(a \circ W \subseteq V \circ W \subseteq U\). This shows that \(L_a\) is continuous on \(H\). Continuity of \(R_a\) can be shown in a similar way. \(\square\)

Example 2.2. Consider the translation map \(L_2\) on the topological hypergroup \((\mathbb{R}, \circ, \tau)\), where the hyperoperation \(\circ\) is defined as, \(x \circ y = \{x, y\}\) for every \(x, y \in \mathbb{R}\) and \(\tau\) is the standard topology on \(\mathbb{R}\). Here \(L_2((0, 1)) = (0, 1) \cup \{2\}\) which shows that \(L_2\) is not a homeomorphism.

Definition 2.3. Let \((H, \circ, \tau)\) be a topological hypergroup. We say \(H\) is a compact Hausdorff topological hypergroup if \((H, \tau)\) is compact as well as a Hausdorff space.

Example 2.4. As in [8] if \((X, \tau)\) is a Hausdorff topological space, then \((X, \circ, \tau)\) is a topological hypergroup with respect to the hyperoperation \(\circ\), defined as, for every \(x, y \in X\), \(x \circ y = \{x, y\}\). So for every compact Hausdorff space \((X, \tau)\) one can find a compact Hausdorff topological hypergroup. For instance, let \(X = [0, 1]\) and consider the standard topology \(\tau_0\) on it. Then \((X, \circ, \tau_0)\) is a compact Hausdorff topological hypergroup.

Theorem 2.5. Let \((H, \circ, \tau)\) be a compact Hausdorff topological hypergroup and \(K\) be a subset of \(H\). Then \(x \circ K = x \circ \overline{K}\), for all \(x \in H\).
Proof. Using Lemma 2.1 we have $x \circ K \subseteq y \circ K$, $\forall x \in H$. To prove $x \circ K \subseteq y \circ K$, let $p \in x \circ K$. Now, $p \in x \circ K$ $\Rightarrow p \in x \circ K$ but if $p \notin x \circ K$, then p is a limit point of $x \circ K$. Let $U \in \tau$ such that $p \in U$, then $x \circ K \cap U \neq \varnothing$ $\Rightarrow x \circ K \cap U \neq \varnothing$ $\Rightarrow p$ is a limit point of $x \circ K$ $\Rightarrow p \in x \circ K$. Now, we show that $x \circ K = x \circ K$, i.e., $x \circ K$ is closed. Here K is compact for being a closed subset of the compact space H. Also, $x \circ K$ is compact, since translation maps are continuous (by Lemma 2.1). So being a compact subset of a Hausdorff space, $x \circ K$ is closed. Hence, $x \circ K \subseteq x \circ K$. Thus, we conclude that $x \circ K = x \circ K$. \qed

Hausdorffness of hypergroup is necessary in Theorem 2.5 as it is illustrated in the following example.

Example 2.6. Let $H = \{1, 2\}$ and a hyperoperation \circ on H is defined as follows

\[
\begin{array}{c|cc}
\circ & 1 & 2 \\
\hline
1 & 1 & [2] \\
2 & [2] & [1,2] \\
\end{array}
\]

Then (H, \circ) is a hypergroup. If $\tau = (\phi, \{1\}, \{1, 2\})$, then (H, \circ, τ) is a compact topological hypergroup and it is not Hausdorff. Now if $A = \{1\}$, then $A = \{1, 2\}$, $2 \circ A = \{2\}$ and $2 \circ A = \{2\}$. But we have $2 \circ A = \{1, 2\}$.

Necessity of the compactness of hypergroup in Theorem 2.5 is shown by the example below.

Example 2.7. Consider the set of real numbers \mathbb{R}. For all $x, y \in \mathbb{R}$, we define a hyperoperation as

\[
x \circ y = \begin{cases}
(-\infty, x] & \text{if } x = y, \\
\text{max}\{x, y\} & \text{if } x \neq y,
\end{cases}
\]

then (\mathbb{R}, \circ) is a hypergroup. Now consider the upper limit topology τ_{up} on \mathbb{R}, then $(\mathbb{R}, \circ, \tau_{up})$ is a Hausdorff topological hypergroup and it is not compact. Now if $A = (2, 3)$, then $3 \circ A = 3 \circ (2, 3] = (-\infty, 3]$. But we have $3 \circ A = 3 \circ [2, 3] = [3] = [3].$

Proposition 2.8. Let (H, \circ, τ) be a topological hypergroup and A, B be compact subsets of H. Then, $A \circ B$ is compact.

Proof. Since A, B are compact subsets of H, it follows that $A \times B$ is compact subset of $H \times H$ with respect to the product topology induced from the topology τ on H. Now, the continuity of the map $(x, y) \mapsto x \circ y$ implies that $A \circ B$ is compact. \qed

Example 5 in [8] shows that, unlike in topological groups, translation of open sets may not be open in topological hypergroups. In the later part of this paper we see that how this difference may be avoided by restricting the domain of thoughts into a special class of topological hypergroups which we call topological complete hypergroups. Before that we state a result in the form of a proposition on complete hypergroup which will be used frequently.

Proposition 2.9. Let A and B be nonempty subsets of a complete hypergroup (H, \circ) such that A is a complete part and $x \in H$. Then,

(1) $x^{-1} \circ x \circ A = x \circ x^{-1} \circ A = A$, where $x^{-1} \in i(x)$;

(2) $x \circ A$ and $A \circ x$ are complete parts;

(3) $B \subseteq x^{-1} \circ A$ if and only if $x \circ B \subseteq A$, where $x^{-1} \in i(x)$.

Proof. The proof is omitted. \qed

Definition 2.10. Let (H, \circ, τ) be a topological hypergroup. Then, we say H is a topological complete hypergroup if H is a complete hypergroup. Also, we say H is a topological regular hypergroup if H is a regular hypergroup.
Note that in this section the completeness and regularity of a topological hypergroup are purely algebraic.

Corollary 2.11. Every topological complete hypergroup is a topological regular hypergroup (by Theorem 1.1).

Evidently, every topological group is a topological complete hypergroup. Here, we present some other examples.

Example 2.12. The total hypergroup \((H, \circ) \) (i.e., for all \(x, y \in H, x \circ y = H \)) with an arbitrary topology is a topological complete hypergroup.

Example 2.13. Consider the set of integers \(\mathbb{Z} \) with the hyperoperation \(\ast \) on it as

\[
m \ast n = \begin{cases} 2\mathbb{Z} & \text{if } m + n \in 2\mathbb{Z} \\ (2\mathbb{Z})^c & \text{otherwise,} \end{cases}
\]

then \((\mathbb{Z}, \ast)\) is a complete hypergroup. Let \(\tau = [\phi, 2\mathbb{Z}, (2\mathbb{Z})^c, \mathbb{Z}] \). Then \(\tau \) is a topology on \(\mathbb{Z} \), and \((\mathbb{Z}, \ast, \tau)\) is a topological complete hypergroup.

Example 2.14. Consider the topological group \((\mathbb{Z}, +, \tau)\), where \(\tau \) is the subspace topology on \(\mathbb{Z} \) induced by the standard topology on \(\mathbb{R} \). Now for \(n \in \mathbb{Z}^+ \), let \(\mathbb{Z}_n = \{0, 1, \ldots, n-1\} \) be the set of all congruence classes of integers modulo \(n \). For all \(a, b \in \mathbb{Z}_n \), we define the hyperoperation \(a \circ b = \overline{a+b} \), then \((\mathbb{Z}_n, \circ, \tau_{\mathbb{Z}_n})\) is a topological complete hypergroup, where \(\tau_{\mathbb{Z}_n} = \{ \bigcup x : U \in \tau \} \).

Note that every open subset of the topological complete hypergroups shown by Example 2.13 and Example 2.14 is a complete part. Now, let's develop a tool which will be used after a while.

Lemma 2.15. Let \(U \) be an open subset of a topological complete hypergroup \((H, \circ, \tau)\) such that \(U \) is a complete part. Then, \(a \circ U \) and \(U \circ a \) are open subsets of \(H \) for every \(a \in H \).

Proof. Suppose \(U \) be an open subset as well as a complete part of \(H \) and \(a \in H \). Then, for some \(a^{-1} \in i(a) \) we have

\[
L_{a^{-1}}^{-1}(S_U) = \{ x \in H : L_{a^{-1}}(x) \in S_U \} = \{ x \in H : a^{-1} \circ x \subseteq U \}.
\]

We claim that \(\{ x \in H : a^{-1} \circ x \subseteq U \} = a \circ U \). For, let \(p \in \{ x \in H : a^{-1} \circ x \subseteq U \} \), then \(a^{-1} \circ p \subseteq U \). Now, there exists \(e \in \omega_H \) such that \(e \in a \circ a^{-1} \) and this implies that \(p \in e \circ p \subseteq a \circ a^{-1} \circ p \subseteq a \circ U \).

For the converse, let

\[
t \in a \circ U \Rightarrow t \in a \circ u \text{ for some } u \in U
\]

\[
\Rightarrow u \in a^{-1} \circ t \text{ for some } a^{-1} \in i(a)
\]

\[
\Rightarrow u \in a^{-1} \circ t \subseteq a^{-1} \circ a \circ a^{-1} \circ t = \omega_H \circ a^{-1} \circ t = C(a^{-1} \circ t) = a^{-1} \circ t
\]

\[
\Rightarrow a^{-1} \circ t \cap U \neq \emptyset
\]

\[
\Rightarrow a^{-1} \circ t \subseteq U, \text{ since } U \text{ is a complete part of } H.
\]

\[
\Rightarrow t \in \{ x \in H : a^{-1} \circ x \subseteq U \}.
\]

Hence, \(L_{a^{-1}}^{-1}(S_U) = a \circ U \). Since the translation maps are continuous, it follows that \(a \circ U \) is open in \(H \).

Similarly, \(U \circ a \) is open in \(H \).

Theorem 2.16. Let \(H \) be a topological complete hypergroup and \(A, B \) be open subsets of \(H \). If \(A \) or \(B \) is a complete part of \(H \), \(A \circ B \) is open.

Proof. Suppose that \(A \) is a complete part of \(H \), then \(A \circ b \) is open (by Lemma 2.15). Now, \(A \circ B = \bigcup_{b \in B} A \circ b \), this shows that \(A \circ B \) is open.
Lemma 2.17. Let H be a topological complete hypergroup such that every open subset of H is a complete part. Let \mathcal{U} be a basis at some identity e. Then, the families $\{x \circ U : x \in H, U \in \mathcal{U}\}$ and $\{U \circ x : x \in H, U \in \mathcal{U}\}$ are basis for H.

Proof. Let W be an open subset of H and $a \in W$. Then, there exists $a' \in \omega(a)$ such that $e \in \omega_{W} = a' \circ a \subseteq a' \circ W$. Since \mathcal{U} is a basis at e, there exists $U \in \mathcal{U}$ such that $e \in U \subseteq a' \circ W$. This implies $a \in a \circ U \subseteq a \circ a' \circ W = W$ (by Proposition 2.9), i.e., $a \in a \circ U \subseteq W$. This shows that $\{x \circ U : x \in H, U \in \mathcal{U}\}$ is a basis for H.

Similarly, $\{U \circ x : x \in H, U \in \mathcal{U}\}$ is also a basis for H. □

Lemma 2.18. Let H be a topological complete hypergroup such that every open subset of it is a complete part and \mathcal{U} be a basis at some identity e. Then, the following assertions hold:

1. for every $W \in \tau$ with $x \in W$, there exists $V \in \mathcal{U}$ such that $x \circ V \subseteq W$ and $V \circ x \subseteq W$;

2. for every $U \in \mathcal{U}$, there exists $V \in \mathcal{U}$ such that $V \circ V \subseteq U$.

Proof. (1) Suppose that $W \in \tau$ with $x \in W$. Then, there exists $x' \in \omega(x)$ such that $e \in \omega_{W} = x' \circ x \subseteq x' \circ W$. Since \mathcal{U} is a basis at e, there exists $V \in \mathcal{U}$ such that $e \in V \subseteq x' \circ W$. This implies $x \circ V \subseteq W$ (by Proposition 2.9).

Similarly, we can show that there exists $V \in \mathcal{U}$ such that $V \circ x \subseteq W$.

(2) Suppose that $U \in \mathcal{U}$, then $e \in U$. Since U is a complete part of H, it follows that $e \circ e \subseteq U$. So by the continuity of the map $(x, y) \mapsto x \circ y$ there exists $V \in \tau$ such that $e \in V$, i.e., $V \in \mathcal{U}$ such that $V \circ V \subseteq U$. □

Theorem 2.19. Let (H, \circ, τ) be a topological complete hypergroup such that every open subset of it is a complete part. If A and B are two nonempty subsets of H, then

1. $\overline{A \circ B} \subseteq \overline{A \circ B}$;

2. $\text{Int}(A \circ B) \subseteq \text{Int}(A \circ B)$, where $\text{Int}(A)$ denotes the interior of the subset A.

Proof. (1) The map $f(x, y) = x \circ y$ is continuous from $H \times H$ to $\mathcal{P}(H)$, then $(\overline{A \circ B}) \subseteq \overline{f(A \times B)} = \overline{A \circ B} \subseteq \overline{A \circ B}$.

(2) Let $p \in \text{Int}(A \circ B)$, then $p \in a \circ b$ for some $a \in \text{Int}(A)$ and $b \in \text{Int}(B)$. Since a and b are interior points of A and B, respectively, there exist $U, V \in \tau$ such that $a \in U \subseteq A$ and $b \in V \subseteq B$ $\Rightarrow p \in a \circ b \subseteq U \circ V \subseteq A \circ B \Rightarrow p \in \text{Int}(A \circ B)$, since $U \circ V$ is open (by Theorem 2.16). Thus, $\text{Int}(A \circ B) \subseteq \text{Int}(A \circ B)$. □

Theorem 2.20. Let H be a topological complete hypergroup such that every open subset of it is a complete part. Let F be a compact subset of H and P be a closed subset of H such that $F \cap P = \emptyset$. Then, there exists an open neighborhood V containing some identity e such that $F \cup V \cup P = \emptyset$. $V \cup F \cup P = \emptyset$.

Proof. Since P is closed, it follows that for each $x \in F$ there exists an open neighborhood V_{x} of some identity e in H such that $x \circ V_{x} \cap P = \emptyset$. By Lemma 2.18 there exists an open neighborhood W_{x} of e such that $W_{x} \circ W_{x} \subseteq V_{x}$.

Now, $\{x \circ W_{x} : x \in F\}$ is an open cover for the compact set F, so there exist $x_{1}, x_{2}, ..., x_{n} \in F$ such that $F \subseteq \bigcup_{i=1}^{n} x_{i} \circ W_{x_{i}}$.

Let $V_{1} = \bigcup_{i=1}^{n} W_{x_{i}}$. We claim that $F \cup V_{1} \cup P = \emptyset$. It suffices to verify that $y \circ V_{1} \cap P = \emptyset$ for each $y \in F$. Let $y \in F$, then $y \in x_{k} \circ W_{x_{k}}$ for some $k \in \{1, 2, ..., n\}$ and $y \circ V_{1} \subseteq (x_{k} \circ W_{x_{k}}) \circ V_{1} \subseteq x_{k} \circ (W_{x_{k}} \circ W_{x_{k}}) \subseteq x_{k} \circ V_{x_{k}} \subseteq H \setminus P$, by our choice of the sets V_{x} and W_{x}. This proves that $F \cup V_{1}$ and P are disjoint.

Similarly, one can find an open neighborhood V_{2} of e in H such that $V_{2} \circ F \cap P = \emptyset$. Then, the set $V = V_{1} \cup V_{2}$ is the required open neighborhood of e. □

Theorem 2.21. Let (H_{1}, \circ, τ) and (H_{2}, \ast, τ') be two topological complete hypergroups such that every open subset of them is a complete part. Let f be a homomorphism from H_{1} into H_{2}. Then, f is continuous if and only if it is continuous at some identity of H_{1}.

M. Singha et al. / Filomat 31:16 (2017), 5045–5056
Proof. If f is continuous, then the condition is obvious.

For the converse, let the map f be continuous at some identity e of H_1. Let $x \in H_1$ and W be an open set containing $f(x)$ in H_2. Since W is a complete part, $f(x) \in W \Rightarrow f(x) \ast f(e) \subseteq W$. By the continuity of translation map there exists an open set V in H_2 such that $f(e) \in V$ and $f(x) \ast V \subseteq W$. Since f is continuous at e, it follows that there exists an open set U containing e such that $f(U) \subseteq V$. Now, $f(x \ast U) \subseteq f(x) \ast f(U) \subseteq f(x) \ast V \subseteq W$. This shows that f is continuous on H_1. \hfill \Box

Theorem 2.22. Let (H_1, \circ, τ) and (H_2, \ast, τ') be two topological complete hypergroups such that every open subset of them is a complete part. Also let f be a good homomorphism from H_1 into H_2. Then, f is an open map if and only if for every open set V containing some identity e_1 of H_1, $f(V)$ is open in H_2 containing some identity e_2.

Proof. If f is an open map, then the condition holds as $f(e_{H_1}) = e_{H_2}$.

For the converse, let the given condition holds. Let U be an open set in H_1. We show $f(U)$ is open in H_2. Let $y \in f(U)$, then $y = f(x)$ for some $x \in U$. Since $x \in U$, there exists an open neighborhood V of some identity e_1 such that $x \in x \circ V \subseteq U$ (By Lemma 2.18). Then, $y = f(x) \subseteq f(x) \ast f(V) = f(x \circ V) \subseteq f(U)$. Since $f(V)$ is open in H_2 containing e_2, $f(U)$ is open and hence f is an open map. \hfill \Box

Now, let us define a special kind of identity element in a regular hypergroup.

Definition 2.23. Let (H, \circ) be a regular hypergroup. Let e be an identity in H and $g \in H$. We say e is related to g if $\exists g' \in i(g)$ such that $e \in g \circ g' \cap g' \circ g$.

We say an identity e is related to H or a related identity of H if it is related to every element of H, i.e., for every $g \in H$, $\exists g' \in i(g)$ such that $e \in g \circ g' \cap g' \circ g$.

Example 2.24. Consider the additive group $(\mathbb{Z}, +)$ of integers, and define the hyperoperation \circ on it as $m \circ n = \inf \{m + n, n \geq m\}$ the subgroup generated by m and n. Then, (\mathbb{Z}, \circ) is a regular hypergroup with 0 as a related identity.

Example 2.25. Consider the set of integers \mathbb{Z} with the hyperoperation \ast on it as

$$m \ast n = \begin{cases} 2\mathbb{Z} & \text{if } m + n \in 2\mathbb{Z} \\ (2\mathbb{Z})' & \text{otherwise.} \end{cases}$$

Then, (\mathbb{Z}, \ast) is a regular hypergroup with 0 as a related identity.

Let us develop some algebraic tools which will be used later in sequel.

Lemma 2.26. Every subhypergroup of a complete hypergroup is a complete part.

Proof. Let K be a subhypergroup of a complete hypergroup H. Now, $\omega_H \circ K = \omega_K \circ K = \bigcup_{x \in K} x \circ K = K$. This shows that K is a complete part of H. \hfill \Box

Corollary 2.27. Let K be a subhypergroup of a complete hypergroup H. Then, $\{x \circ K\}_{x \in H}$ and $\{K \circ x\}_{x \in H}$ are partitions for H.

Proof. By Lemma 2.26, K is a complete part subhypergroup of H. Since any complete part subhypergroup is invertible [5], it follows that $\{x \circ K\}_{x \in H}$ and $\{K \circ x\}_{x \in H}$ are partitions for H [5]. \hfill \Box

Theorem 2.28. Let K be a subhypergroup of a complete hypergroup H. Then, K is normal in H if and only if for every $k \in K$ and for every $x \in H$, $x \circ K \circ x^{-1} \subseteq K$, i.e., $x \circ K \circ x^{-1} \subseteq K$, where $x^{-1} \in i(x)$.

Proof. Let K be a normal subhypergroup of H. Now, for $x \in H$ and $k \in K$, $x \circ k \subseteq x \circ K = K \circ x$. Then, $x \circ k \circ x^{-1} \subseteq K \circ x \circ x^{-1} = K \circ \omega_H = K$ (by Lemma 2.26).

For the converse, suppose the given condition holds. Let $p \in x \circ K \Rightarrow p \in x \circ k$ for some $k \in K \Rightarrow p \in (x \circ k \circ x^{-1}) \circ x \subseteq K \circ x$. Therefore, we have $x \circ K \subseteq K \circ x$. Now, let $q \in K \circ x \Rightarrow q \in k_1 \circ x$ for some $k_1 \in K \Rightarrow q \in x \circ k_1 \circ x \Rightarrow q \in x \circ (k_1 \circ k_1^{-1}) \circ x^{-1} = x \circ K \circ \omega_H = x \circ K$ (by Lemma 2.26). Therefore, we have $K \circ x \subseteq x \circ K$. Hence, $x \circ K = K \circ x$ for every $x \in H$. This shows that K is normal in H. \hfill \Box
It is observed that if K is a normal subhypergroup of a complete hypergroup H, then for every $x \in H$ with $x^{-1} \in i(x)$, $x \circ K \circ x^{-1} = K \circ x \circ x^{-1} = K \circ \omega_H = K$ (by Lemma 2.26). Hence, the above theorem can be restated as follows:

Corollary 2.29. Let K be a subhypergroup of a complete hypergroup H. Then, K is normal in H if and only if for every $x \in H$, $x \circ K \circ x^{-1} = K$, where $x^{-1} \in i(x)$.

Proposition 2.30. Let (H, \circ) be a complete hypergroup and M,N are two normal subhypergroups of it. Then,

1. $(N \circ a) \circ (N \circ b) = N \circ (a \circ N) \circ b = N \circ N \circ b = N \circ a \circ b$.
2. $N \circ a = N \circ b$ if and only if $b \in N \circ a$.
3. $M \cap N$ is a normal subhypergroup of H.

Proof.
1. First we suppose $N \circ a = N \circ b$. Then, $b \in \omega_N \circ b \subseteq N \circ b = N \circ a$.

For the converse, let $b \in N \circ a$. Then, $N \circ b \subseteq N \circ N \circ a = N \circ a$. Since any complete part subhypergroup is invertible [5], it follows that $b \in N \circ a \Rightarrow a \in N \circ b$. So, $N \circ a \subseteq N \circ N \circ b = N \circ b$ and hence $N \circ a = N \circ b$.

3. Being complete part subhypergroups of H (by Lemma 2.26), M,N are invertible and hence closed [5]. Since $\omega_M = \omega_N = \omega_H$, it follows that the intersection of M,N is nonempty. Therefore, $M \cap N$ is a closed subhypergroup of H [13]. Since M,N are normal in H, it follows that for $x \in H$ with $x^{-1} \in i(x)$ we have $x \circ M \circ x^{-1} \subseteq M$ and $x \circ N \circ x^{-1} \subseteq N$. So, for $x \in H$ with $x^{-1} \in i(x)$ we have $x \circ (M \cap N) \circ x^{-1} \subseteq M \cap N$. This shows that $M \cap N$ is normal in H. □

Now, we show that the component(or connected component) of an element can be obtained from the component of its related identity by using translation map in a topological regular hypergroup. In a topological hypergroup, we use the notation C_g to denote the component of g.

Lemma 2.31. Let (H, \circ, τ) be a topological regular hypergroup. Then, for each $g \in H$, $L_g(C_e) = C_g$, where e is an identity related to g.

Proof. $L_g(C_e)$ is a continuous image of C_e, so it is connected and $g \in L_g(C_e)$, so $L_g(C_e) \subseteq C_g$ as C_g is the maximal connected set containing g. Since e is an identity related to g, there exists $g' \in i(g)$ such that $e \in g' \circ g \circ g'$. This shows that $L_g(C_g)$ is a connected set containing e, so $L_g(C_g) \subseteq C_e$. This implies $C_g \subseteq g \circ g' \circ C_g = L_g(L_g(C_g)) \subseteq L_g(C_e)$. Hence, $L_g(C_e) = C_g$. □

Theorem 2.32. Let (H, \circ, τ) be a topological regular hypergroup and e be an identity related to H. Then, C_e is a closed(topologically) subhypergroup. Furthermore, if H is a complete hypergroup, then C_e is a normal subhypergroup of H.

Proof. Being the component of e, C_e is a closed set. We prove C_e is a subhypergroup. Let $g,h \in C_e$. Then, $g \circ C_e$ is a connected set containing g and $g \circ h$, i.e., $g \circ h \subseteq g \circ C_e$, so $g \circ h \subseteq C_e$.

Let $g \in C_e$, then $g \circ C_e = C_g = C_e$ (By Lemma 2.31). Similarly, $C_g \circ g = C_e$ for all $g \in C_e$. Hence, C_e is a subhypergroup of H.

Now, suppose H is a complete hypergroup. For $g \in H$, $C_e \circ g'$ is connected, where $g' \in i(g)$, so $g \circ C_e \circ g'$ is connected and contains e. Hence, $g \circ C_e \circ g' \subseteq C_e$. This shows that C_e is normal in H (by Theorem 2.28). □

Let us introduce topological subhypergroup.

Definition 2.33. Let H be a topological hypergroup and K be a subhypergroup of H. Let K be endowed with relative topology induced from H. Since the mappings $(x,y) \mapsto x \circ y$ and $(x,y) \mapsto x/y$ of $H \times H$ into $\mathcal{P}(H)$ are continuous, so are their restrictions from $K \times K$ into $\mathcal{P}(K)$. Thus, K is a topological hypergroup endowed with relative topology. In this case, K is called a topological subhypergroup.
Proposition 2.34. Let $(H, o, τ)$ be a topological hypergroup such that every open subset of it is a complete part and K be a subhypergroup of H. Then, every open subset of K is a complete part.

Proof. Let U be an open subset of K and for $n \in \mathbb{N}$, $\prod_{i=1}^{n} a_i \cap U \neq \emptyset$, where $a_i \in K$. Then, there exists $V \in τ$ such that $U = V \cap K$. Therefore, $\prod_{i=1}^{n} a_i \cap V \neq \emptyset$ and so, $\prod_{i=1}^{n} a_i \subseteq V$. Also, $\prod_{i=1}^{n} a_i \subseteq K$ and hence $\prod_{i=1}^{n} a_i \subseteq V \cap K = U$. This shows that U is a complete part of K. \qed

Theorem 2.35. Let $(H, o, τ)$ be a topological complete hypergroup. Then, every open subhypergroup is closed (topologically).

Proof. Let K be an open subhypergroup of H, then $x \circ K$ is open for every $x \in H$, since K is a complete part of H. Now, $\{x \circ K\}_{x \in H}$ is a partition for H (by Corollary 2.27). So, we can write $H = \bigcup_{x \in K} x \circ K = (\bigcup_{x \in K} x \circ K) \cup (\bigcup_{x \in K} x \circ K) = H \cup (\bigcup_{x \in K} x \circ K)$. This implies $K = H \setminus (\bigcup_{x \in K} x \circ K)$ and hence K is closed. \qed

Lemma 2.36. Every subhypergroup of a complete hypergroup is complete.

Proof. Let K be a subhypergroup of a complete hypergroup (H, o). Now, for $x, y \in K$, $C(x \circ y) = (x \circ y) \circ o_K = (x \circ y) \circ o_H = x \circ y$. This shows that K is a complete subhypergroup of H. \qed

Theorem 2.37. Let $(H, o, τ)$ be a topological complete hypergroup such that every open subset of it is a complete part and K be a subhypergroup of H. Then, K is open if and only if its interior $IntK \neq \emptyset$.

Proof. Let $IntK \neq \emptyset$ and $x \in IntK$. Then, there exists an open set U containing some identity e of H such that $x \circ o U \subseteq K$. Now, take any $y \in K$, then $x \circ o U \subseteq y \circ x^{-1} \circ o U \subseteq y \circ x^{-1} \circ o K = K$, since $x, y \in K$ and K is complete (by Lemma 2.36). This shows that K is open.

For the converse, let K be open, then $IntK \neq \emptyset$. \qed

Proposition 2.38. Let $(H, o, τ)$ be a topological complete hypergroup such that every open subset of it is a complete part and e be a related identity of H. Let U be the system of all neighborhoods of e, then for any subset A of H,

$$A = \bigcap_{U \in U} A/\{U\}$$

Proof. Let $x \in A$ and $U \in U$, $x \circ o U$ is a neighborhood of x, and hence $x \circ o U \cap A \neq \emptyset$. This implies there exist $a \in A$ and $u \in U$ such that $a \in x \circ o u$ and hence $x \circ o u \cap A \neq \emptyset$. Therefore, $A \subseteq A/\{U\}$ and hence $A \subseteq \bigcap_{U \in U} A/\{U\}$.

For the converse, suppose $y \in A/\{U\}$ for every $U \in U$. Now, for any open neighborhood V of y, there exists $y^{-1} \in (y)$ such that $y^{-1} \circ o V$ contains e and hence $y^{-1} \circ o V \in \{U\}$. This implies that $y \in A/(y^{-1} \circ o V) \Rightarrow y \in a/w$ for some $a \in A$ and $w \in y^{-1} \circ o V \Rightarrow a \in y \circ o w \subseteq y \circ o y^{-1} \circ o V = V$ (by Proposition 2.9) $\Rightarrow V \cap A \neq \emptyset$ and hence $y \in A$. This completes the proof. \qed

Remark 2.39. Let (H, o) be a complete hypergroup and o_H be the heart of H. Then, for every $e \in o_H$ we have $e/e = o_H$.

For, let $t \in e/e$, then $e \in t \circ e$. Also, $e \circ o e \subseteq e \circ o t \subseteq e \circ o \circ o_H = C(e \circ o t) = e \circ o t$. Now, we show that $t \in o_H$, i.e., t is a two sided identity of H. Let $x \in H$, then $x \circ e \circ o \subseteq x \circ o t \circ o = x \circ o \circ \circ o_H = C(x \circ o t) = x \circ o t$. This shows that t is a right identity of H. Similarly, $x \circ e \circ e \subseteq e \circ o x \subseteq o_H \circ o x = C(t \circ o x) = t \circ o x$. This shows that t is a right identity of H and hence $t \in o_H$. Also, $o_H \subseteq e/e$. Therefore, we obtain $e/e = o_H$.

Theorem 2.40. Let $(H, o, τ)$ be a topological complete hypergroup such that every open subset of it is a complete part and e be a related identity of H. Now, if U is an open neighborhood of e, then there exists an open neighborhood V of e such that $V \subseteq U$.

Proof. Since \(U \) is a complete part of \(H \) and \(e \in U \), it follows that \(\omega_U = e \circ e \subseteq U \). Again, \(e/e = \omega_H \), this implies that \(e/e \subseteq U \). So, by the continuity of the map \((x, y) \mapsto x/y\), there exists an open neighborhood \(\mathcal{V} \) of \(e \) such that \(\mathcal{V}/\mathcal{V} \subseteq U \). Now, by using Proposition 2.38 we have \(\overline{\mathcal{V}} \subseteq \mathcal{V}/\mathcal{V} \subseteq U \), i.e., \(\overline{\mathcal{V}} \subseteq U \). \(\square \)

Corollary 2.41. Let \((H, \circ, \tau)\) be a topological complete hypergroup such that every open subset of it is a complete part and \(e \) be a related identity of \(H \). Then, \(H \) is locally compact if and only if there exists a compact neighborhood of \(e \).

Proof. Suppose that \(H \) is locally compact. Then, by the definition of locally compactness, there exists a compact neighborhood of \(e \).

For the converse, suppose that \(U \) be a compact neighborhood of \(e \). Then, by Theorem 2.40, there exists an open neighborhood \(\mathcal{V} \) of \(e \) such that \(\overline{\mathcal{V}} \subseteq U \). Now, being a closed subset of a compact set, \(\overline{\mathcal{V}} \) is compact. So, for each \(x \in H \), \(x \circ \overline{\mathcal{V}} \) is a compact neighborhood of \(x \). This completes the proof. \(\square \)

Let \((H, \circ)\) be a complete hypergroup and \(K \) be a normal subhypergroup of \(H \). By \(H/K \) we denote the collection of all left(or right) cosets of \(K \) in \(H \), i.e., \(H/K = \{K \circ x : x \in H\} \).

Proposition 2.42. Let \((H, \circ)\) be a complete hypergroup and \(K \) be a normal subhypergroup of \(H \). Then, \(H/K \) forms a hypergroup with respect to the operation \(\circ \) defined by \(K \circ x \circ K \circ y = \{K \circ z : z \in x \circ y\} \).

Proof. Let us check for associativity of \(\circ \) on \(H/K \). For all \(x, y, z \in H \), we have

\[
(K \circ x \circ K \circ y) \circ K \circ z = [K \circ u : u \in x \circ y] \circ K \circ z
\]

\[
= [K \circ v : \exists u \in x \circ y, v \in u \circ z]
\]

\[
= [K \circ v : \exists x \in (x \circ y) \circ z],
\]

\[
K \circ x \circ (K \circ y \circ K \circ z) = K \circ x \circ [K \circ u : u \in y \circ z]
\]

\[
= [K \circ v : \exists u \in y \circ z, v \in x \circ u]
\]

\[
= [K \circ v : \exists x \in (x \circ y) \circ z].
\]

Since \((x \circ y) \circ z = x \circ (y \circ z)\), it follows that \((K \circ x \circ K \circ y) \circ K \circ z = K \circ x \circ (K \circ y \circ K \circ z)\).

Now, for reproduction axiom let \(K \circ x \in H/K \), then we have

\[
K \circ x \circ H/K = [K \circ v : v \in x \circ y, y \in H]
\]

\[
= [K \circ v : v \in x \circ H = H]
\]

\[
= H/K.
\]

Similarly, we have \(H/K \circ K \circ x = H/K \). Therefore, \((H/K, \circ)\) is a hypergroup. \(\square \)

Let \(\phi \) be the natural mapping \(x \mapsto K \circ x \) of \(H \) onto \(H/K \). Then, \((H/K, \tau)\) is a topological space, where \(\tau \) is the quotient topology induced by \(\phi \). i.e., for every subset \(X \) of \(H \), \(\{K \circ x : x \in X\} \) is open in \(H/K \) if and only if \(\phi^{-1}(\{K \circ x : x \in X\}) \) is an open subset of \(H \). We use the notation \(X/K \) to denote the set \(\{K \circ x : x \in X\} \).

Lemma 2.43. Let \((H, \circ, \tau)\) be a topological complete hypergroup and \(K \) be a normal subhypergroup of it. Let \(\phi \) be the natural mapping \(x \mapsto K \circ x \) of \(H \) onto \(H/K \). Then,

1. \(\phi \) is continuous;
2. \(\phi^{-1}(\{K \circ x : x \in X\}) = K \circ X \) for every subset \(X \) of \(H \);
3. If every open subset of \(H \) is a complete part, then \(\phi \) is open;
4. \(\phi \) is a good homomorphism;
5. If \(H \) is compact, then \(H/K \) is compact;
If every open subset of \(H \) is a complete part, then the quotient topology is the finest topology on \(H/K \) with respect to which \(\phi \) is continuous.

Proof. (1) \(\phi \) is continuous by the definition of quotient topology.

(2) We have \(K \circ x \subseteq \phi^{-1}(K \circ x : x \in X) \) for every subset \(X \) of \(H \). For the converse, let \(y \in \phi^{-1}(K \circ x : x \in X) \). Then, \(\phi(y) = K \circ y \in (K \circ x : x \in X) \). So, \(K \circ x = K \circ y \) for some \(x \in X \), then by Proposition 2.30, \(y \in K \circ x \subseteq K \circ X \). Thus, the equality holds.

(3) Let \(U \) be an open subset of \(H \). We show \(\phi(U) \) is open in \(H/K \). Here, \(\phi^{-1}(\phi(U)) = K \circ U \). Since \(U \) is a complete part of \(H \), it follows that \(K \circ U \) is open in \(H \) (by Lemma 2.15). Hence, \(\phi(U) \) is open in \(H/K \). This shows that \(\phi \) is open.

(4) Let \(x, y \in H \). Then, \(\phi(x \circ y) = (K \circ z : z \in x \circ y) = K \circ x \circ K \circ y \). This shows that \(\phi \) is a good homomorphism.

(5) We have \(\phi(H) = H/K \). So, being the continuous image of a compact set, \(H/K \) is compact.

(6) Let \(\tau \) be any other topology on \(H/K \) with respect to which \(\phi : H \to H/K \) is continuous. Now, for any open subset \(O \) of \(H/K \) there exists some open subset \(V \) of \(H \) such that \(O = V/K \). Here \(\phi^{-1}(O) = \phi^{-1}(V/K) = K \circ V \) is open in \(H \) (by Lemma 2.15). But by the definition of quotient topology, all such \(O \)'s are open in quotient topology. This shows that the quotient topology \(\tau \) is finer than \(\tau' \). This completes the proof.

Theorem 2.44. Let \(K \) be a normal subhypergroup of a topological complete hypergroup \((H, \circ, \tau)\) and every open subset of \(H \) is a complete part. Then, \((H/K, \circ, \tau)\) is a topological hypergroup, where \(K \circ x \circ K \circ y = (K \circ z : z \in x \circ y) \) and \(K \circ x/K \circ y = (K \circ z : z \in x/y) \).

Proof. Let us show that the hyperoperation \(\circ \) and \(/ \) are continuous on \(H/K \). Suppose \(K \circ x, K \circ y \in H/K \) and \(A \) be an open subset of \(H \) such that \(K \circ x \circ K \circ y \subseteq A \). Then, \(x \circ y \subseteq \phi^{-1}(A) \). Since \(\phi^{-1}(A) \) is open in \(H \), by the continuity of the map \((x, y) \to x \circ y \), there exist open subsets \(V \) and \(W \) containing \(x \) and \(y \) respectively, such that \(V \circ W \subseteq \phi^{-1}(A) \). Now, \(\phi(V) \) and \(\phi(W) \) are open subsets of \(H/K \) containing \(K \circ x \) and \(K \circ y \) respectively, it follows that \(\phi(V) \circ \phi(W) \subseteq A \). Therefore, the hyperoperation \(\circ \) is continuous on \(H/K \).

Now, suppose \(B \) be an open subset of \(H/K \) and \(K \circ x/K \circ y \subseteq B \). Then, \(x/y \subseteq \phi^{-1}(B) \). Since \(\phi^{-1}(B) \) is open in \(H \), by the continuity of the map \((x, y) \to x/y \), there exist open subsets \(P \) and \(Q \) containing \(x \) and \(y \) respectively, such that \(P/Q \subseteq \phi^{-1}(B) \). Now, \(\phi(P) \) and \(\phi(Q) \) are open in \(H/K \) containing \(K \circ x \) and \(K \circ y \), respectively, it follows that \(\phi(P)/\phi(Q) \subseteq B \). Therefore, the hyperoperation \(/ \) is continuous on \(H/K \) and hence \((H/K, \circ, \tau)\) is a topological hypergroup.

Theorem 2.45. Let \((H, \circ, \tau)\) be a topological complete hypergroup such that every open subset of \(H \) is a complete part and \(K \) be a normal subhypergroup of it. Let \(\phi : H \to H/K \) be the natural mapping. Then, the family \(\{\phi(U \circ x) : U \in \mathcal{U}\} \) is a local base of the space \(H/K \) at the point \(K \circ x \in H/K \), where \(\mathcal{U} \) is a base for \(H \) at some identity \(e \).

Proof. Let \(U \subseteq \mathcal{U} \). Then, \(U \) is a complete part of \(H \) and so, \(U \circ x \) is open in \(H \) (by Lemma 2.15). Now, for every \(k \in K, k \circ (U \circ x) \) is open in \(H \). So, \(\phi^{-1}(\phi(U \circ x)) = K \circ (U \circ x) = \bigcup_{k \in K} k \circ (U \circ x) \) is an open subset of \(H \). Therefore, by Lemma 2.43, \(\phi(U \circ x) \) is open in \(H/K \). Now, suppose \(V \) be an open neighborhood of \(K \circ x \) in \(H/K \). Let us take \(\phi^{-1}(V) = W \), then \(W \) is an open subset of \(H \). Since \(K \circ x \subseteq V \), it follows that \(x \in \phi^{-1}(K \circ x) \subseteq \phi^{-1}(V) = W \). So, there exists \(U \in \mathcal{U} \) such that \(U \circ x \subseteq W \) (by Lemma 2.18). Therefore, \(K \circ x \subseteq \phi(U \circ x) \subseteq \phi(W) = V \). This shows that \(\{\phi(U \circ x) : U \in \mathcal{U}\} \) is a local base of the space \(H/K \) at the point \(K \circ x \).

Acknowledgement The authors are grateful to the referee for his valuable suggestions towards the modification, upgradation and reformation of the paper.

References

