Connectedness of Ordered Rings of Fractions of $C(X)$
with the m-Topology

A.R. Salehia

aDepartment of Science, Petroleum University of Technology, Ahvaz, Iran

Abstract. An order is presented on the rings of fractions $S^{-1}C(X)$ of $C(X)$, where S is a multiplicatively closed subset of $C(X)$, the ring of all continuous real-valued functions on a Tychonoff space X. Using this, a topology is defined on $S^{-1}C(X)$ and for a family of particular multiplicatively closed subsets of $C(X)$ namely $m.c.\ 5$-subsets, it is shown that $S^{-1}C(X)$ endowed with this topology is a Hausdorff topological ring. Finally, the connectedness of $S^{-1}C(X)$ via topological properties of X is investigated.

1. Introduction

In this paper, the ring of all (bounded) real-valued continuous functions on a completely regular Hausdorff space X, is denoted by $C(X)$ ($C^*(X)$). The space X is called pseudocompact if $C(X) = C^*(X)$. For every $f \in C(X)$ the set $Z(f) = \{ f \in C(X) : f(x) = 0 \}$ is said to be zero-set of f and it’s complement which is denoted by $\text{coz} f$, is called cozero-set of f. Moreover, an ideal $I \subseteq C(X)$ is said to be z-ideal if for every $f \in I$ and $g \in C(X)$, the inclusion $Z(f) \subseteq Z(g)$ implies that $g \in I$. $u \in C(X)$ is a unit (i.e., u has multiplicative inverse) if and only if $Z(u) = 0$ and it is not hard to see that an element f of $C(X)$ is zero-divisor if and only if $\text{int}_X Z(f) \neq \emptyset$. The set of all units and the set of all zero-divisors of $C(X)$ are denoted by $U(X)$ and $Zd(X)$ respectively.

Let βX and νX be the Stone-Čech compactification and the Hewitt realcompactification of the space X, respectively. For every $f \in C(X)$ the unique extension of f to a continuous function in $C(\beta X)$ is denoted by f^β and for each $p \in \beta X$, $M_p = \{ f \in C(X) : p \in \text{cl}_{\beta X} Z(f) \}$ ($M^p = \{ f \in C(X) : f^\beta(p) = 0 \}$) is a maximal ideal of $C(X)$ ($C^*(X)$) and also, every maximal ideal of $C(X)$ ($C^*(X)$) is precisely of the form M^p, for some $p \in \beta X$. Moreover, for every $p \in \beta X$, $O_p = \{ f \in C(X) : p \in \text{int}_{\beta X} \text{cl}_{\beta X} Z(f) \}$ is the intersection of all prime ideals of $C(X)$ which are contained in M^p. In fact, we have;

Lemma 1.1. ([7, Theorem 7.15]) Every prime ideal P in $C(X)$ contains O_p for some unique $p \in \beta X$, and M^p is the unique maximal ideal containing P.

Whenever $p \in X$, the ideals M_p and O_p will be the sets $\{ f \in C(X) : p \in Z(f) \}$ and $\{ f \in C(X) : p \in \text{int}_X Z(f) \}$ respectively and in this case, they are denoted by M_p and O_p. A maximal ideal M of $C(X)$ is called real whenever the residue class field $\frac{C(X)}{M}$ is isomorphic with the real field \mathbb{R}. Thus, for every $p \in \nu X$, M^p is a

2010 Mathematics Subject Classification. Primary 54C40; Secondary 54C35, 13B30

Keywords. Continuous functions, connectedness, multiplicatively closed, m-topology

Received: 04 December 2016; Accepted: 06 March 2017

Communicated by Ljubiša Kočinac

Email address: a.r.salehi@put.ac.ir (A.R. Salehi)
real maximal ideal, and conversely every real maximal ideal of \(C(X) \) is precisely of the form \(M^{p} \) for some \(p \in \nu X \). Moreover, \(M^{p} \cap C(X) = M^{p} \) if and only if \(p \in \nu X \), see 7.9 (c) in [7].

Let \(R \) be a commutative ring with unity and suppose that \(S \) is a multiplicatively closed subset or briefly an \(m.c. \) subset of \(R \). Here \(S^{-1}R \) is the ring of all equivalence classes of the formal fractions \(\frac{a}{s} \) for \(a \in R \) and \(s \in S \), where the equivalence relation is the obvious one. Whenever \(S \) is the set of all non-zero-divisors of \(R \), then \(S^{-1}R \) is called the classical ring of quotients of \(R \).

An \(m.c. \) subset \(T \) of \(R \) is called saturated whenever \(a, b \in R \) and \(ab \in T \) imply that \(a \) and \(b \) belong to \(T \). For an arbitrary \(m.c. \) subset \(S \) of \(R \), the intersection of all saturated \(m.c. \) subsets of \(R \) which contain \(S \), is called saturation of \(S \) and is denoted by \(S \). Using 5.7 in [11] we have

\[
S = R \setminus \bigcup_{P \in \text{Spec}(R)} P.
\]

Lemma 1.2. ([11, Exercise 5.12(iv)]) For an arbitrary \(m.c. \) subset \(S \) of a commutative ring \(R \) with unity, two rings \(S^{-1}R \) and \(S^{-1}R \) are isomorphic.

In sequel, for every \(m.c. \) subset \(S \) of \(C(X) \), the ring of fractions \(S^{-1}C(X) \) is often abbreviated as \(S^{-1}C \).

2. An Order Relation on \(S^{-1}C \)

The \(m \)-topology on \(C(X) \) is defined by taking the sets of the form

\[
B(f, u) = \{ g \in C(X) : |f(x) - g(x)| < u(x), \forall x \in X \}
\]
as a base for the neighborhood system at \(f \), for each \(f \in C(X) \), where \(u \) runs through the set of all positive units of \(C(X) \). This topology on \(C(X) \) which is denoted by \(C_{m}(X) \), was first introduced in [9] and studied more in [1–3, 5, 8, 12]. To define a topology on \(S^{-1}C \), similar to the \(m \)-topology on \(C(X) \), we need an ordering to make \(S^{-1}C \) a lattice-ordered ring. We define the order relation \(\leq \) on \(S^{-1}C \) as follows:

Definition 2.1. For \(\frac{f}{r} \in S^{-1}C \), we define

\[
0 \leq \frac{f}{r} \text{ if there exists } t \in S \text{ such that } 0 \leq (t^2rf)(x) \text{ for all } x \in X.
\]

Clearly \(0 \leq \frac{f}{r} \) if and only if \(0 \leq (rf)(x) \) for all \(x \in coz t \), for some \(t \in S \). This definition is similar to the familiar definition of order on \(C(X) \). But here we consider restriction of each \(\frac{f}{r} \) on a cozero-set of \(X \) instead of \(X \) itself. To see that the order \(\leq \) is well defined, let \(\frac{f}{r}, \frac{g}{s} \in S^{-1}C \), \(\frac{f}{r} \equiv \frac{g}{s} \) and \(0 \leq \frac{f}{r} \). Then there exist \(p, q \in S \) such that \(qfs = qrg \) and \(0 \leq p^2rf \). Now, the inequality \(0 \leq (p^2rsq)(qfs) = (p^2rsq)(qrg) = (p^2rsq)(sg) \) and since \(pqr \in S \), we conclude that \(0 \leq \frac{g}{s} \).

Proposition 2.2. Let \(S \) be an \(m.c. \) subset of \(C(X) \), then \((S^{-1}C, \leq) \) is a lattice-ordered ring.

Proof. Clearly for every \(\frac{f}{r} \in S^{-1}C \) if \(0 \leq \frac{f}{r} \) and \(0 \leq \frac{g}{s} \), then \(\frac{f}{r} \leq \frac{g}{s} \). Now, suppose that \(\frac{f}{r}, \frac{g}{s} \in S^{-1}C, 0 \leq \frac{f}{r} \) and \(0 \leq \frac{g}{s} \). There exist \(t_1, t_2 \in S \) such that \(0 \leq rf \) on \(\text{coz } t_1 \) and \(0 \leq sg \) on \(\text{coz } t_2 \). Therefore, \(0 \leq r^2s^2 (rf + sg) \) and \(0 \leq r^2s^2 (rfsg) \) on \(\text{coz } t_1t_2 \) and thus, \(0 \leq \frac{r^2s^2rf + r^2sg}{r^2s^2} = \frac{f}{r} + \frac{g}{s} \) and \(0 \leq \frac{rfsg}{r^2s^2} = \frac{f}{r} \cdot \frac{g}{s} \) on \(\text{coz } t_1t_2 \). To prove that \(S^{-1}C \) is lattice, it can be shown that

\[
\frac{f}{r} \wedge \frac{g}{s} = \frac{rf}{r^2} \wedge \frac{sg}{s^2} = \frac{s^2rf}{p^2s^2} \wedge \frac{r^2sg}{p^2s^2} = \frac{s^2rf}{p^2s^2} \wedge \frac{r^2sg}{s^2r^2}.
\]

\]
If S is an $m.c.$ subset of a commutative ring R, then for every $n \in \mathbb{N}$, the set $S^n = \{s^n : s \in S\}$ is an $m.c.$ subset of R and clearly two rings $(S^n)^{-1}R$ and $S^{-1}R$ are isomorphic. In fact, the map $i_n(f) = \frac{x^nf}{n!}$ is an isomorphism from $S^{-1}R$ onto $(S^n)^{-1}R$. Now we define an ordering \leq' on $(S^2)^{-1}C$ as follows;

Definition 2.3. For every $f \in (S^2)^{-1}C$, we define

$$0 \leq' \frac{f}{r} \text{ if there exists } t \in S^2 \text{ such that } 0 \leq t(x)f(x) \text{ for all } x \in X.$$

If S is an $m.c.$ subset of $C(X)$ then $S^2 \subseteq \{f \in S : 0 \leq f\}$. Therefore $0 \leq \frac{f}{r}$ if and only if $0 \leq f$ on $\text{coz } t$ for some $t \in S$. Similar to Definition 2.1, it can be shown that $((S^2)^{-1}C, \leq')$ is a lattice-ordered ring. Moreover, we have the following result whose proof is left to the readers.

Proposition 2.4. Let S be an $m.c.$ subset of $C(X)$. Two rings $(S^{-1}C, \leq)$ and $((S^2)^{-1}C, \leq')$ are lattice isomorphic. In fact, the map $i_2(\frac{f}{r}) = \frac{tr}{r}$ from $S^{-1}C$ onto $(S^2)^{-1}C$ is an isomorphism and also order-preserving, i.e., $\frac{f}{r} \leq \frac{g}{s}$ if and only if $\frac{tr}{r} \leq \frac{sr}{s}$.

Now using the above proposition, without loss of generality, for every lattice-ordered ring $(S^{-1}C, \leq)$ we can assume that each member of S is non-negative. In addition, we can consider $0 \leq \frac{f}{r}$ whenever $0 \leq f$ on $\text{coz } t$ for some $t \in S$.

Definition 2.5. A subset S of $C(X)$ is called 3-subset whenever $f, g \in C(X)$ and $f \in S$, then $Z(f) = Z(g)$ implies that $g \in S$.

Example 2.6. The set $C(X)\backslash Zd(X) = \{f \in C(X) : \text{int}_X Z(f) = \emptyset\}$ of all non-zero-divisor elements of $C(X)$, is a multiplicatively closed 3-subset (or briefly an $m.c.3$-subset) of $C(X)$. Another example of $m.c.3$-subset is $U(X) = \{f \in C(X) : Z(f) = \emptyset\}$, the set of all units of $C(X)$. If $\{P_\lambda\}_{\lambda \in \Lambda}$ is a family of prime \mathfrak{z}-ideals of $C(X)$, then $S = C(X)\backslash \bigcup_{\lambda \in \Lambda} P_\lambda$ is also an $m.c.3$-subset of $C(X)$. Note that whenever P is a prime ideal of $C(X)$ which is not \mathfrak{z}-ideal, then $S = C(X)\backslash P$ is a saturated $m.c.$ subset of $C(X)$ which is not a 3-subset.

Proposition 2.7. If S is an $m.c.3$-subset of $C(X)$, then the set $T := \{f \in C(X) : Z(f) \subseteq Z(s) \text{ for some } s \in S\}$ is the saturation of S.

Proof. We show that T is the smallest saturated $m.c.$ subset containing S. First, note that T is a saturated $m.c.$ subset of $C(X)$ containing S. In fact, if $f, g \in T$ then there exist s_1, s_2 in S such that $Z(f) \subseteq Z(s_1)$ and $Z(g) \subseteq Z(s_2)$. Therefore, $Z(fg) = Z(f) \cup Z(g) \subseteq Z(s_1, s_2)$ which implies $fg \in T$. Moreover, if $fg \in T$ then $Z(fg) \subseteq Z(s)$, for some $s \in S$. Thus $Z(f) \subseteq Z(s)$ and also $Z(g) \subseteq Z(s)$ which imply that $f, g \in T$. Next, let T' be a saturated $m.c.$ subset of $C(X)$ containing S and suppose that $f \in T$. Hence $Z(f) \subseteq Z(s)$, for some $s \in S$ and thus $Z(fs) = Z(f) \cup Z(s) = Z(s)$. Since S is a 3-subset, $fs \in S \subseteq T'$ and so $f \in T'$, i.e., $T \subseteq T'$ which complete the proof.

Corollary 2.8. Let S be an $m.c.$ subset of $C(X)$. S is a saturated $m.c.3$-subset if and only if for every $f \in C(X)$ and $s \in S$, the inclusion $Z(f) \subseteq Z(s)$ implies that $f \in S$.

Corollary 2.9. The saturation of every $m.c.3$-subset of $C(X)$ is a 3-subset.

Example 2.10. Let $f(x) = |x| - 1$ be a function of $C(R)$. Then $S_1 = \{1, f, f^2, ...\}$ is an $m.c.$ subset of X which is not 3-subset nor saturated. In fact,

$$S_2 = \{g \in C(R) : Z(g) = \emptyset \text{ or } Z(g) = \{1, -1\}\}$$

is the smallest $m.c.3$-subset of $C(R)$ containing S_1 and for saturation of S_2 we have

$$S_2 = \{g \in C(R) : Z(g) \subseteq \{1, -1\}\}.$$

Moreover, it is easy to see that $S_1 \subseteq S_2 \subseteq S_2$.

Similarly to the order relation \leq, for every $\xi \in S^{-1}C$ we define $0 < \xi$ if $0 < f$ on $\text{coz } t$ for some $t \in S$.

Proposition 2.11. The set $U^* = \{ \xi \in S^{-1}C : 0 < \xi \}$ is closed with respect to the operations \lor and \land. Moreover, if S is an m.c. 3-subset, then every member of U^* is a unit of $S^{-1}C$.

Proof. If $\xi, \eta \in U^*$, then there exist $t_1, t_2 \in S$ such that $0 < f$ on $\text{coz } t_1$ and $0 < g$ on $\text{coz } t_2$. Since $0 \leq r, s$ we have $0 < sf \land rg$ on $\text{coz } t_1t_2ys$ which implies that $0 < \frac{s^0t^0}{rs} = \xi \land \eta$. To prove the second part of the proposition, let $0 < \xi$. We have $0 < f$ on $\text{coz } t$ for some $t \in S$ and so $\text{coz } t \subseteq \text{coz } f$. Therefore, $\text{coz } t = \text{coz } tf$ and since S is an m.c. 3-subset, then $tf \in S$. Now, $\xi = tf \in S^{-1}C$ implies that ξ is a unit. \qed

3. The m-Topology on $S^{-1}C$

Before defining the m-topology on $S^{-1}C$, we note that $|\xi| = \frac{\xi}{r} \lor (-\frac{\xi}{r}) = \frac{f(r) - 0}{r} = \frac{1}{r}$. Now, for each $\xi \in S^{-1}C$ and each $\eta \in U^*$ if we consider the set $B(\xi, \eta) := \{ \frac{\xi}{r} : \frac{\xi}{r} - \frac{\eta}{r} < \frac{1}{r} \}$, then clearly we have:

$$B\left(\frac{\xi}{r}, \frac{u}{t} \right) = \left\{ \frac{\xi}{s} : \left| \frac{\xi}{s} - \frac{u}{t} \right| < \frac{1}{t} \right\}$$

for all $x \in \text{coz } q \subseteq \text{coz } rstu$ for some $q \in S$.

The collection $B = \{ B(\xi, \eta) : \xi \in S^{-1}C \text{ and } \eta \in U^* \}$ is a base for a topology on $S^{-1}C$. In fact, $\frac{\xi}{r} \in B(\xi, \eta)$ and $B(\frac{\xi}{r}, \frac{\eta}{r} \land \frac{\eta}{r}) \subseteq B(\frac{\xi}{r}, \frac{\eta}{r}) \cap B(\frac{\xi}{r}, 0)$ for every $\frac{\eta}{r}, \frac{\eta}{r} \in U^*$. Moreover, if $\frac{\xi}{r} \in B(\frac{\xi}{r}, \frac{\eta}{r})$, then $\frac{\eta}{r} := \frac{\eta}{r} - \frac{\xi}{r} < \frac{1}{r}$ and we have $B(\frac{\xi}{r}, \frac{\eta}{r}) \subseteq B(\frac{\xi}{r}, \frac{\eta}{r})$. As the m-topology on $C(X)$, this topology on $S^{-1}C$ is called the m-topology and $S^{-1}C$ endowed with this topology is denoted by $S^{-1}C$. This topology is in fact a generalization of the m-topology on $C(X)$. Note that whenever $S = U(X)$ then $S^{-1}C = C_m(X)$.

Recall that a topological ring is simply a ring furnished with a topology for which its algebraic operations are continuous, see [13]. We also notice that a Hausdorff topological ring is completely regular, see 8.1.17 in [6]. To prove that $S^{-1}C$ is a Hausdorff topological ring we need the following lemmas.

Lemma 3.1. Let S be an m.c. 3-subset of $C(X)$. For every $0 \leq \frac{\xi}{r} \in S^{-1}C$ there exists $\frac{\eta}{r} \in S^{-1}C$ such that $0 \leq g, s \leq 1$ and $\frac{\xi}{r} = \frac{\eta}{r}$.

Proof. Consider $s = \frac{r}{1+r(t)}$ and $g = \frac{1}{1+r(t)}$. Clearly $Z(s) = Z(r)$ implies $s \in S$ and we have $\frac{\eta}{r} = \frac{1}{t} = \frac{\xi}{r}$. \qed

Lemma 3.2. If S is an m.c. 3-subset of $C(X)$, then the set $\{ B(\frac{\xi}{r}, \frac{\eta}{s}) : f \in C(X), r, v \in S \text{ and } 0 \leq v \leq 1 \}$ is a base for the m-topology on $S^{-1}C$.

Proof. By Lemma 3.1, for each $B(\frac{\xi}{r}, \frac{\eta}{s})$ there exist $v, s \in S$ such that $0 \leq v, s \leq 1$, and $\frac{\xi}{r} = \frac{\eta}{s}$. But $s(x)v(x) \leq v(x)$ for all $x \in \text{coz } sv$, then $\frac{\xi}{r} \leq \frac{\eta}{s}$ and so $\frac{\xi}{r} \in B(\frac{\xi}{r}, \frac{\eta}{s}) \subseteq B(\frac{\xi}{r}, \frac{\eta}{s}) = B(\frac{\xi}{r}, \frac{\eta}{s})$. \qed

Proposition 3.3. Let S be an m.c. 3-subset of $C(X)$. Then $S^{-1}C$ is a Hausdorff topological ring.

Proof. To prove the continuity of addition and multiplication, let $\frac{\xi}{r}, \frac{\eta}{s} \in S^{-1}C$ and $\frac{\zeta}{t} \in U^*$. Then

$$+ \left(B\left(\frac{\xi}{r}, \frac{\eta}{s} \right) \times B\left(\frac{\eta}{s}, \frac{\zeta}{t} \right) \right) \subseteq B\left(\frac{\xi}{r} + \frac{\eta}{s}, \frac{\zeta}{t} \right)$$

and

$$\cdot \left(B\left(\frac{\xi}{r}, \frac{\eta}{s} \right) \times B\left(\frac{\eta}{s}, \frac{\zeta}{t} \right) \right) \subseteq B\left(\frac{\xi}{r} \cdot \frac{\eta}{s}, \frac{\zeta}{t} \right)$$.
where \(\xi \in U^+ \) such that \(\left(\frac{1}{\xi} + \frac{1}{\xi} + |\frac{1}{\xi}r| + |\frac{1}{\xi}c| \right) < \frac{1}{\xi} \). In fact, if we consider \(w := \left(\frac{1}{\xi} + \frac{1}{\xi} + |\frac{1}{\xi}r| + |\frac{1}{\xi}c| \right) \), then \(\frac{1}{\xi} < w \in U^+ \) and \(w^{-1} < \frac{1}{\xi} \) and \(w^{-1} \in U^+ \). Now, it is enough to take \(\frac{1}{\xi} = w^{-1} \). To show that \(S_m^{-1}C \) is Hausdorff, let \(\frac{1}{\xi}, \frac{1}{\xi} \in S^{-1}C \) and \(\frac{1}{\xi} \neq \frac{1}{\xi} \). Thus, \(\frac{1}{\xi} \neq \frac{1}{\xi} \) on \(\text{coz} \) \(rs \) and so \(\text{coz} \) \(rs \) \(\subseteq \text{coz} \) \((\frac{1}{\xi} - \frac{1}{\xi}) \). Therefore, \(\text{coz} \) \(rs \) = \(\text{coz} \) \(\frac{1}{\xi} \) \(rs \) \(\frac{1}{\xi} \) \(rs \) and since \(S \) is an \(m.c. \) \(3 \)-subset, we have \(t := |\frac{1}{\xi} - \frac{1}{\xi}| \in S \). Now, it is not hard to see that \(B\left(\frac{1}{\xi}, \frac{1}{\xi}U^+\right) \) and \(B\left(\frac{1}{\xi}, \frac{1}{\xi}U^+\right) \) are disjoint. \(\square \)

Corollary 3.4. Let \(S \) be an \(m.c. \) \(3 \)-subset of \(C(X) \). Then \(S^{-1}C \) with the \(m \)-topology is a completely regular Hausdorff space.

4. Connectedness of \(S_m^{-1}C \)

In this section, in imitate of [2], we first find the component of zero in \(S_m^{-1}C \), where \(S \) is an \(m.c. \) \(3 \)-subset. Next using this, we give a necessary and sufficient condition for connectedness of \(S_m^{-1}C \).

Definition 4.1. A member \(\frac{1}{\xi} \in S^{-1}C \) is called bounded if there exists \(k \in \mathbb{N} \) such that \(|\frac{1}{\xi}| \leq \frac{1}{k} \), i.e., \(|f(x)| \leq k|r(x)| \) for all \(x \in \text{coz} \) \(t \) for some \(t \in S \).

Clearly the set \((S^{-1}C)^* \) of all bounded elements of \(S^{-1}C \) is a subring of \(S^{-1}C \).

Lemma 4.2. \((S^{-1}C)^* \) is a clopen subset of \(S_m^{-1}C \).

Proof. If \(\frac{1}{\xi} \in (S^{-1}C)^* \), then \(B\left(\frac{1}{\xi}, \frac{1}{k}\right) \subseteq (S^{-1}C)^* \). In fact, \(|\frac{1}{\xi} - \frac{1}{\xi}| < \frac{1}{k} \) implies that \(|\frac{1}{\xi}| < \frac{1}{k} + \frac{1}{k} \leq \frac{1}{k} + \frac{1}{k} \) for some \(k \in \mathbb{N} \) and hence \(\frac{1}{\xi} \) is bounded. On the other hand, if \(\frac{1}{\xi} \not\in (S^{-1}C)^* \), then \(B\left(\frac{1}{\xi}, \frac{1}{k}\right) \cap (S^{-1}C)^* = \emptyset \). \(\square \)

Lemma 4.3. \(J_\psi = \{ \frac{1}{\xi} \in S^{-1}C : \frac{1}{\xi} \cdot \frac{1}{\xi} \text{ is bounded for each } \frac{1}{\xi} \in U^+ \} \) is an ideal of \(S^{-1}C \).

Proof. It is not hard to see that \(J_\psi \) is closed with respect to addition. Let \(\frac{1}{\xi} \in J_\psi, \frac{1}{\xi} \in S^{-1}C \) and \(\frac{1}{\xi} \in U^+ \). We claim that \(\frac{1}{\xi} \) is bounded and so \(\frac{1}{\xi} \in J_\psi \). Since \(\frac{1}{\xi} \in U^+ \), \(0 < p \) on \(\text{coz} \) \(t \) for some \(t \in S \) and so \(0 < (1 + |g|)p \) on \(\text{coz} \) \(t \). Therefore, \(\frac{1}{\xi} \cdot \frac{(1+|g|)p}{q} \in U^+ \). Now by our hypothesis, \(\frac{1}{\xi} \cdot \frac{(1+|g|)p}{q} \) is bounded which implies that \(\frac{1}{\xi} \cdot \frac{(1+|g|)p}{q} \) is bounded and \(\frac{1}{\xi} \cdot \frac{(1+|g|)p}{q} \) is bounded as well. \(\square \)

Using Lemmas 3.1 and 3.2 we have \(J_\psi = \{ \frac{1}{\xi} \in S^{-1}C : \frac{1}{\xi} \text{ is bounded, } \forall t \in U^+, 0 < t < 1 \} \)

Lemma 4.4. Let \(S \) be an \(m.c. \) \(3 \)-subset of \(C(X) \) and consider \(\frac{1}{\xi} \in J_\psi \). The function \(\varphi_{\frac{1}{\xi}} : \mathbb{R} \rightarrow S^{-1}C \) defined by \(\varphi_{\frac{1}{\xi}}(a) = \frac{\varphi_{\frac{1}{\xi}}(a)}{\varphi_{\frac{1}{\xi}}(a)} \) is continuous.

Proof. Using Lemma 3.2, for every \(a \in \mathbb{R} \) and \(\frac{1}{\xi} \in U^+ \), we must show that \(\varphi_{\frac{1}{\xi}}^{-1}(B\left(\frac{1}{\xi}, \frac{1}{\xi}\right)) \) contains a neighborhood of \(a \) in \(\mathbb{R} \). Since \(\frac{1}{\xi} \in J_\psi \), there exists \(k \in \mathbb{N} \) such that \(|\frac{1}{\xi}a| \leq \frac{1}{k} \). Now, we show that the interval \((a - \frac{1}{k}, a + \frac{1}{k})\) is contained in \(\varphi_{\frac{1}{\xi}}^{-1}(B\left(\frac{1}{\xi}, \frac{1}{\xi}\right)) \). In fact, \(b \in (a - \frac{1}{k}, a + \frac{1}{k}) \) implies that \(\frac{1}{\xi} |\frac{1}{\xi}a| \leq \frac{1}{k} \cdot \frac{1}{\xi} = \frac{1}{k} \) and hence \(|\frac{1}{\xi}b - \frac{1}{\xi}a| < \frac{1}{k} \), i.e., \(b \in \varphi_{\frac{1}{\xi}}^{-1}(B\left(\frac{1}{\xi}, \frac{1}{\xi}\right)) \). \(\square \)

The following theorem is in fact a generalization of Corollary 3.3 in [2].

Theorem 4.5. Let \(S \) be an \(m.c. \) \(3 \)-subset of \(C(X) \). The ideal \(J_\psi \) is the component of zero in \(S_m^{-1}C \).
Proof. First, since \mathbb{R} is connected, using Lemma 4.4, $\varphi_\omega(\mathbb{R})$ is a connected set containing 0 for every $\frac{r}{s} \in I_f$. Therefore, $I_f = \bigcup_{x \in \mathbb{R}} \varphi_\omega(\mathbb{R})$ is a connected set containing 0. Next, if I is the component of 0 in S_m^1C, then $I_f \subseteq I$. Moreover, since S_m^1C is topological ring, I is an ideal of S_m^1C. To complete the proof, it is enough to show that $I \subseteq I_f$. On the contrary, let $\frac{r}{s} \in I \setminus I_f$. By Lemma 4.3, there exists $\frac{t}{v} \in U^*$ such that $\frac{r}{s} \not\in (S^1C)^*$. Consider the sets $I \cap (S^1C)^*$ and $I \setminus (S^1C)^*$. By Lemma 4.2, these two sets are open in I and since $0 \in I \cap (S^1C)^*$ and $\frac{r}{s} \in I \setminus (S^1C)^*$, they are non-empty disjoint open subsets of the connected set I, a contradiction. \qed

Corollary 4.6. Let S be an m.c. 3-subset of $C(X)$. S_m^1C is connected if and only if $S_m^1C = I_f$, i.e., for every $f \in C(X)$ and each $r \in S$, there exist $k \in \mathbb{N}$ and $t \in S$ such that $|f(x)| \leq kr(x)$ for all $x \in \text{coz} f$.

Motivated by the previous corollary, we are going to investigate the connectedness of S_m^1C via topological properties of X for some particular m.c. 3-subsets of X. For example, let $p \in \beta X$ and put $S_p = C(X)\setminus M_p$ or more generally, suppose that $A \subseteq \beta X$ and $S_A := C(X)\setminus \bigcup_{\lambda \in \Lambda} M_\lambda$. Clearly S_A is an m.c. 3-subset of $C(X)$ and $S_A = \{f \in C(X) : p \not\in \text{cl}_{\beta X}Z(f)\}$ for each $p \in A$. Let $A = \{f \in C(X) : A \cap \text{cl}_{\beta X}Z(f) = \emptyset\}$. Now, it is natural to ask the following questions.

When is the topological ring $(S_A)^{-1}C$ connected? what can we say about the connectedness of $(S_A)^{-1}C$ if we replace $\bigcup_{\lambda \in \Lambda} M_\lambda$ in S_A by an arbitrary union of family of particular prime ideals of $C(X)$? We will address such questions in the next section.

5. Connectedness of S_m^1C with the m-Topology

In this section, we study the connectedness of S_m^1C, where $S = C(X)\setminus \bigcup_{\lambda \in \Lambda} P_\lambda$, and $(P_\lambda)_{\lambda \in \Lambda}$ is a family of prime z-ideals of $C(X)$. Using this, we conclude that $C(X)$ with the m-topology is connected if and only if X is pseudocompact. Also, it is shown that the classical ring of quotients of $C(X)$ endowed with the m-topology, is connected if and only if every dense cozero-set of $C(X)$ is pseudocompact.

We use the following lemma frequently. But, before that, we review some results which are needed in sequel. First, notice that for every $f \in C(X)$ we have

$$\text{coz} f \subseteq \beta X \setminus \text{cl}_{\beta X}Z(f) \subseteq \text{cl}_{\beta X}\text{coz} f. \quad (1)$$

The proof of the first inclusion is clear. To prove the second, let $x \not\in \text{cl}_{\beta X}Z(f)$. There exists an open neighborhood G of x in βX such that $G \subseteq \beta X \setminus Z(f)$. Now, for an arbitrary open subset H of βX containing x, we have

$$\emptyset \neq X \cap (G \cap H) \subseteq (X \cap H) \cap (\beta X \setminus Z(f)) = H \cap \text{coz} f$$

which implies that $x \in \text{cl}_{\beta X}\text{coz} f$. Next, by part (1), we conclude that

$$\text{cl}_{\beta X}\text{coz} f = \text{cl}_{\beta X}(\beta X \setminus \text{cl}_{\beta X}Z(f)) = \beta X \setminus \text{int}_{\beta X}\text{cl}_{\beta X}Z(f). \quad (2)$$

Finally, if $f \in C^*(X)$, then $\text{coz} f = X \cap \text{coz} f^\delta$ and in this case, we have

$$\text{cl}_{\beta X}\text{coz} f = \text{cl}_{\beta X}\text{coz} f^\delta = \beta X \setminus \text{int}_{\beta X}Z(f^\delta).$$

Using part (2), the next lemma is now evident.

Lemma 5.1. Let $f \in C(X)$ and $p \in \beta X$. $f \not\in O^\delta$ if and only if $p \in \text{cl}_{\beta X}\text{coz} f$.

Proposition 5.2. Let S be an m.c. 3-subset of $C(X)$ and consider $S_p := C(X)\setminus M_p$, for some $p \in \beta X \setminus \nu X$. If $S_p \subseteq S$ then S_m^1C is disconnected.
Proof. Let \(p \in \beta X \setminus vX \). By 8.7.(b) in [7], there exists \(r \in C'(X) \) such that \(Z(r) = \emptyset \), while \(r^\circ(p) = 0 \). Since \(S \) is a 3-subset and \(Z(r) = Z(1) \), then \(r \in S \) and so \(\frac{1}{r} \in S^{-1}C \). To complete the proof, we claim that \(\frac{1}{r} \) is unbounded on \(coz t \) for every \(t \in S \). Let \(\mathcal{S} \) be the saturation of \(S \). Recall that \(\mathcal{S} = C(X) \setminus \bigcup_{p \in S^{-1}C} P \) where each \(P \) is a prime ideal of \(C(X) \). Furthermore, for every prime ideal \(P \) which doesn’t intersect \(S \), we have \(P \subseteq C(X) \setminus S \subseteq C(X) \setminus S_p = M^p \). Now, for every \(t \in S \), \(tr \in S \subseteq \mathcal{S} \) and so, there exists a prime ideal \(P \) such that \(tr \notin P \) and consequently \(tr \notin O^p \). Thus by Lemma 5.1, \(p \in cl_{mX}coz tr \) and hence there exists a net \(\{x_i\} \) contained in \(coz tr = coz t \cap coz r \) which converges to \(p \). Since \(r^\circ \) is continuous, \(r^\circ(x_i) \rightarrow r^\circ(p) = 0 \) and this implies that the function \(r \) converges to zero on \(coz tr \subseteq coz r \) and so the fraction \(\frac{1}{r} \in S^{-1}C \) is not bounded on \(coz tr \subseteq coz r \). Therefore, the claim is true and so \(S^{-1}C \) is disconnected. \(\square \)

Proposition 5.3. Let \(P \) be a prime \(z \)-ideal of \(C(X) \) and suppose that \(S = C(X) \setminus P \). The topological ring \(S^{-1}C \) is connected if and only if \(P \) is a real maximal ideal.

Proof. We first prove the necessity. By contrary, assume that \(P \) is not real maximal ideal. Now, using 7.15 in [7], \(p \in \beta X \) and \(M^p \) be the unique maximal ideal of \(C(X) \) containing \(P \). We consider two cases:

Case 1. \(p \in \beta X \setminus vX \). In this case, Proposition 5.2 implies that \(S^{-1}C \) is disconnected, a contradiction.

Case 2. Let \(p \in vX \). In this case, using 7.9.(c) in [7], we have \(M^p \cap C(X \setminus P) = M^p \). On the other hand, \(P \subseteq M^p \) by our assumption. Then there exists a function \(r \in C'(X) \) such that \(r \in M^p \setminus P \) and so \(\frac{1}{r} \in S^{-1}C \). Moreover, \(r \in M^p \cap C(X) \) implies \(r^\circ(p) = 0 \). Now, for every \(t \in S \), \(tr \notin P \) which shows that \(tr \notin O^p \) and hence \(p \in cl_{mX}coz tr \), by Lemma 5.1. Finally, similar to the proof of the Proposition 5.2, we conclude that \(\frac{1}{r} \) is unbounded on \(coz tr \subseteq coz t \) and consequently using the Corollary 4.6, \(S^{-1}C \) is not connected, a contradiction.

Next, to prove the sufficiency, let \(p \in \beta X \), \(M^p \) be a real maximal ideal of \(C(X) \) and \(S = C(X) \setminus M^p \). Suppose that \(\frac{1}{r} \in S^{-1}C \). By Lemma 3.1, we can assume that \(f, r \in C'(X) \). Since \(r \notin M^p \) and \(M^p \) is real, we have \(r \notin M^p \), by 7.9.(c) in [7], and hence \(r^\circ(p) \neq 0 \). Moreover, for every \(f \in C(X) \), \(f^\circ(p) \) does not approach to infinity. Now, consider the open subset \(H = \{ x \in coz r^\circ : |\frac{f}{r^\circ}(x) - \frac{f}{r^\circ}(p)| < 1 \} \) of \(coz r^\circ \subseteq \beta X \). We observe that \(H \) is an open neighborhood of \(p \) in \(\beta X \) and since \(coz r^\circ : t \in C'(X) \) is a base for the space \(\beta X \), there exists \(t \in C'(X) \) such that \(p \in coz t^\circ \subseteq \beta X \). Thus, for every \(x \in coz t^\circ \), \(|\frac{f}{r^\circ}(x) - \frac{f}{r^\circ}(p)| < |\frac{f}{r^\circ}(p)| + 1 \) and hence for every \(x \in X \cap coz t^\circ \), we have \(|\frac{f}{r^\circ}(x)| < |\frac{f}{r^\circ}(p)| + 1 \) which implies that \(\frac{1}{r} \) is bounded on \(coz t \). Therefore, by Corollary 4.6, \(S^{-1}C \) with the \(m \)-topology, i.e., \(S^{-1}C \) is connected. \(\square \)

The following result is an immediate consequence of the previous proposition.

Corollary 5.4. Let \(p \in \beta X \). \(S^{-1}C \) with the \(m \)-topology is connected if and only if \(p \in vX \).

By 8A.4 in [7], \(vX = \beta X \) if and only if \(X \) is pseudocompact. Using this and corollary 5.4 the following result is now evident.

Corollary 5.5. \(S_{P}^{-1}C \) with the \(m \)-topology is connected for every \(p \in \beta X \) if and only if \(X \) is pseudocompact.

Recall that whenever \(\mathcal{S} \) is the saturation of an \(m.c. \) subset \(S \) of \(C(X) \), then two rings \(S^{-1}C \) and \((\mathcal{S})^{-1}C \) are isomorphic. By Corollary 2.9, the saturation of every \(m.c. \) \(3 \)-subset \(S \) of \(C(X) \) is a \(3 \)-subset. If we consider \(S = C(X) \setminus \bigcup_{\lambda \in X} P_{\lambda} \) where \(\{P_{\lambda}\}_{\lambda \in X} \) is a family of prime ideals of \(C(X) \), then for every \(\lambda \in X \), we have \(P_{\lambda} \cap S = \emptyset \) and conversely, for each prime ideal \(P \) disjoint from \(S \) there exists \(\lambda \in X \) such that \(P = P_{\lambda} \).

Definition 5.6. An ideal \(I \) of \(C(X) \) is called real whenever every maximal ideal containing \(I \), is real.

As 7O in [7], for an ideal \(I \) in \(C(X) \) if we define \(\theta(I) = \{ p \in \beta X : I \subseteq M^p \} \), then \(\theta(I) = \bigcap_{f \in I} cl_{mX}Z(f) \). Thus, an ideal of \(C(X) \) is real ideal if and only if \(\theta(I) \subseteq vX \) or equivalently \(\bigcap_{f \in I} cl_{mX}Z(f) \subseteq vX \).

Proposition 5.7. Let \(\{P_{\lambda}\}_{\lambda \in X} \) be a family of prime \(z \)-ideals of \(C(X) \) and take \(S := C(X) \setminus \bigcup_{\lambda \in X} P_{\lambda} \). Then \(S \) is an \(m.c. \) \(3 \)-subset of \(C(X) \) and if \(S_{P}^{-1}C \) is connected, then for every \(\lambda \in X \) the ideal \(P_{\lambda} \) is real. Moreover, \(\bigcup_{\lambda \in X} P_{\lambda} = \bigcup_{p \in A} M^p \) where \(A = \bigcup_{\lambda \in X} \theta(P_{\lambda}) \).
Proof. By contrary, suppose that \(S^{-1}_m C \) is connected but at least one of the prime ideals is not real. Thus, there exists \(\lambda \in \Lambda \) and \(p \in \beta X \setminus vX \) such that \(P_{\lambda'} \subseteq M^p \). Since \(p \notin vX \), there is a function \(r \in C(X) \) such that \(Z(r) = \emptyset \) and \(r^p(0) = 0 \). Now, similar to the proof of Proposition 5.2, we conclude that \(\frac{1}{r} \in S^{-1}_m C \) and for every \(t \in S \) we have \(tr \notin O^r \), since \(tr \notin P_{\lambda'} \). So by Lemma 5.1, \(p \in \cl_{\beta X} tr \). Therefore, \(\frac{1}{r} \) is not bounded on \(\coz t \) and thus \(S^{-1}_m C \) is not connected, by Corollary 4.6, a contradiction.

To prove the last part of the proposition, by contrary, let \(r \in \bigcup_{p \in A} M^p \setminus \bigcup_{p \in A} P_1 \). As above, for every \(t \in S \) it can be shown that \(\frac{1}{r} \) is unbounded on \(\coz t \) and so \(S^{-1}_m C \) is disconnected, a contradiction. \(\square \)

Corollary 5.8. Let \(p \in \beta X \) and \(\{ P^p_{\lambda} \}_{\lambda \in \Lambda} \) be a family of prime \(z \)-ideals of \(C(X) \) contained in the maximal ideal \(M^p \) and suppose that \(S = C(X) \setminus \bigcup_{\lambda \in \Lambda} P^p_{\lambda} \). Then \(S^{-1}_m C \) is connected if and only if \(p \in vX \) and \(M^p = \bigcup_{\lambda \in \Lambda} P^p_{\lambda} \).

Corollary 5.9. Let \(A \subseteq \beta X \) and suppose that \(S_A = C(X) \setminus \bigcup_{p \in A} M^p \). If \(S^{-1}_m C \) with the \(m \)-topology is connected, then \(A \subseteq vX \).

The following theorem which is in fact a generalization of Corollary 5.4, shows that whenever \(A \) is a compact subset of \(\beta X \), the converse of the previous corollary is also true. But, we were unable to answer the converse of the corollary.

Theorem 5.10. Let \(A \) be a compact subset of \(\beta X \) and consider \(S_A = C(X) \setminus \bigcup_{p \in A} M^p \). Then \(S^{-1}_m C \) with the \(m \)-topology is connected if and only if \(A \subseteq vX \).

Proof. Necessity is clear by Corollary 5.9. To prove the sufficiency, let \(A \) be a compact subset of \(vX \). Using Corollary 4.6, it is enough to show that for every \(\frac{1}{r} \in S^{-1}_m C \), there exists \(t \in S_A \) such that \(\frac{1}{r} \) is bounded on \(\coz t \). Since \(r \in S_A \), then for every \(p \in A \subseteq vX \), \(r \notin M^p \cap C(X) = M^p \) and so \(r^p(0) \neq 0 \). Moreover, \(p \in vX \) implies that \(f^p(p) \neq \infty \) and thus for each \(p \in A \), \(f^p(p) \) is a real number. As in the proof of Proposition 5.3, the subset \(H = \{ x \in \coz r^p : |f^p(r)(x)| - f^p(p) < 1 \} \) is an open neighborhood of \(p \) in \(\coz r^p \) and hence in \(\beta X \) as well. Thus, there exists \(t \in C(X) \) such that \(p \in \coz f^p \subseteq H \subseteq \coz r^p \) and so we conclude that \(\frac{1}{r} \) is bounded on \(\coz t \). In fact, for every \(x \in \coz t \), we have \(\frac{1}{r^p}(x) < f^p(p) + 1 \). Now, since \(A \) is compact and \(A \subseteq \bigcup_{p \in A} \coz f^p \), there are functions \(t_{p_1}, ..., t_{p_n} \) in \(C(X) \) such that \(A \subseteq \bigcup_{i=1}^n \coz t_{p_i} \). We claim that \(t = t_{p_1}^2 + ... + t_{p_n}^2 \) is the function which we look for.

First, note that for every \(p \in A \) we have \(t \notin M^p \). Otherwise, if for some \(q \in A \) we have \(t \in M^q \), then \(Z(t) \subseteq Z(t_{p_i}) \) \((1 \leq i \leq n)\) implies that \(t_{p_i} \in M^q \) for every \(1 \leq i \leq n \), (since \(M^q \) is a \(z \)-ideal) which contradicts \(q \in A \subseteq \bigcup_{p \in A} \coz t_{p_i} \).

Next, because \(\frac{1}{r} \) is bounded on every \(\coz t_{p_i} \) \((1 \leq i \leq n)\), it is bounded on \(\coz t = \coz (t_{p_1}^2 + ... + t_{p_n}^2) = \bigcup_{i=1}^n \coz t_{p_i} \), too, which completes the proof. \(\square \)

Whenever a subset \(A \) of \(X \) is completely separated from every zero-set disjoint from it, in particular, if \(A \) is a zero-set or a \(C \)-embedded subset of \(X \), then for every \(f \in C(X) \), \(\cl_{\beta X} A \cap \cl_{\beta X} Z(f) = \emptyset \) if and only if \(A \cap \cl_{\beta X} Z(f) = \emptyset \), see Theorems 1.18 and 6.5 in [7]. Therefore, \(S_A = S_{\cl_{\beta X} A} \) and since \(\cl_{\beta X} A \) is a compact subset of \(\beta X \), the following result is now evident by Theorem 5.10.

Corollary 5.11. Let a subset \(A \subseteq X \) be completely separated from every zero-set disjoint from it. Then \(S^{-1}_m C \) with the \(m \)-topology is connected if and only if \(\cl_{\beta X} A \subseteq vX \).

If we consider \(S = C(X) \setminus \bigcup_{p \in \beta X} M^p \), then \(S \) is the set of all units of \(C(X) \) and so \(S^{-1}_m C = \cl_{\beta X} C_m(X) \). Therefore, by Theorem 5.10, \(C_m(X) \) is connected if and only if \(\beta X \subseteq vX \). Now, using 8A.4 in [7], the following results is evident.

Corollary 5.12. ([2, Proposition 3.12]) \(C(X) \) with the \(m \)-topology is connected if and only if \(X \) is pseudocompact.
Using Proposition 5.7 and Theorem 5.10, we conclude the paper by another proof for Corollary 3.11 in [3]. First, we recall that a point \(p \in X \) is called an almost \(P \)-point, if every \(G_\delta \)-set (zero-set) containing \(p \) has nonempty interior and a space \(X \) is called an almost \(P \)-space if each point of \(X \) is an almost \(P \)-point. Thus, \(X \) is an almost \(P \)-space if and only if every non-zero-divisor of \((X) \) is unit, i.e., \(\mathbb{U}(X) = C(X) \setminus \text{Zd}(X) = C(X) \setminus \bigcup P \), where \(P \) is a prime ideal of \((X) \) contained in \(\text{Zd}(X) \). It is proved that \(p \in X \) is an almost \(P \)-point if and only if whenever \(f \in (X) \) and \(p \in Z(f) \) imply that \(p \in \text{cl}_X \text{int}_X Z(f) \). In fact, if \(p \) is an almost \(P \)-point, then \(M_p \subseteq \text{Zd}(X) \) and thus, for every \(f \in (X) \) if \(p \in Z(f) \), then the ideal \((O_p, f) \) generated by \(O_p \cup \{ f \} \) is contained in \(M_p \). Now, using Corollary 3.3 in [4] we conclude that \(p \in \text{cl}_X \text{int}_X Z(f) \). See [10] for more information about almost \(P \)-spaces.

Corollary 5.13. ([3, Corollary 3.11]) The classical ring of quotients of \((X) \) with the \(m \)-topology is connected if and only if \(X \) is a pseudocompact almost \(P \)-space.

Proof. Let \(S^{-1}C \) be the classical ring of quotients of \((X) \) and for every \(p \in \beta X \), suppose that \(\{ P^p_A \}_{A \in \Lambda} \) is the family of all prime ideals of \((X) \) contained in \(M^p \cap \text{Zd}(X) \). It is not hard to see that \(\text{Zd}(X) = \bigcup_{A \in \Lambda} P^p_A \) and so, \(S = (X) \setminus \bigcup_{A \in \Lambda} P^p_A \). Now, Using Proposition 5.7, if \(S^{-1}C \) is connected, then every \(P^p_A \) is real ideal which implies that \(\beta X \subseteq \nu X \), i.e., \(X \) is pseudocompact. On the other hand, since for every \(\lambda \in \Lambda_p \) we have \(\theta(P^p_A) = \{ p \} \), using the same proposition, we conclude that \(\text{Zd}(X) = \bigcup_{p \in \text{cl}_X M^p} M^p \). Thus, each non-unit of \((X) \) is zero-divisor and this means that \(X \) is almost \(P \)-space.

Conversely, let \(X \) be pseudocompact almost \(P \)-space. Since \(X \) is an almost \(P \)-space, \(\text{Zd}(X) = \bigcup_{p \in \text{cl}_X M^p} M^p \) and by pseudocompactness of \(X \) we conclude that \(\beta X = \nu X \). Now, by Theorem 5.10, \(S^{-1}C \) is connected for \(S = (X) \setminus \text{Zd}(X) \).

Acknowledgement. The author is grateful to the referee for certain comments and corrections towards the improvement of the paper.

References

[1] F. Azarpanah, F. Manshoor, R. Mohamadian, A generalization of the \(m \)-topology on \((X) \) finer than the \(m \)-topology, Filomat, to appear.

[2] F. Azarpanah, F. Manshoor, R. Mohamadian, Connectedness and compactness in \((X) \) with the \(m \)-topology and generalized \(m \)-topology, Topology Appl. 159 (2012) 3486–3493.

