Symmetric Difference Between Pseudo B-Fredholm Spectrum and Spectra Originated from Fredholm Theory

Abdelaziz Tajmouatia, Mohamed Amouchb, Mohammed Karmounia

aSidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar Al Mahraz, Laboratory of Mathematical Analysis and Applications Fez, Morocco
bDepartment of Mathematics University Chouaib Doukkali, Faculty of Sciences, Eljadida. 24000, Eljadida, Morocco

Abstract. In this paper, we continue the study of the pseudo B-Fredholm operators of Boasso, and the pseudo B-Weyl spectrum of Zariouh and Zguitti; in particular we find that the pseudo B-Weyl spectrum is empty whenever the pseudo B-Fredholm spectrum is, and look at the symmetric differences between the pseudo B-Weyl and other spectra.

1. Introduction and Preliminaries

Throughout, X denotes a complex Banach space and $\mathcal{B}(X)$ denotes the Banach algebra of all bounded linear operators on X. Berkani \cite{6} has defined $T \in \mathcal{B}(X)$ to be a “B-Fredholm operator” if there is an integer $n \geq 0$ for which the range $R(T^n) = T^n(X)$ is closed, while the restriction T_n to $R(T^n)$ is Fredholm in the usual sense, and then T to be “B-Weyl” if also the Fredholm operator T_n has index zero. The “B-Fredholm” and “B-Weyl” spectrum of $T \in \mathcal{B}(X)$ are now defined in the obvious way, as the Fredholm and Weyl spectrum of T_n. Berkani \cite{4} also showed that T is B-Fredholm if it has a direct sum decomposition $T = T_1 \oplus T_0$ with T_1 Fredholm and T_0 nilpotent; further \cite{5} this decomposition respects the index: T is B-Weyl iff T_1 is Weyl. Boasso \cite{7} has used the decomposition to extend the Berkani concept to “pseudo B” Fredholm and Weyl operators, $T = T_1 \oplus T_0 \in \mathcal{B}(X)$ for which T_1 is Fredholm, respectively Weyl, while T_0 is only quasinilpotent, see also \cite{28}. The pseudo B-Fredholm and pseudo B-Weyl spectrum are defined by

\[\sigma_{\text{pBF}}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not pseudo B-Fredholm} \} \]

\[\sigma_{\text{pBW}}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not pseudo B-Weyl} \} \]

For $T \in \mathcal{B}(X)$ we denote by T^*, $R(T)$, $N(T)$, $\sigma(T)$, respectively the adjoint, the range, the null space and the spectrum of T. Recall that $T \in \mathcal{B}(X)$ is said to have the single valued extension property at $\lambda_0 \in \mathbb{C}$ (SVEP for short) if for every open neighbourhood $U \subseteq \mathbb{C}$ of λ_0, the only analytic function $f : U \rightarrow X$ which satisfies the equation $(T - zI)f(z) = 0$ for all $z \in U$ is the function $f \equiv 0$. An operator T is said to
have the SVEP if T has the SVEP for every $\lambda \in \mathbb{C}$. Obviously, every operator $T \in \mathcal{B}(X)$ has the SVEP at every $\lambda \in \rho(T) = \mathbb{C} \setminus \sigma(T)$, hence T and T^* have the SVEP at every point of the boundary $\partial(\sigma(T))$ of the spectrum.

An operator $T \in \mathcal{B}(X)$ is said to be semi-regular, if $R(T)$ is closed and $N(T) \subseteq R^{\infty}(T) = \bigcap_{n \geq 0} R(T^n)$. The corresponding spectrum is the semi-regular spectrum $\sigma_{sr}(T)$ defined by $\sigma_{sr}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I$ is not semi-regular $\}$. see [1].

In the other hand, recall that an operator $T \in \mathcal{B}(X)$ admits a generalized Kato decomposition, (GKD for short), if there exists two closed T-invariant subspaces X_1, X_2 such that $X = X_1 \oplus X_2$, $T_1 = T|_{X_1}$ is semi-regular and $T_0 = T|_{X_2}$ is quasi-nilpotent, in this case T is said a pseudo Fredholm operator. If we assume in the definition above that $T_0 = T|_{X_2}$ is nilpotent, then T is said to be of Kato type. Clearly, every semi-regular operator is of Kato type and a quasi-nilpotent operator has a GKD, see [18, 21] for more information about generalized Kato decomposition.

Recall that $T \in \mathcal{B}(X)$ is said to be quasi-Fredholm if there exists $d \in \mathbb{N}$ such that

1. $R(T^d) \cap N(T) = R(T^d) \cap N(T^d)$ for all $n \geq d$;
2. $R(T^d) \cap N(T)$ and $R(T) + N(T^d)$ are closed in X.

An operator is quasi-Fredholm if it is quasi-Fredholm of some degree d. Note that semi-regular operators are quasi-Fredholm of degree 0 and by results of Labrousse [18], in the case of Hilbert spaces, the set of quasi-Fredholm operators coincides with the set of Kato type operators. For every bounded operator $T \in \mathcal{B}(X)$, let us define the generalized Kato spectrum as follows :

$$\sigma_{GK}(T) := \{ \lambda \in \mathbb{C} : T - \lambda I$ does not admit a generalized Kato decomposition$\}.$$

It is know that $\sigma_{GK}(T)$ is always a compact subsets of the complex plane contained in the spectrum $\sigma(T)$ of T [13, Corollary 2.3]. Note that $\sigma_{GK}(T)$ is not necessarily non-empty, see [13, 14] for more information about $\sigma_{GK}(T)$.

In [4], Berkani proved that every B-Fredholm operator in Hilbert space is a quasi-Fredholm operator. The proof is based on the decomposition of quasi-Fredholm operators of Labrousse [18] which was proved only for Hilbert-spaces operators. This gap was subsequently filled by Müller in [26, Theorem 7] and the result holds in more general setting of Banach space.

As a continuation of [7] and [28], in section two, we prove that every pseudo B-Fredholm operator is a pseudo-Fredholm operator. Also, we study the relationships between the class of pseudo B-Fredholm and other class of operator. we characterize when the pseudo B-Fredholm spectrum is empty or most countable. In section tree, we study the components of the complement of the pseudo B-Fredholm spectrum $\sigma_{pBF}(T)$, to obtain a classification of the components by using the constancy of the subspaces quasi-nilpotent part and analytic core. In the last section, we show that the symmetric difference $\sigma_{sr}(T) \Delta \sigma_{pBF}(T)$ is at most countable.

2. The Class of Pseudo B-Fredholm Operators

In the following theorem we prove that every pseudo B-Fredholm operator is pseudo Fredholm.

Theorem 2.1. Let $T \in \mathcal{B}(X)$. If T is pseudo B-Fredholm, then T is pseudo Fredholm.

Proof. Let $T \in \mathcal{B}(X)$. If T is pseudo B-Fredholm operator, then there exists two closed subsets M and N of X such that $X = M \oplus N$ and $T = T_1 \oplus T_2$ with $T_1 = T_{1M}$ is a Fredholm operator and $T_2 = T_{1N}$ is quasi-nilpotent. Since T_1 is Fredholm then T admits a Kato decomposition, hence there exists M', M'' two closed subsets of M such that $M = M' \oplus M''$, $T_1 = T'_1 \oplus T''_1$ with $T'_1 = T'_{1M'}$ is a semi-regular operator and $T''_1 = T'_{1M''}$ is nilpotent. Then $X = M' \oplus M'' \oplus N$, and $T = S \oplus R$ where $S = T'_1$ is a semi-regular operator and $R = T''_1 \oplus T_2$ is a quasi-nilpotent operator, hence T is a pseudo Fredholm operator.

The following example (Müller [25]) shows that the pseudo B-Fredholm operators form a proper subclass of the pseudo Fredholm operators.
Example 2.2. Let H be the Hilbert space with an orthonormal basis (e_{ij}), where i and j are integers such that $ij \leq 0$. Define operator $T \in \mathcal{B}(H)$ by:

$$T e_{ij} = \begin{cases}
0 & \text{if } i = 0, j > 0 \\
e_{i+1,j} & \text{Otherwise}
\end{cases}$$

We have $N(T) = \bigcup_{j \geq 0} \{e_{0,j}\} \subset \mathbb{R}^\infty(T)$ and $R(T)$ is closed, then T is a semi-regular operator but T is not a Fredholm operator, since $\dim N(T) = \infty$.

Let Q a quasinilpotent operator in H which is not nilpotent and no commute with T, then $S = T \oplus Q$ is a pseudo Fredholm operator but is not pseudo B-Fredholm operator, hence the class of pseudo B-Fredholm operator is a proper subclass of pseudo Fredholm operator.

Remark 2.3. In [28, Remark 2.5] and [8, Proposition 1.2], if T is a bilateral shift on l^2, then:

1. T is pseudo B-Weyl if and only if T is Weyl or T is quasi-nilpotent operator.
2. T is pseudo Fredholm if and only if T is semi-regular or T is quasi-nilpotent operator.

By the same argument we can prove:

1. T is pseudo B-Fredholm if and only if T is Fredholm or T is quasi-nilpotent operator.
2. T is generalized Drazin if and only if T is invertible or T is quasi-nilpotent operator.

Corollary 2.4. Let $T \in \mathcal{B}(X)$. Then

$$\sigma_{\text{GK}}(T) \subset \sigma_{\text{pBF}}(T) \subset \sigma_{\text{pBW}}(T)$$

Lemma 2.5. [22] Let $T \in \mathcal{B}(X)$ and let G a connected component of $\rho_{\infty}(T) = C \setminus \sigma_{\infty}(T)$. Then

$$G \setminus \sigma(T) \neq \emptyset \implies G \cap \sigma(T) = \emptyset$$

Lemma 2.6. [8] Let $T \in \mathcal{B}(X)$.

$$\sigma_{\infty}(T) \setminus \sigma_{\text{GK}}(T) \text{ is at most countable}$$

Since $\sigma_{\infty}(T) \setminus \sigma_{\text{pBF}}(T) \subset \sigma_{\infty}(T) \setminus \sigma_{\text{GK}}(T)$, we can easily obtain that:

Corollary 2.7. Let $T \in \mathcal{B}(X)$.

$$\sigma_{\infty}(T) \setminus \sigma_{\text{pBF}}(T) \text{ is at most countable}.$$

Proposition 2.8. Let $T \in \mathcal{B}(X)$. Then the following statements are equivalent:

1. $\sigma_{\text{pBF}}(T)$ is at most countable
2. $\sigma_{\text{pBW}}(T)$ is at most countable
3. $\sigma(T)$ is at most countable

Proof. 1) \implies 3) Suppose that $\sigma_{\text{pBF}}(T)$ is at most countable then $\rho_{\text{pBF}}(T)$ is connexe, by corollary 2.7 $\rho_{\text{pBF}}(T) \setminus \rho_{\infty}(T)$ is at most countable. Hence $\rho_{\infty}(T) \cap \rho_{\text{pBF}}(T) = \rho_{\text{pBF}}(T) \setminus (\rho_{\text{pBF}}(T) \setminus \rho_{\infty}(T))$ is connexe. By lemma 2.5 $\sigma(T) = \sigma_{\text{pBF}}(T) \cup (\rho_{\text{pBF}}(T) \setminus \rho_{\infty}(T))$ is at most countable.

3) \implies 1) Obvious.

2) \implies 3) If $\sigma_{\text{pBW}}(T)$ is at most countable then $\rho_{\text{pBW}}(T)$ is connexe, since every pseudo B-Weyl operator is a pseudo B-Fredholm operator by corollary 2.7 $\rho_{\text{pBW}}(T) \setminus \rho_{\infty}(T)$ is at most countable. Hence $\rho_{\infty}(T) \cap \rho_{\text{pBW}}(T) = \rho_{\text{pBW}}(T) \setminus (\rho_{\text{pBW}}(T) \setminus \rho_{\infty}(T))$ is connexe. By lemma 2.5 $\sigma(T) = \sigma_{\infty}(T) \cup \rho_{\text{pBW}}(T)$. Therefore $\sigma(T) = \sigma_{\text{pBW}}(T) \cup \rho_{\text{pBW}}(T) \setminus \rho_{\infty}(T))$ is at most countable.

3) \implies 2) Obvious.

Corollary 2.9. Let $T \in \mathcal{B}(X)$, if $\sigma_{\text{GK}}(T)$ is at most countable. Then:

T is a spectral operator if and only if T is similar to a paranormal operator.
Proof. See [23, Theorem 2.4 and Corollary 2.5].

Let $T \in \mathcal{B}(X)$. The operator range topology on $R(T)$ is the topology induced by the norm $\|\cdot\|_T$ defined by $\|y\|_T := \inf_{x \in X} \{\|x\| : y = Tx\}$. For a detailed discussion of operator ranges and their topology we refer the reader to [11].

T is said to have uniform descent for $n \geq d$ if $R(T) + N(T^n) = R(T) + N(T^d)$ for $n \geq d$. In addition, $R(T^n)$ is closed in the operator range topology of $R(T^d)$ for $n \geq d$, then T is said to have topological uniform descent (TUD for brevity) for $n \geq d$. The topological uniform descent spectrum:

$$\sigma_{ud}(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ does not have TUD}\}$$

Let $T \in \mathcal{B}(X)$, the ascent of T is defined by $a(T) = \min\{p \in \mathbb{N} : N(T^p) = N(T^{p+1})\}$, if such p does not exists we let $a(T) = \infty$. Analogously the descent of T is $d(T) = \min\{q \in \mathbb{N} : R(T^q) = R(T^{q+1})\}$, if such q does not exists we let $d(T) = \infty$ [20]. It is well known that if both $a(T)$ and $d(T)$ are finite then $a(T) = d(T)$ and we have the decomposition $X = R(T^p) = N(T^q)$ where $p = a(T) = d(T)$. The descent and ascent spectra of $T \in \mathcal{B}(X)$ are defined by:

$$\sigma_{ds}(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ has not finite descent}\}$$

$$\sigma_{as}(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ has not finite ascent}\}$$

On the other hand, a bounded operator $T \in \mathcal{B}(X)$ is said to be a Drazin invertible if there exists a positive integer k and an operator $S \in \mathcal{B}(X)$ such that

$$ST = TS, \quad T^{k+1}S = T^k \quad \text{and} \quad S^2T = S.$$

This is also equivalent to the fact that $T = T_1 \oplus T_2$ where T_1 is invertible and T_2 is nilpotent. Recall that an operator T is Drazin invertible if it has a finite ascent and descent. The concept of Drazin invertible operators has been generalized by Koliha [17]. In fact $T \in \mathcal{B}(X)$ is generalized Drazin invertible if and only if $0 \notin acc^c(T)$ the set of all points of accumulation of $\sigma(T)$, which is also equivalent to the fact that $T = T_1 \oplus T_2$ where T_1 is invertible and T_2 is quasinilpotent. The Drazin and generalized Drazin spectra of $T \in \mathcal{B}(X)$ are defined by:

$$\sigma_D(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ is not Drazin invertible}\}$$

$$\sigma_{GD}(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ is not generalized Drazin}\}$$

We denote by, $\sigma_{des}(T)$, $\sigma_{GD}(T)$ and $\sigma_{IGD}(T)$ respectively the essential descent, right generalized Drazin and left generalized Drazin spectra of T. According to corollary 2.8, [8, Theorem 3.3] and [16, corollary 3.4], we have the following:

Corollary 2.10. Let $T \in \mathcal{B}(X)$. Then the following statements are equivalent

1. $\sigma(T)$ is at most countable;
2. $\sigma_{paf}(T)$ is at most countable;
3. $\sigma_{paq}(T)$ is at most countable;
4. $\sigma_{ud}(T)$ is at most countable;
5. $\sigma_{GD}(T)$ is at most countable;
6. $\sigma_{IGD}(T)$ is at most countable;
7. $\sigma_{DE}(T)$ is at most countable;
8. $\sigma_{DE}(T)$ is at most countable;
9. $\sigma_{DE}(T)$ is at most countable;
10. $\sigma_{DE}(T)$ is at most countable;
11. $\sigma_{DE}(T)$ is at most countable;
12. $\sigma_{DE}(T)$ is at most countable;
13. $\sigma_{DE}(T)$ is at most countable;
14. $\sigma_{DE}(T)$ is at most countable;
In [15], they showed that an operator with TUD for \(n \geq d \), \(K(T) = R^\infty(T) \) and \(\overline{H_0(V)} = \overline{N^\infty(V)} \), where \(K(T) \) and \(H_0(T) \) are the analytic core and the quasinilpotent part of \(T \). For a pseudo B-Fredholm operator, these properties do not necessarily hold. Indeed: let \(X \) be the Banach space of continuous functions on \([0,1]\), denoted by \(C([0,1]) \), provided with the infinity norm. We define by \(V \), the Volterra operator, \(X \) by:

\[
Vf(x) := \int_0^x f(x) \, dx.
\]

\(V \) is injective and quasi-nilpotent. In addition, \(N^\infty(V) = \{0\} \), \(K(V) = \{0\} \) and we have \(R^\infty(V) = \{f \in C^\infty[0,1] : f^{(n)}(0) = 0, \ n \in \mathbb{N}\} \), thus \(R^\infty(V) \) is not closed. Hence:

1. \(K(V) \neq R^\infty(V) \)
2. \(H_0(V) \neq N^\infty(V) \)
3. \(R(V) \) is not closed.

Theorem 2.11. There exists a pseudo B-Fredholm operator \(T \) such that:

1. \(K(T) \neq R^\infty(T) \)
2. \(H_0(T) \neq N^\infty(T) \)
3. \(R(T) \) is not closed.

Proposition 2.12. Let \(T \in \mathcal{B}(X) \). Then the following statements are equivalent

1. \(\sigma_{pBF}(T) \) is empty
2. \(\sigma_{pBW}(T) \) is empty
3. \(\sigma_{GK}(T) \) is empty
4. \(\sigma(T) \) is finite

Proof. 3) \(\iff \) 4) see [8, Theorem 3.3].

1) \(\implies \) 4) If \(\sigma_{pBF}(T) \) is empty then \(\sigma(T) = \rho_{pBF}(T) \setminus \rho_\omega(T) \). By corollary 2.7 \(\rho_{pBF}(T) \setminus \rho_\omega(T) \) is at most countable and this set is bounded, hence it is finite.

4) \(\iff \) 1) Suppose that \(\sigma(T) \) is finite then every \(\lambda_0 \in \sigma(T) \) is isolated, then \(X = H_0(T - \lambda_0) \oplus K(T - \lambda_0) \), [27, Theorem 4] \((T - \lambda_0)_{H_0(T - \lambda_0)} \) is quasi-nilpotent and \((T - \lambda_0)_{K(T - \lambda_0)} \) is surjective, hence \((T - \lambda_0)_{K(T - \lambda_0)} \) is Fredholm. Indeed, \(\lambda_0 \) is an isolated point, then \(T \) has the SVEP at \(\lambda_0 \), hence \((T - \lambda_0)_{K(T - \lambda_0)} \) has the SVEP at 0 and it is surjective by [1, corollary 2.24] \((T - \lambda_0)_{K(T - \lambda_0)} \) is bijective. Thus every \(\lambda_0 \in \sigma(T) \), \(T - \lambda_0I \) is pseudo B-Fredholm, so \(\sigma_{pBF}(T) \) is empty.

2) \(\iff \) 4) similar to 1) \(\iff \) 4).

A bounded operator \(T \in \mathcal{B}(X) \) is said to be a Riesz operator if \(T - \lambda I \) is a Fredholm operator for every \(\lambda \in \mathbb{C} \setminus \{0\} \).

Corollary 2.13. Let \(T \in \mathcal{B}(X) \) a Riesz operator, then the following statements are equivalent

1. \(\sigma_{pBF}(T) \) is empty,
2. \(\sigma_{pBW}(T) \) is empty,
3. \(\sigma_{GK}(T) \) is empty,
4. \(\sigma(T) \) is finite,
5. \(K(T) \) is closed,
6. \(K(T^*) \) is closed,
7. \(K(T) \) is finite-dimensional,
8. \(K(T - \lambda) \) is closed for all \(\lambda \in \mathbb{C} \),
9. \(\text{codim} H_0(T) < \infty \),
10. \(\text{codim} H_0(T^*) < \infty \),
11. \(T = Q + F \), with \(Q, F \in \mathcal{B}(X) \), \(QF = FQ = 0 \), \(\sigma(Q) = \{0\} \) and \(F \) is a finite rank operator.
implies that \(T \) is a nilpotent operator. Thus \(T \) has finite descent then Proposition 2.14. Let \(T \in \mathcal{B}(X) \) with finite descent. Then \(T \) is a pseudo B-Fredholm if and only if \(T \) is a B-Fredholm operator.

Proposition 2.14. Let \(T \in \mathcal{B}(X) \) with finite descent. Then \(T \) is a pseudo B-Fredholm if and only if \(T \) is a B-Fredholm operator.

Proof. Obviously if \(T \) is B-Fredholm then \(T \) is pseudo B-Fredholm.

If \(T \) is a pseudo B-Fredholm then \(T = T_1 \oplus T_2 \) with \(T_1 \) is Fredholm operator and \(T_2 \) is quasi-nilpotent. Since \(T \) has finite descent then \(T_1 \) and \(T_2 \) have finite descent. We have \(T_2 \) is quasi-nilpotent with finite descent implies that is a nilpotent operator. Thus \(T \) is a B-Fredholm operator. \(\square \)

3. Classification of the Components of Pseudo B-Fredholm Resolvent

We begin this section by the following lemmas which will be needed in the sequel.

Lemma 3.1. Let \(T \in \mathcal{B}(X) \) a pseudo B-Fredholm, then there exists \(\varepsilon > 0 \) such that for all \(|\lambda| < \varepsilon \), we have:

1. \(K(T - \lambda) + H_0(T - \lambda) = K(T) + H_0(T) \).
2. \(K(T - \lambda) \cap H_0(T - \lambda) = K(T) \cap H_0(T) \).

Proof. By Theorem 2.1, \(T \) is a pseudo Fredholm operator, hence we conclude by [8, Theorem 4.2] the result. \(\square \)

The pseudo B-Fredholm resolvent set is defined as \(\rho_{pBF}(T) = \mathcal{C} \setminus \sigma_{pBF}(T) \).

Corollary 3.2. Let \(T \in \mathcal{B}(X) \) a pseudo B-Fredholm operator, then the mappings

\[\lambda \rightarrow K(T - \lambda) + H_0(T - \lambda), \lambda \rightarrow K(T - \lambda) \cap H_0(T - \lambda) \]

are constant on the components of \(\rho_{pBF}(T) \).

We denote by \(\sigma_{ap}(T) \) and \(\sigma_{ap}(T) \) respectively the approximate point spectrum and the surjectivity spectrum of \(T \).

Lemma 3.3. Let \(T \in \mathcal{B}(X) \) a pseudo B-Fredholm operator. Then the following statements are equivalent:

1. \(T \) has the SVEP at 0,
2. \(\sigma_{ap}(T) \) does not cluster at 0.

Proof. Without loss of generality, we can assume that \(\lambda_0 = 0 \).

1) \(\Rightarrow \) 2) Suppose that \(T \) is a pseudo B-Fredholm operator, then there exists two closed \(T \)-invariant subspaces \(X_1, X_2 \subset X \) such that \(X = X_1 \oplus X_2, T_{X_1} \) is Fredholm, \(T_{X_2} \) is quasi-nilpotent and \(T = T_{X_1} \oplus T_{X_2} \). Since \(T_{X_1} \) is Fredholm, then \(T_{X_1} \) is of Kato type by [2, Theorem 2.2] there exists a constant \(\varepsilon > 0 \) such that for all \(\lambda \in D^*(0, \varepsilon), \lambda I - T \) is bounded below. Since \(T_{X_2} \) is quasi-nilpotent, \(\lambda I - T \) is bounded below for all \(\lambda \neq 0 \). Hence \(\lambda I - T \) is bounded below for all \(\lambda \in D^*(0, \varepsilon) \). Therefore \(\sigma_{ap}(T) \) does not cluster at \(\lambda_0 \). \(\square \)

By duality we have :

Lemma 3.4. Let \(T \in \mathcal{B}(X) \) a pseudo B-Fredholm operator. Then the following statements are equivalent:

1. \(T \) has the SVEP at 0,
2. \(\sigma_{ap}(T) \) does not cluster at 0.

Theorem 3.5. Let \(T \in \mathcal{B}(X) \) and \(\Omega \) a component of \(\rho_{pBF}(T) \). Then the following alternative holds:

1. \(T \) has the SVEP for every point of \(\Omega \). In this case, \(\sigma_{ap}(T) \) does not have limit points in \(\Omega \), every point of \(\Omega \) is not an eigenvalue of \(T \) except a subset of \(\Omega \) which consists of at most countably many isolated points.
2. \(T \) has the SVEP at no point of \(\Omega \). In this case, every point of \(\Omega \) is an eigenvalue of \(T \).
Proof. 1) Assume that T has the SVEP at $\lambda_0 \in \Omega$. By [1, Theorem 3.14] we have $K(T - \lambda_0) \cap H_0(T - \lambda_0) = K(T - \lambda_0) \cap \overline{H_0}(T - \lambda_0) = \{0\}$. According to corollary 3.2, we have $K(T - \lambda_0) \cap \overline{H_0}(T - \lambda_0) = K(T - \lambda) \cap \overline{H_0}(T - \lambda) = \{0\}$ for all $\lambda \in \Omega$. Hence $K(T - \lambda) \cap \overline{H_0}(T - \lambda) = \{0\}$ and therefore T has the SVEP at every $\lambda \in \Omega$ [1, Theorem 3.14]. By Lemma 3.3, $\sigma_{\rho_T}(T)$ does not cluster at any $\lambda \in \Omega$. Consequently every point of Ω is not an eigenvalue of T except a subset of Ω which consists of at most countably many isolated points.

2) Suppose that T has the SVEP at no point of Ω. From [1, Theorem 2.22], we have $N(T - \lambda) \neq \{0\}$, for all $\lambda \in \Omega$, hence every point of Ω is an eigenvalue of T. □

Theorem 3.6. Let $T \in \mathcal{B}(X)$ and Ω a component of $\rho_{pBF}(T)$. Then the following alternative holds:

1. T^* has the SVEP for every point of Ω. In this case, $\sigma_{\text{in}}(T)$ does not have limit points in Ω, every point of Ω is not a deficiency value of T except a subset of Ω which consists of at most countably many points.

2. T^* has the SVEP at no point of Ω. In this case, every point of Ω is a deficiency value of T.

Proof. 1) Assume that T^* has the SVEP at $\lambda_0 \in \Omega$, by [1, Theorem 3.15] we have $K(T - \lambda_0) + H_0(T - \lambda_0) = X$. According to corollary 3.2, we have $K(T - \lambda_0) + H_0(T - \lambda_0) = K(T - \lambda) + H_0(T - \lambda) = X$ for all $\lambda \in \Omega$. Hence $K(T - \lambda) + H_0(T - \lambda) = X$ and therefore T has the SVEP at every $\lambda \in \Omega$ [1, Theorem 3.15]. By lemma 3.4, $\sigma_{\text{in}}(T)$ does not cluster at any $\lambda \in \Omega$. Consequently every point of Ω is not a deficiency value of T except a subset of Ω which consists of at most countably many isolated points.

2) Suppose that T^* has the SVEP at no point of Ω. Assume that there exists a $\lambda_0 \in \Omega$ such that $T - \lambda_0$ is surjective, then $T^* - \lambda_0$ is injective this implies that T^* has the SVEP at λ_0. Contradiction and hence every point of Ω is a deficiency value of T. □

Remark 3.7. We have $\sigma_{pBF}(\cdot) \subset \sigma_{\text{gD}}(\cdot)$, this inclusion is proper. Indeed: Consider the operator T defined in $l^2(\mathbb{N})$ by $T(x_1, x_2, ...), T^*(x_1, x_2, ...) = (x_2, x_3, ...)$. Let $S = T \oplus T^*$. Then $\sigma_{\text{gD}}(S) = \{ \lambda \in \mathbb{C};|\lambda| \leq 1 \}$ and we have $0 \notin \sigma_{pBF}(S)$. This shows that the inclusion $\sigma_{pBF}(S) \subset \sigma_{\text{gD}}(S)$ is proper.

Next we obtain a condition on an operator such that its pseudo B-Fredholm spectrum coincide with the generalized Drazin spectrum.

Theorem 3.8. Suppose that $T \in \mathcal{B}(X)$ and $\rho_{pBF}(T)$ has only one component. Then

$$\sigma_{pBF}(T) = \sigma_{\text{gD}}(T)$$

Proof. $\rho_{pBF}(T)$ has only one component, then $\rho_{pBF}(T)$ is the unique component. Since T has the SVEP on $\rho(T) \subset \rho_{pBF}(T)$. By Theorem 3.5, T has the SVEP on $\rho_{pBF}(T)$. Similar T^* also has the SVEP on $\rho_{pBF}(T)$ by Theorem 3.6. (This since $\rho(T^*) = \rho(T) \subset \rho_{pBF}(T)$). From Lemma 3.3 and Lemma 3.4, $\sigma(T)$ does not cluster at any $\lambda \in \rho_{pBF}(T)$. Therefore $\rho_{pBF}(T) \subset \text{iso}(T) \cup \rho(T) = \rho_{\text{gD}}(T)$, hence $\rho_{pBF}(T) = \rho_{\text{gD}}(T)$. □

4. Symmetric Difference for Pseudo B-Fredholm Spectrum

Let in the following we give symmetric difference between $\sigma_{pBF}(T)$ and other parts of the spectrum. Denoted by $\rho_{FK}(T) = \{ \lambda \in \mathbb{C}; K(T - \lambda) \text{ is not closed} \}$, $\sigma_{FK}(T) = \mathbb{C} \setminus \rho_{FK}(T)$ and $\rho_{cr}(T) = \{ \lambda \in \mathbb{C}; R(T - \lambda) \text{ is closed} \}$, $\sigma_{cr}(T) = \mathbb{C} \setminus \rho_{cr}(T)$ the Goldberg spectrum. Most of the classes of operators, for example, in Fredholm theory, require that the operators have closed ranges. Thus, it is natural to consider the closed-range spectrum or Goldberg spectrum of an operator.

Proposition 4.1. If $\lambda \in \sigma(T)$ is non-isolated point then $\lambda \in \sigma_{pBF}(T)$, where $* \in \{FK, cr\}$.

Proof. Let $\lambda \in \sigma(T)$ an isolated point. Suppose that $T - \lambda$ is a pseudo B-Fredholm, by Lemma 2.6 there exists a constant $\epsilon > 0$ such that for all $\mu \in D^*(\lambda, \epsilon)$, $\mu - T$ is semi-regular. Then $R(T - \mu)$ and $K(T - \mu)$ are closed for all $\mu \in D^*(\lambda, \epsilon)$, then λ is an isolated point of $\sigma(T)$, contradiction. □
Corollary 4.2. \(\sigma_\ast(T) \setminus \sigma_{pBF}(T) \) is at most countable, where \(\ast \in \{ K, cr \} \).

Proposition 4.3. Let \(T \in B(X) \) such that \(\sigma_\ast(T) = \sigma(T) \) and every \(\lambda \) is non-isolated in \(\sigma(T) \). Then
\[
\sigma(T) = \sigma_{cr}(T) = \sigma_{pBF}(T) = \sigma_{pBV}(T) = \sigma_{se}(T) = \sigma_{ap}(T)
\]

Proof. Since every \(\lambda \in \sigma(T) = \sigma_{cr}(T) \) is non-isolated then by Proposition 4.1, we have \(\sigma(T) = \sigma_{cr}(T) \subseteq \sigma_{pBF}(T) \subseteq \sigma_{pBV}(T) \subseteq \sigma_{se}(T) \subseteq \sigma_{ap}(T) \subseteq \sigma(T) \), and since \(\sigma(T) = \sigma_{cr}(T) \subseteq \sigma_{se}(T) \subseteq \sigma_{ap}(T) \subseteq \sigma(T) \), we deduce the statement of the theorem. \(\blacksquare \)

Proposition 4.4. Let \(T \in B(X) \). The symmetric difference \(\sigma_\ast(T) \setminus \sigma_{pBF}(T) \) is at most countable.

Proof. By corollary 2.7, \(\sigma_{se}(T) \setminus \sigma_{pBF}(T) \) is at most countable. We have \(\sigma_\ast(T) \setminus \sigma_{se}(T) \) consists of at most countably many isolated points (see [1, Theorem 1.65] and \(\sigma_{pBF}(T) \setminus \sigma_{se}(T) \subseteq \sigma_\ast(T) \setminus \sigma_{se}(T) \), hence \(\sigma_{pBF}(T) \setminus \sigma_{se}(T) \) is at most countable. Since
\[
\sigma_{se}(T) \setminus \sigma_{pBF}(T) = (\sigma_{se}(T) \setminus \sigma_{pBF}(T)) \bigcup (\sigma_{pBF}(T) \setminus \sigma_{se}(T))
\]
Therefore \(\sigma_{se}(T) \setminus \sigma_{pBF}(T) \) is at most countable. \(\blacksquare \)

Acknowledgement The authors thank the referees for his suggestions, remarks and comments thorough reading of the manuscript.

References