A Study on Fuzzy 2-absorbing Primary Γ-ideals in Γ-rings

Serkan Onara, Deniz Sönmeza, Bayram Ali Ersoya, Gürsel Yeşilota, Kostaq Hilab

aDepartment of Mathematics, Yıldız Technical University, Davutpaşa-Istanbul, Turkey
bDepartment of Mathematics & Computer Science, University of Gjirokastra, Albania

Abstract. In this paper, we initiate the study of a generalization of fuzzy primary Γ-ideals in Γ-rings by introducing fuzzy 2-absorbing primary Γ-ideals and fuzzy strongly 2-absorbing primary Γ-ideals. The notions of a fuzzy 2-absorbing primary Γ-ideal, fuzzy strongly 2-absorbing primary Γ-ideal and fuzzy weakly completely 2-absorbing primary Γ-ideal are defined and their structural characteristics and properties are investigated. The notion of a fuzzy K – 2-absorbing primary Γ-ideal is introduced and several of its properties are investigated. Finally, the relationships between fuzzy 2-absorbing primary Γ-ideals of a Γ-ring are examined.

1. Introduction

The fuzzy set theory has been proposed in 1965 by Lofti A. Zadeh [33] from the University of Berkeley and since then this concept has been applied to various algebraic structures. Rosenfeld [31] was the first who applied this notion on algebraic structures. After the introduction of the concept of fuzzy sets by Zadeh, a lot of research took place regarding the generalization of the classical notions and results on algebraic structures applying fuzzy sets. (See [13, 14]) The concept of a Γ-ring has a special place among generalizations of rings. One of the most interesting examples of a ring would be the endomorphism ring of an abelian group, i.e., $\text{End}M$ or $\text{Hom}(M, M)$ where M is an abelian group. Now if two abelian groups, say A and B instead of one are taken, then $\text{Hom}(A, B)$ is no longer a ring in the way as $\text{End}M$ becomes a ring because the composition is no longer defined. However, if one takes an element of $\text{Hom}(B, A)$ and put it in between two elements of $\text{Hom}(A, B)$, then the composition can be defined. This served as a motivating factor for introducing and studying the notion of a Γ-ring. The notion of a Γ-ring, a generalization of the concept of associative rings, has been introduced and studied by Nobusawa in [28]. Barnes [6] slightly weakened the conditions in the definition of a Γ-ring in the sense of Nobusawa. The structure of Γ-rings was investigated by several authors such as W.E.Barnes in [6], S.Kyuno in [19, 20] and J.Luh in [23] and were obtained various generalizations analogous to corresponding parts in ring theory. The concept of a fuzzy ideal of a ring was introduced by Liu in [22]. Y. B. Jun and C. Y. Lee [15] applied the concept of fuzzy sets to the theory of Γ-rings. They studied some properties of fuzzy ideals of Γ-rings. In fuzzy commutative algebra, primary ideals are the most significant structures. Dutta and Chanda [10], studied the structure of the set of fuzzy ideals of a Γ-ring. Jun [16] defined fuzzy prime ideal of a Γ-ring and obtained several
characterizations for a fuzzy ideal to be a fuzzy prime ideal. Fuzzy maximal, radical and primary ideal of a ring was studied by Malik and Mordeson in [24] and fuzzy prime ideal in \(\Gamma \)-rings was studied by Dutta and Chanda in [11]. Furthermore, Öztürk et al. [29, 30] characterized the Artinian and Noetherian \(\Gamma \)-rings in terms of fuzzy ideals.

The concept of a 2-absorbing ideal, which is a generalization of prime ideal, was introduced by Badawi in [2] and which was also studied in [1],[5]. At present, studies on the 2-absorbing ideal theory are progressing rapidly. It has been studied extensively by many authors (e.g.[3],[7],[17]). Darani [9] investigated and examined the notion of \(L \)-fuzzy 2-absorbing ideals and he has obtained interesting results on these concepts. Darani and Hashempoor were focused on the concept of \(L \)-fuzzy 2-absorbing ideals in semiring [8]. Elkettani and Kasem [12] proposed the notion of 2-absorbing \(\delta \)-primary \(\Gamma \)-ideal of \(\Gamma \)-rings and obtained interesting results concerning these concepts.

In this paper, we introduce the fuzzy 2-absorbing \(\Gamma \)-ideals, fuzzy 2-absorbing primary \(\Gamma \)-ideals, fuzzy strongly 2-absorbing primary \(\Gamma \)-ideals and fuzzy weakly completely 2-absorbing primary \(\Gamma \)-ideals, some generalizations of 2-absorbing primary fuzzy ideals and describe some of their properties. The notion of a fuzzy \(K \)-2-absorbing primary \(\Gamma \)-ideal is introduced and several of its properties are investigated. Finally, the relationships between fuzzy 2-absorbing primary \(\Gamma \)-ideals of \(\Gamma \)-rings are examined. We also establish a diagram which transition between definitions of fuzzy 2-absorbing \(\Gamma \)-ideals of a \(\Gamma \)-ring as well as the relationships of these concepts with the concept of 2-absorbing \(\Gamma \)-ideal.

2. Preliminaries

In this section, for the sake of completeness, we first recall some useful definitions and results which are needed in the sequel. Throughout this paper, unless otherwise stated, \(R \) is a commutative \(\Gamma \)-ring with 1 \(\neq 0 \) and \(L = [0,1] \) stands for a complete lattice.

Definition 2.1. [33] A fuzzy subset \(\mu \) in a set \(X \) is a function \(\mu : X \to [0,1] \).

Definition 2.2. [25] Let \(\mu \) and \(\nu \) be fuzzy subsets of \(X \). We say that \(\mu \) is a subset of \(\nu \), and write \(\mu \subseteq \nu \), if and only if \(\mu(x) \leq \nu(x) \), for all \(x \in X \).

Definition 2.3. [25] Let \(\mu \) be any fuzzy subset of \(X \) and \(t \in L \). Then the set

\[
\mu_t = \{x \in X | \mu(x) \geq t \}
\]

is called the \(t \)-level subset of \(X \) with respect to \(\mu \).

Definition 2.4. [25] Let \(x \in X \) and \(r \in L - \{0\} \). A fuzzy point, written as \(x_r \), is defined to be a fuzzy subset of \(X \), given by

\[
x_r(y) = \begin{cases}
 r, & \text{if } y = x; \\
 0, & \text{otherwise}.
\end{cases}
\]

If \(x_r \) is a fuzzy point of \(X \) and \(x_r \subseteq \mu \), where \(\mu \) is a fuzzy subset of \(X \), then we write \(x_r \in \mu \).

Definition 2.5. [6] Let \(R \) and \(\Gamma \) be two abelian groups. \(R \) is called a \(\Gamma \)-ring if there exists a mapping

\[
R \times \Gamma \times R \to R \\
(x, \alpha, y) \mapsto x \alpha y
\]

satisfying the following conditions:

1. \((x + y) \alpha z = x \alpha z + y \alpha z \),
2. \(x \alpha (y + z) = x \alpha y + x \alpha z \),
3. \(x (\alpha + \beta) y = x \alpha y + x \beta y \)
4. \(x \alpha (y \beta z) = (x \alpha y) \beta z \) for all \(x, y, z \in R \) and all \(\alpha, \beta \in \Gamma \).
Definition 2.6. [10] A left (resp. right) Γ-ideal of a Γ-ring R is a subset A of R which is an additive subgroup of R and $\Gamma A \subseteq A$ (resp. $A \Gamma \subseteq A$) where,

$$R \Gamma A = \{xay \mid x \in R, \alpha \in \Gamma, y \in A\}.$$

If A is both a left and right ideal, then A is called a Γ-ideal of R.

Definition 2.7. [11] A fuzzy set μ in Γ--ring R is called a fuzzy Γ-ideal of R, if for all $x, y \in R$ and $\alpha \in \Gamma$, the following requirements are satisfied:

1. $\mu(x - y) \geq \min \{\mu(x), \mu(y)\}$
2. $\mu(x \alpha y) \geq \max \{\mu(x), \mu(y)\}$.

Definition 2.8. [10] Let R and S be two Γ-rings, and f be a mapping of R into S. Then f is called Γ-homomorphism if

$$f(a + b) = f(a) + f(b) \text{ and } f(ab) = f(a)f(b)$$

for all $a, b \in R$ and $\alpha \in \Gamma$.

Proposition 2.9. [21] If P is an ideal of a Γ-ring R, then the following conditions are equivalent:

1. P is a prime ideal of R;
2. If $x, y \in R$ and $x \Gamma P \subseteq P$, then $x \in P$ or $y \in P$.

Definition 2.10. [16] A non-constant fuzzy Γ-ideal μ of a Γ-ring R is called fuzzy prime Γ-ideal of R if for any two fuzzy Γ-ideals α and θ of R,

$$\alpha \Gamma \theta \subseteq \mu \text{ implies that either } \alpha \subseteq \mu \text{ or } \theta \subseteq \mu.$$

Lemma 2.11. [24] Let R be a commutative Γ-ring with identity and let x_r and y_s be two fuzzy points of R. Then

1. $x_r \alpha y_s = (xay)_{r,s}$
2. $\langle x_r \rangle \alpha \langle y_s \rangle = \langle x_r \alpha y_s \rangle$, where $\langle x_r \rangle$ is fuzzy Γ-ideal of R generated by x_r.

Theorem 2.12. [24] Let R be a commutative Γ-ring and μ be a fuzzy Γ-ideal of R. Then the following statements are equivalent:

1. $x_r \Gamma y_s \subseteq \mu \Rightarrow x_r \subseteq \mu$ or $y_s \subseteq \mu$ where x_r and y_s are two fuzzy points of R.
2. μ is a fuzzy prime Γ-ideal of R.

Definition 2.13. [2] A proper ideal I of a commutative ring M is called a 2-absorbing ideal of M if whenever $x, y, z \in M$ and $xyz \in I$, then $xy \in I$ or $xz \in I$ or $yz \in I$.

Definition 2.14. [26] A fuzzy ideal μ of R is said to be a fuzzy weakly completely prime ideal if μ is non-constant function and for all $x, y \in R$, $\mu(xy) = \max \{\mu(x), \mu(y)\}$.

Definition 2.15. [18] Let μ be a non-constant fuzzy ideal of R. μ is said to be a fuzzy K--prime ideal if $\mu(xy) = \mu(0)$ implies either $\mu(x) = \mu(0)$ or $\mu(y) = \mu(0)$ for any $x, y \in R$.

Definition 2.16. [12] A proper Γ-ideal I of a Γ-ring R is called a 2-absorbing Γ-ideal of R if whenever $x, y, z \in R$, $\alpha, \beta \in \Gamma$ and $xay \beta z \in I$, then $xay \in I$ or $x \beta z \in I$ or $y \beta z \in I$.

Definition 2.17. [27] Let μ be a fuzzy ideal of R. Then $\sqrt[\mu]{\Gamma}$, called the radical of μ, is defined by $\sqrt[\mu]{\Gamma}(x) = \sqrt[\mu]{\mu(x^a)}$ for some positive integer n.

Definition 2.18. [27] A fuzzy ideal μ of R is called primary fuzzy ideal if for $x, y \in R$, $\mu(xy) > \mu(x)$ implies $\mu(xy) \leq \mu(y^n)$ for some positive integer n.
Theorem 2.19. [27] Let \(\mu \) be fuzzy ideal of a ring \(R \). Then \(\sqrt{\mu} \) is a fuzzy ideal of \(R \).

Theorem 2.20. [32] If \(\mu \) and \(\xi \) are two fuzzy ideals of \(R \), then \(\sqrt{\mu \cap \xi} = \sqrt{\mu} \cap \sqrt{\xi} \).

Theorem 2.21. [32] Let \(f : R \rightarrow S \) be a ring homomorphism and let \(\mu \) be a fuzzy ideal of \(R \) such that \(\mu \) is constant on \(\text{Ker} f \) and \(\xi \) be a fuzzy ideal of \(S \). Then,
\[
\sqrt{f(\mu)} = f(\sqrt{\mu}) \quad \text{and} \quad \sqrt{f^{-1}(\xi)} = f^{-1}(\sqrt{\xi}).
\]

Definition 2.22. [4] A proper ideal \(I \) of \(R \) is called 2-absorbing primary ideal of \(R \) if whenever \(a, b, c \in R \) with \(abc \in I \) then either \(ab \in I \) or \(ac \in \sqrt{I} \) or \(bc \in \sqrt{I} \).

Theorem 2.23. [4] If \(I \) is a 2-absorbing primary ideal of \(R \), then \(\sqrt{I} \) is a 2-absorbing ideal of \(R \).

3. Fuzzy 2-absorbing primary \(\Gamma \)-ideals of a \(\Gamma \)-ring

In this section, we introduce and study fuzzy 2-absorbing primary \(\Gamma \)-ideals of a \(\Gamma \)-ring. Firstly, we will give the structure of fuzzy primary \(\Gamma \)-ideals of a \(\Gamma \)-ring. Throughout this paper we assume that \(R \) is a commutative \(\Gamma \)-ring.

Definition 3.1. Let \(\mu \) be a non-constant fuzzy \(\Gamma \)-ideal of \(R \). Then \(\mu \) is said to be a fuzzy primary \(\Gamma \)-ideal of \(R \) if
\[
x_r y_s \alpha \implies \text{either } x_r \in \mu \text{ or } y_s \in \sqrt[\Gamma]{\mu}
\]
for any fuzzy points \(x_r, y_s \) of \(R \) and \(\alpha \in \Gamma \).

Proposition 3.2. Let \(\mu \) be a fuzzy \(\Gamma \)-ideal of \(R \). If \(\mu \) is a fuzzy primary \(\Gamma \)-ideal of \(R \), then for all \(x, y \in R \) and \(\alpha \in \Gamma \)
\[
\mu(xay) > \mu(x) \implies \mu(xay) \leq \sqrt[\Gamma]{\mu(y)}.
\]

Proof. Let \(\mu(xay) = r > \mu(x) \). Then \((xay)_r \in \mu \) and \(x_r \notin \mu \). Since \(\mu \) is a fuzzy primary \(\Gamma \)-ideal of \(R \), then \(y_s \in \sqrt[\Gamma]{\mu} \). Thus \(\mu(xay) = r \leq \sqrt[\Gamma]{\mu(y)} \). \(\Box \)

Example 3.3. Every fuzzy prime \(\Gamma \)-ideal of \(R \) is a fuzzy primary \(\Gamma \)-ideal of \(R \).

Now, we give the definition of a fuzzy 2-absorbing primary \(\Gamma \)-ideal of a \(\Gamma \)-ring.

Definition 3.4. Let \(\mu \) be a non-constant fuzzy \(\Gamma \)-ideal of a \(\Gamma \)-ring \(R \). Then \(\mu \) is called fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(R \) if for any fuzzy points \(x_r, y_s, z_t \) of \(R \) and \(\alpha, \beta \in \Gamma \),
\[
x_r, ay_s, \beta z_t \in \mu \implies \text{either } x_r, ay_s \in \mu \text{ or } x_r, \beta z_t \in \sqrt[\Gamma]{\mu} \text{ or } y_s, \beta z_t \in \sqrt[\Gamma]{\mu}.
\]

Proposition 3.5. Every fuzzy primary \(\Gamma \)-ideal of \(R \) is a fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(R \).

Proof. The proof is straightforward. \(\Box \)

Theorem 3.6. Let \(\mu \) be a fuzzy \(\Gamma \)-ideal of \(R \). If \(\mu \) is a fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(R \), then \(\mu_a \) is a 2-absorbing primary \(\Gamma \)-ideal of \(R \), for every \(a \in [0, \mu(0)] \) with \(\mu_a \neq R \).
Proof. Let \(\mu \) be fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(R \) and suppose that \(x, y, z \in R \) and \(\alpha, \beta \in \Gamma \) are such that \(x\alpha y\beta z \in \mu \) for every \(a \in [0, \mu(0)] \) with \(\mu_a \neq R \). Then
\[
\mu(x\alpha y\beta z) \leq a \quad \text{and} \quad (x\alpha y\beta z)_a (x\alpha y\beta z) = a \leq \mu(x\alpha y\beta z),
\]
so we have \((x\alpha y\beta z)_a = x,\alpha y,\beta z \in \mu \). Since \(\mu \) is a fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(R \), we have
\[
(x\alpha y)_a = x,\alpha y \in \mu \quad \text{or} \quad (y\beta z)_a = y,\beta z \in \sqrt{\mu}.
\]
Thus \(x\alpha y \in \mu \) or \(x\beta z \in \sqrt{\mu} \) or \(y\beta z \in \sqrt{\mu} \), and \(\mu \) is a 2-absorbing primary \(\Gamma \)-ideal of \(R \). \(\square \)

The following example shows that the converse of the theorem is not generally true.

Example 3.7. Let \(R = \mathbb{Z} \) and \(\Gamma = 2\mathbb{Z} \), so \(R \) is a \(\Gamma \)-ring. Define the fuzzy \(\Gamma \)-ideal \(\mu \) of \(R \) by
\[
\mu(x) = \begin{cases} 1, & \text{if } x = 0; \\ \frac{1}{3}, & \text{if } x \in 15\mathbb{Z} - \{0\}; \\ 0, & \text{if } x \in \mathbb{Z} - 15\mathbb{Z}. \end{cases}
\]
Since \(\mu(0) = \mathbb{Z}, \mu_\frac{1}{3} = 15\mathbb{Z} \) and \(\mu_1 = 0 \), then we get \(\mu_a \) is a 2-absorbing primary \(\Gamma \)-ideal of \(R \). But, for \(\alpha, \beta \in 2\mathbb{Z} \), we get
\[
3,\alpha 5,\beta 1_\frac{1}{3} = (3\alpha 5\beta 1)_\frac{1}{3} \in \mu, \quad \text{and} \quad 3,\alpha 5_\frac{1}{3} = (3\alpha 5)_\frac{1}{3} = \frac{1}{3} > \mu(3\alpha 5) = \frac{1}{3},
\]
\[
3,\beta 1_\frac{1}{3} = (3\beta 1)_\frac{1}{3} = \frac{1}{3} > \sqrt{\mu(3\beta 1)} = 0;
\]
\[
5,\beta 1_\frac{1}{3} = (5\beta 1)_\frac{1}{3} = \frac{1}{3} > \sqrt{\mu(5\beta 1)} = 0.
\]
Thus \(\mu \) is not a fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(R \).

Corollary 3.8. If \(\mu \) is a fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(R \), then
\[
\mu_* = \{ x \in R \mid \mu(x) = \mu(0) \}
\]
is a 2-absorbing primary \(\Gamma \)-ideal of \(R \).

Proof. Since \(\mu \) is a non-constant fuzzy \(\Gamma \)-ideal of \(R \), then \(\mu_* \neq R \). Now the result follows from the above theorem. \(\square \)

In the sequel of the paper, for the sake of simplicity, we denote \(x^m = x^{\gamma_1}x^{\gamma_2}x^{\gamma_m-1}x \) for some \(\gamma_1, \gamma_2, ..., \gamma_m-1 \in \Gamma \) and for some \(m \in \mathbb{Z}^+ \).

Theorem 3.9. Let \(I \) be a 2-absorbing primary \(\Gamma \)-ideal of \(R \). Then the fuzzy subset \(\mu \) of \(R \) defined by
\[
\mu(x) = \begin{cases} 1, & \text{if } x \in I \\ 0, & \text{otherwise} \end{cases}
\]
is a fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(R \).

Proof. We have \(I \neq R \) and so \(\mu \) is non-constant because \(I \) is a 2-absorbing primary \(\Gamma \)-ideal of \(R \). Assume that \(x,\alpha y,\beta z \in \mu \), but \(x,\alpha y \notin \mu, x,\beta z \notin \sqrt{\mu} \) and \(y,\beta z \notin \sqrt{\mu} \) where \(x, y, z \) are fuzzy points of \(R \) and \(\alpha, \beta \in \Gamma \). Then
\[
\mu(x\alpha y)_s < r \wedge s \quad \mu((x\beta z)^t) < \sqrt{\mu}(x\beta z) < r \wedge t \quad \mu((y\beta z)^t) < \sqrt{\mu}(y\beta z) < s \wedge t
\]
Proposition 3.12. If \(x \land r \in \Gamma \) for some \(x \in R \), then \(\mu \) is a fuzzy 2-absorbing \(\Gamma \)-ideal of \(R \).

Proof. Suppose that \(x \land r \in \Gamma \) for all \(n \geq 1 \). Hence
\[
\mu(xay) = 0 \text{ and } xay \notin I
\]
\[
\mu((x \land r)y) = 0 \text{ and } (x \land r)y \notin I \text{ so } x \land r \notin \sqrt{I}
\]
\[
\mu((y \land r)x) = 0 \text{ and } (y \land r)x \notin I \text{ so } y \land r \notin \sqrt{I}.
\]
Since \(I \) is a 2-absorbing \(\Gamma \)-ideal of \(R \), we have \(xay \land r \notin I \) and so \(\mu(xay) = 0 \) for \(x, y, z \in R \) and \(\alpha, \beta \in \Gamma \).

By our hypothesis, we have \(\mu(xayr) = x \land ay \land rz \in \mu \land r \) and \(s \land t \leq \mu(xayz) = 0 \). Hence \(r \land s = 0 \) or \(r \land t = 0 \) or \(s \land t = 0 \), which is a contradiction. Hence \(x, ay \in \mu \land ay \land rz \in \sqrt{I} \) and \(x, ay \land rz \in \sqrt{I} \) and \(z \in \mu \) is a fuzzy 2-absorbing \(\Gamma \)-ideal of \(R \).

Theorem 3.10. Every fuzzy 2-absorbing \(\Gamma \)-ideal of \(R \) is a fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(R \).

Proof. The proof is straightforward.

Example 3.11. Let \(R = \mathbb{Z} \) and \(\Gamma = 5\mathbb{Z} \), so \(R \) is a \(\Gamma \)-ring. Define the fuzzy \(\Gamma \)-ideal \(\mu \) of \(R \) by

\[
\mu(x) = \begin{cases}
1, & \text{if } x \in 12\mathbb{Z}, \\
0, & \text{otherwise}.
\end{cases}
\]

Then \(\mu \) is a fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(R \), but it is not fuzzy 2-absorbing \(\Gamma \)-ideal of \(R \) because for \(\alpha, \beta \in 2\mathbb{Z} \) and \(r, s, t \in [0, 1] \),
\[
2, \alpha 2, \beta 3, 1 = \mu, \text{ but } 2, \alpha 2, \beta 3, 1 = \mu \text{ and } 2, \beta 3, 1 = \mu.
\]

Proposition 3.12. If \(\mu \) is a fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(R \), then \(\sqrt{\mu} \) is a fuzzy 2-absorbing \(\Gamma \)-ideal of \(R \).

Proof. Suppose that \(x, ay, bz \in \sqrt{\mu} \) and \(x, ay, bz \notin \sqrt{\mu} \) where \(x, y, z \) are fuzzy points of \(R \) and \(\alpha, \beta \in \Gamma \). Since \(x, ay, bz \in \sqrt{\mu} \), then
\[
r \land s \land t = (xaybz)(xaybz) = x, ay, bz, (xaybz) \leq \sqrt{\mu} (xaybz).
\]
From the definition of \(\sqrt{\mu} \), we have
\[
\sqrt{\mu} (xaybz) = \bigvee_{n \geq 1} \mu((xaybz)^n) \geq \bigvee_{n \geq 1} \mu((x^n y^n z^n) \geq r \land s \land t.
\]
for some \(\gamma_1, \gamma_2 \in \Gamma \). Then there exists \(k \in \mathbb{Z}^+ \) such that for some \(\gamma_1', \gamma_2' \in \Gamma \),
\[
r \land s \land t \leq \mu((x^n y^n z^n) \leq \mu((xaybz)^k)
\]
which implies that \((x, ay, bz)^k \in \mu \). If \(x, ay, bz \notin \sqrt{\mu} \), then for all \(k \in \mathbb{Z}^+ \) and for some \(\gamma \in \Gamma \),
\[
(x, ay, bz)^k \leq x^n y^n z^n \notin \mu.
\]
Since \(\mu \) is a fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(R \), then
\[
x \land bz, y, bz \in \sqrt{\mu} \text{ or } y, bz \in \sqrt{\mu}.
\]
Hence \(\sqrt{\mu} \) is fuzzy 2-absorbing \(\Gamma \)-ideal of \(R \).

Definition 3.13. Let \(\mu \) be a fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(R \) and \(\gamma = \sqrt{\mu} \) which is a fuzzy 2-absorbing \(\Gamma \)-ideal of \(R \). Then \(\mu \) is called a fuzzy \(\gamma \)-2-absorbing primary \(\Gamma \)-ideal of \(R \).

Theorem 3.14. Let \(\mu_1, \mu_2, ..., \mu_n \) be fuzzy \(\gamma \)-2-absorbing primary \(\Gamma \)-ideals of \(R \) for some fuzzy 2-absorbing \(\Gamma \)-ideal \(\gamma \) of \(R \). Then \(\mu = \bigcap_{i=1}^n \mu_i \) is a fuzzy \(\gamma \)-2-absorbing primary \(\Gamma \)-ideal of \(R \).
Proof. Assume that \(x_\alpha y_\beta z_i \in \mu \) and \(x_\alpha y_\beta \notin \mu \) where \(x_\alpha, y_\beta, z_i \) are fuzzy points of \(R \) and \(\alpha, \beta \in \Gamma \). Then \(x_\alpha y_\beta \notin \mu_j \) for some \(n \geq j \geq 1 \) and \(x_\alpha y_\beta z_i \in \mu_j \) for all \(n \geq j \geq 1 \). Since \(\mu_j \) is a fuzzy \(\gamma \)-2-absorbing primary ideal of \(R \), we have \(y_\beta z_i \in \sqrt{\mu_j} = \gamma = \bigcap_{i=1}^n \sqrt{\mu_i} = \sqrt{\bigcap_{i=1}^n \mu_i} = \sqrt{\mu} \) or \(x_\alpha y_\beta z_i \in \sqrt{\mu_j} = \gamma = \bigcap_{i=1}^n \sqrt{\mu_i} = \sqrt{\bigcap_{i=1}^n \mu_i} = \sqrt{\mu} \).

Thus \(\mu \) is a fuzzy \(\gamma \)-2-absorbing primary ideal of \(R \). \(\square \)

In the following example, we show that if \(\mu_1, \mu_2 \) are fuzzy 2-absorbing primary ideals of a \(\Gamma \)-ring \(R \), then \(\mu_1 \cap \mu_2 \) need not to be a fuzzy 2-absorbing primary ideal of \(R \).

Example 3.15. Let \(R = \mathbb{Z} \) and \(\Gamma = p_i \mathbb{Z} \), so \(R \) is a \(\Gamma \)-ring. Define the fuzzy \(\Gamma \)-ideals \(\mu_1 \) and \(\mu_2 \) of \(R \) by

\[
\mu_1(x) = \begin{cases}
1, & \text{if } x \in 50\mathbb{Z}, \\
0, & \text{otherwise,}
\end{cases}
\quad \text{and} \quad
\mu_2(x) = \begin{cases}
1, & \text{if } x \in 75\mathbb{Z}, \\
0, & \text{otherwise,}
\end{cases}
\]

such that \(p_i \neq 2, 3, 5 \) is a prime integer. Hence \(\mu_1 \) and \(\mu_2 \) are fuzzy 2-absorbing primary ideals of a \(\Gamma \)-ring \(R \). Since

\[
(\mu_1 \cap \mu_2)(x) = \begin{cases}
1, & \text{if } x \in 150\mathbb{Z}, \\
0, & \text{otherwise,}
\end{cases}
\quad \text{and} \quad
\sqrt{\mu_1 \cap \mu_2}(x) = \begin{cases}
1, & \text{if } x \in 30\mathbb{Z}, \\
0, & \text{otherwise,}
\end{cases}
\]

then for \(\alpha, \beta \in \Gamma \) and \(r, s, t \in [0, 1] \), \(25, 3 \alpha, 3 \beta, 25, 3 \alpha \beta, 25, 3 \alpha \beta \notin \mu_1 \cap \mu_2 \), but \(25, 3 \alpha, 3 \beta, 25, 3 \alpha \beta, 25, 3 \alpha \beta \notin \sqrt{\mu_1 \cap \mu_2} \). Therefore, \(\mu_1 \cap \mu_2 \) is not a fuzzy 2-absorbing primary ideal of \(R \).

Theorem 3.16. Let \(\mu \) be a fuzzy \(\Gamma \)-ideal of \(R \). If \(\sqrt{\mu} \) is a fuzzy prime \(\Gamma \)-ideal of \(R \), then \(\mu \) is a fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(R \).

Corollary 3.17. If \(\mu \) is a fuzzy prime \(\Gamma \)-ideal of \(R \), then \(\sqrt{\mu} \) is fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(R \), for any \(n \in Z^+ \).

Theorem 3.18. Let \(\{\mu_i \mid i \in I\} \) be a directed collection of fuzzy 2-absorbing primary \(\Gamma \)-ideals of \(R \). Then the fuzzy ideal \(\mu = \bigcup_{i \in I} \mu_i \) is a fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(R \).

Proof. Assume that \(x_\alpha y_\beta z_i \in \mu \) and \(x_\alpha y_\beta \notin \mu \) for some \(x_\alpha, y_\beta, z_i \) fuzzy points of \(R \) and \(\alpha, \beta \in \Gamma \). Then there exists \(j \in I \) such that \(x_\alpha y_\beta z_i \in \mu_j \) and \(x_\alpha y_\beta \notin \mu_j \) for all \(j \in I \). Since \(\mu_j \) is a fuzzy 2-absorbing primary ideal of \(R \), then

\[
y_\beta z_i \in \sqrt{\mu_j} \quad \text{or} \quad x_\alpha y_\beta z_i \in \sqrt{\mu_j}.
\]

Thus

\[
y_\beta z_i \in \sqrt{\mu_j} \subseteq \bigcup_{i \in I} \sqrt{\mu_i} = \sqrt{\bigcup_{i \in I} \mu_i} = \mu \quad \text{or} \quad x_\alpha y_\beta z_i \in \sqrt{\mu_j} \subseteq \bigcup_{i \in I} \sqrt{\mu_i} = \sqrt{\bigcup_{i \in I} \mu_i} = \mu.
\]

Hence \(\mu = \bigcup_{i \in I} \mu_i \) is a fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(R \). \(\square \)
Theorem 3.19. Let \(f : R \to S \) be a surjective \(\Gamma \)-ring homomorphism. If \(\mu \) is a fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(R \) which is constant on \(\text{Ker} f \), then \(f(\mu) \) is a fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(S \).

Proof. Suppose that \(x, \alpha y, \beta z_1 = f(\mu) \), where \(x, y, z, \alpha, \beta \in \Gamma \). Since \(f \) is a surjective \(\Gamma \)-ring homomorphism, then there exist \(a, b, c \in R \) such that \(f(a) = x, f(b) = y, f(c) = z \). Thus

\[
x, \alpha y, \beta z_1 (xy)z_2 = r \wedge s \wedge t
\]

\[
\leq f(\mu) (xayb)
\]

\[
= f(\mu) (f(a)af(b))
\]

\[
= f(\mu) (f(aab\beta c))
\]

\[
= \mu (aab\beta c)
\]

because \(\mu \) is constant on \(\text{Ker} f \). Then we get \(a, ab, \beta c = f(\mu) \). Since \(\mu \) is a fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(R \), then

\[
a, ab, c \in \mu \text{ or } a, ab, c \in \sqrt{\mu}
\]

Thus,

\[
r \wedge s \leq \mu (aab) = f(\mu) (f(aab))
\]

\[
= f(\mu) (f(a)af(b))
\]

\[
= f(\mu) (f(aab\beta c))
\]

and so, \(x, \alpha y = f(\mu) \) or

\[
r \wedge t \leq \sqrt{\mu} (a\beta c) = f(\sqrt{\mu})(f(a\beta c))
\]

\[
= f(\sqrt{\mu})(f(a)\beta f(c))
\]

\[
= f(\sqrt{\mu})(xy)z_2
\]

so \(x, \beta z_1 \in f(\sqrt{\mu}) \) or

\[
s \wedge t \leq \sqrt{\mu} (b\beta c) = f(\sqrt{\mu})(f(b\beta c))
\]

\[
= f(\sqrt{\mu})(f(b)\beta f(c))
\]

\[
= f(\sqrt{\mu})(yz_2)
\]

so \(y, \beta z_1 \in f(\sqrt{\mu}) \). Hence \(f(\mu) \) is a fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(S \). \(\square \)

Theorem 3.20. Let \(f : R \to S \) be a \(\Gamma \)-ring homomorphism. If \(\nu \) is a fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(S \), then \(f^{-1}(\nu) \) is a fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(R \).

Proof. Suppose that \(x, \alpha y, \beta z_1 \in f^{-1}(\nu) \), where \(x, y, z, \alpha, \beta \in \Gamma \). Then

\[
r \wedge s \wedge t \leq f^{-1}(\nu)((xay)z_2)
\]

\[
= \nu(f(xayb)z_2)
\]

\[
= \nu(f(x)af(y)\beta f(z))
\]

Let \(f(x) = a, f(y) = b, f(z) = c \in S \). Hence we have that \(r \wedge s \wedge t \leq \nu(aab\beta c) \) and \(a, ab, \beta \in \nu \). Since \(\nu \) is a fuzzy 2-absorbing primary \(\Gamma \)-ideal of \(R \), then \(a, ab, \beta \in \sqrt{\nu} \) or \(a, ab, \beta \in \sqrt{\nu} \). If \(a, ab, \beta \in \nu \), then

\[
r \wedge s \leq \nu(aab) = \nu(f(x)af(y))
\]

\[
= \nu(f(xay))
\]

\[
= f^{-1}(\nu(xay))
\]
Thus we get $x_\alpha y_\beta z_\gamma \in f^{-1}(\nu)$. If $a_\alpha b_\beta c_\gamma \in \sqrt{\nu}$, then

$\mu(x_\alpha y_\beta z_\gamma) = \sqrt{\nu}(x_\alpha y_\beta z_\gamma) \subseteq \sqrt{\nu}$.

Therefore, we see that $f^{-1}(\nu)$ is a fuzzy 2-absorbing primary Γ-ideal of R. \square

Definition 3.21. Let μ be a fuzzy Γ-ideal of R. μ is called a fuzzy strongly 2-absorbing primary Γ-ideal of R if it is non-constant and whenever λ, η, ν are fuzzy Γ-ideals of R with $\lambda \eta \nu \subseteq \mu$, then $\lambda \Gamma \eta \subseteq \mu$ or $\lambda \Gamma \nu \subseteq \sqrt{\mu}$ or $\eta \Gamma \nu \subseteq \sqrt{\mu}$.

Theorem 3.22. Every fuzzy primary Γ-ideal of R is a fuzzy strongly 2-absorbing primary Γ-ideal of R.

Proof. The proof is straightforward. \square

Theorem 3.23. Every fuzzy strongly 2-absorbing primary Γ-ideal of R is a fuzzy 2-absorbing primary Γ-ideal of R.

Proof. Assume that μ is a fuzzy strongly 2-absorbing primary Γ-ideal of R. Suppose that $x_\alpha y_\beta z_\gamma \in \mu$ for some fuzzy points $x_\alpha y_\beta z_\gamma \in R$. We get $\langle x_\alpha y_\beta z_\gamma \rangle \subseteq \mu$. Since μ is a fuzzy strongly 2-absorbing primary Γ-ideal of R, then we get $\langle x_\alpha y_\beta z_\gamma \rangle \subseteq \mu$. Therefore, we see that $f^{-1}(\nu)$ is a fuzzy 2-absorbing primary Γ-ideal of R. \square

4. Fuzzy Weakly Completely 2-absorbing Primary Γ-ideals

In this section, we study fuzzy weakly completely 2-absorbing primary Γ-ideals of a Γ-ring. Firstly, we give the definitions of fuzzy weakly completely 2-absorbing Γ-ideal and fuzzy weakly completely primary Γ-ideal of a Γ-ring.

Definition 4.1. Let μ be a fuzzy Γ-ideal of R. μ is called a fuzzy weakly completely 2-absorbing Γ-ideal of R if for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$,

$\mu(x_\alpha y_\beta z_\gamma) \subseteq \mu(x_\alpha y_\beta z_\gamma)$ or $\mu(x_\alpha y_\beta z_\gamma) \subseteq \mu(x_\beta z_\gamma)$ or $\mu(x_\alpha y_\beta z_\gamma) \subseteq \mu(y_\beta z_\gamma)$.

Definition 4.2. Let μ be a fuzzy Γ-ideal of R. μ is said to be a fuzzy weakly completely primary Γ-ideal of R if μ is non-constant fuzzy Γ-ideal of R and for all $x, y \in R$ and $\alpha \in \Gamma$,

$\mu(x_\alpha y_\beta z_\gamma) \subseteq \mu(x_\alpha y_\beta z_\gamma) \subseteq \mu(x_\alpha y_\beta z_\gamma)$.

Proposition 4.3. Let μ be a non-constant fuzzy Γ-ideal of R. μ is a fuzzy weakly completely primary Γ-ideal of R if and only if for every $x, y \in R$ and $\alpha \in \Gamma$,

$\mu(x_\alpha y_\beta z_\gamma) = \max \{\mu(x_\alpha y_\beta z_\gamma), \sqrt{\nu}(y_\beta z_\gamma)\}$.

Now, we give the definition of a fuzzy weakly completely 2-absorbing primary Γ-ideal of a Γ-ring.
Definition 4.4. Let μ be a fuzzy Γ-ideal of R. μ is called a fuzzy weakly completely 2-absorbing primary Γ-ideal of R if for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$,
\[
\mu(x\beta z) \leq \mu(xay) \quad \text{or} \quad \mu(x\gamma yz) \leq \mu(xay\beta z) \quad \text{or} \quad \mu(xay\gamma z) \leq \mu(xay\beta z).
\]

Proposition 4.5. Let μ be a non-constant fuzzy Γ-ideal of R. μ is a fuzzy weakly completely 2-absorbing primary Γ-ideal of R if and only if for every $x, y, z \in R$ and $\alpha, \beta \in \Gamma$,
\[
\mu(xay\beta z) = \max \{\mu(xay), \mu(xay\beta z), \mu(xay\gamma z)\}.
\]

Theorem 4.6. Every fuzzy weakly completely 2-absorbing Γ-ideal of R is a fuzzy weakly completely 2-absorbing primary Γ-ideal of R.

Proof. The proof is straightforward. □

Theorem 4.7. Every fuzzy primary Γ-ideal of R is a fuzzy weakly completely 2-absorbing primary Γ-ideal of R.

Proof. Let μ be a fuzzy primary Γ-ideal of R. Suppose that $\mu(xay\beta z) > \mu(xay)$ for any $x, y, z \in R$ and $\alpha, \beta \in \Gamma$. From the definition of a fuzzy primary Γ-ideal of R, we get $\mu(xay\beta z) \leq \sqrt{\mu}(z)$. Since $\sqrt{\mu}$ is a fuzzy Γ-ideal, then
\[
\sqrt{\mu}(x\beta z) \geq \sqrt{\mu}(z) \geq \mu(xay\beta z) \quad \text{or} \quad \sqrt{\mu}(y\beta z) \geq \sqrt{\mu}(z) \geq \mu(xay\beta z).
\]
Hence, μ is a fuzzy weakly completely 2-absorbing primary Γ-ideal of R. □

Theorem 4.8. Every fuzzy weakly completely primary Γ-ideal of R is a fuzzy weakly completely 2-absorbing primary Γ-ideal of R.

Proof. Let μ be a fuzzy weakly completely primary Γ-ideal of R. Then for every $x, y, z \in R$ and $\alpha, \beta \in \Gamma$,
\[
\mu(xay\beta z) \leq \mu(x) \quad \text{or} \quad \mu(xay\beta z) \leq \sqrt{\mu}(y) \quad \text{or} \quad \mu(xay\beta z) \leq \sqrt{\mu}(z).
\]
Suppose that $\mu(xay\beta z) \leq \mu(x)$. Since μ is a fuzzy Γ-ideal of R, then $\mu(xay\beta z) \leq \mu(xay)$, and we get $\mu(xay\beta z) \leq \mu(xay)$.

If $\mu(xay\beta z) \leq \sqrt{\mu}(y)$, then since $\sqrt{\mu}$ is a fuzzy Γ-ideal, we have $\mu(xay\beta z) \leq \sqrt{\mu}(y) \leq \sqrt{\mu}(y\beta z)$, and we get $\mu(xay\beta z) \leq \sqrt{\mu}(y\beta z)$, or if $\mu(xay\beta z) \leq \sqrt{\mu}(z)$, then $\mu(xay\beta z) \leq \sqrt{\mu}(z) \leq \sqrt{\mu}(x\beta z)$, and we get $\mu(xay\beta z) \leq \sqrt{\mu}(x\beta z)$.

Hence, μ is a fuzzy weakly completely 2-absorbing primary Γ-ideal of R. □

Lemma 4.9. Let μ be a fuzzy Γ-ideal of R and $a \in [0, \mu(0)]$. Then μ is a fuzzy weakly completely 2-absorbing Γ-ideal of R if and only if μ_a is a 2-absorbing Γ-ideal of R.

Theorem 4.10. Let μ be a fuzzy Γ-ideal of R. The following statements are equivalent:

1. μ is a fuzzy weakly completely 2-absorbing primary Γ-ideal of R.
2. For every $a \in [0, \mu(0)]$, the a-level subset μ_a of μ is a 2-absorbing primary Γ-ideal of R.

Proof. (1) \Rightarrow (2). Suppose that μ is a fuzzy weakly completely 2-absorbing primary Γ-ideal of R. Let $x, y, z \in R$, $\alpha, \beta \in \Gamma$ and $xay\beta z \in \mu_a$ for some $a \in [0, \mu(0)]$. Then
\[
\max \{\mu(xay), \sqrt{\mu}(x\beta z), \sqrt{\mu}(y\beta z)\} = \mu(xay\beta z) \geq a.
\]
Hence $\mu(xay) \geq a$ or $\sqrt{\mu}(x\beta z) \geq a$ or $\sqrt{\mu}(y\beta z) \geq a$, which implies that $xay \in \mu_a$ or $x\beta z \in \sqrt{\mu_a} = \sqrt{\mu_a}$ or $y\beta z \in \sqrt{\mu_a} = \sqrt{\mu_a}$.

Thus, μ_a is a 2-absorbing primary Γ-ideal of R.
(2) ⇒ (1). Assume that \(\mu_a \) is a 2-absorbing primary \(\Gamma \)-ideal of \(R \) for every \(a \in [0,1] \). Let \(\mu (xay\beta z) = a \) for any \(x, y, z \in R \) and \(\alpha, \beta \in \Gamma \). Then \(xay\beta z \in \mu_a \) and \(\mu_a \) is a 2-absorbing primary \(\Gamma \)-ideal. Thus it gives
\[
xay \in \mu_a \text{ or } \sqrt{\mu_a} \cap y\beta z \in \sqrt{\mu_a}.
\]
Hence \(\mu (xay) \geq a \) or \(\sqrt{\mu} (x\beta z) \geq a \) or \(\sqrt{\mu} (y\beta z) \geq a \), which implies that
\[
\mu (xay) \geq a = \mu (xay\beta z) \text{ or } \sqrt{\mu} (x\beta z) \geq a = \mu (xay\beta z) \text{ or } \sqrt{\mu} (y\beta z) \geq a = \mu (xay\beta z).
\]
Therefore, \(\mu \) is a fuzzy weakly completely 2-absorbing primary \(\Gamma \)-ideal of \(R \). \qed

Theorem 4.11. If \(\mu \) is a fuzzy weakly completely 2-absorbing primary \(\Gamma \)-ideal of \(R \), then \(\sqrt{\mu} \) is a fuzzy weakly completely 2-absorbing \(\Gamma \)-ideal of \(R \).

Proof. If \(\mu \) is a fuzzy weakly completely 2-absorbing primary \(\Gamma \)-ideal of \(R \), then by the previous theorem, we get that \(\mu_a \) is a 2-absorbing primary \(\Gamma \)-ideal of \(R \) for any \(a \in [0, \mu (0)] \). Since \(\mu_a \) is 2-absorbing primary \(\Gamma \)-ideal of \(R \), then \(\sqrt{\mu_a} = \mu_a \) is a 2-absorbing \(\Gamma \)-ideal of \(R \). From the previous lemma, since \(\sqrt{\mu_a} \) is a 2-absorbing \(\Gamma \)-ideal of \(R \), we get that \(\sqrt{\mu} \) is a fuzzy weakly completely 2-absorbing \(\Gamma \)-ideal of \(R \). Hence we see that \(\sqrt{\mu} \) is a fuzzy weakly completely 2-absorbing \(\Gamma \)-ideal of \(R \). \qed

Theorem 4.12. Let \(f : R \to S \) be a surjective \(\Gamma \)-ring homomorphism. If \(\mu \) is a fuzzy weakly completely 2-absorbing primary \(\Gamma \)-ideal of \(R \) which is constant on \(\text{Ker} f \), then \(f (\mu) \) is a fuzzy weakly completely 2-absorbing primary \(\Gamma \)-ideal of \(S \).

Proof. Suppose that \(f (\mu) (xay\beta z) > f (\mu) (xay) \) for any \(x, y, z \in S \) and \(\alpha, \beta \in \Gamma \). Since \(f \) is a surjective \(\Gamma \)-ring homomorphism, then
\[
f (a) = x, \ f (b) = y, \ f (c) = z \quad \text{for some } a, b, c \in R.
\]
Hence
\[
f (\mu) (xay\beta z) = f (\mu) (f (a) \alpha f (b) \beta f (c)) = f (\mu) (f (aab\beta c)) \neq f (\mu) (xay) = f (\mu) (f (a) \alpha f (b)) = f (\mu) (f (aab)).
\]
Since \(\mu \) is constant on \(\text{Ker} f \),
\[
f (\mu) (f (aab\beta c)) = \mu (aab\beta c) \quad \text{and}
\]
\[
f (\mu) (f (aab)) = \mu (aab).
\]
It means that
\[
f (\mu) (f (aab\beta c)) = \mu (aab\beta c) > \mu (aab) = f (\mu) (f (aab)).
\]
Since \(\mu \) is a fuzzy weakly completely 2-absorbing primary \(\Gamma \)-ideal of \(R \), we have that
\[
\mu (aab\beta c) = f (\mu) (f (a) \alpha f (b) \beta f (c)) = f (\mu) (xay\beta z) \leq \sqrt{\mu} (a\beta c) = f \left(\sqrt{\mu} \right) (f (a\beta c)) = f \left(\sqrt{\mu} \right) (f (a) \beta f (c)) = f \left(\sqrt{\mu} \right) (x\beta z)
\]
so, we get \(f (\mu) (xay\beta z) \leq f \left(\sqrt{\mu} \right) (x\beta z) = \sqrt{f (\mu)} (x\beta z) \) or
\[
\mu (aab\beta c) = f (\mu) (f (a) \alpha f (b) \beta f (c)) = f (\mu) (xay\beta z) = \sqrt{\mu} (b\beta c) = f \left(\sqrt{\mu} \right) (f (b\beta c)) = f \left(\sqrt{\mu} \right) (f (b) \beta f (c)) = f \left(\sqrt{\mu} \right) (y\beta z)
\]
and we have \(f (\mu) (xay\beta z) \leq f \left(\sqrt{\mu} \right) (y\beta z) = \sqrt{f (\mu)} (y\beta z) \). Thus, \(f (\mu) \) is a fuzzy weakly completely 2-absorbing primary \(\Gamma \)-ideal of \(S \). \qed

Theorem 4.13. Let \(f : R \to S \) be a \(\Gamma \)-ring homomorphism. If \(v \) is a fuzzy weakly completely 2-absorbing primary \(\Gamma \)-ideal of \(S \), then \(f^{-1}(v) \) is a fuzzy weakly completely 2-absorbing primary \(\Gamma \)-ideal of \(R \).
Proof. Suppose that $f^{-1}(v)(xayβz) > f^{-1}(v)(xay)$ for any $x, y, z \in R$ and $α, β \in Γ$. Then

$$f^{-1}(v)(xayβz) = v(f(xayβz)) = v(f(x)αf(y)βf(z))$$
$$> f^{-1}(v)(xay) = v(f(xay)) = v(f(x)αf(y)).$$

Since v is a fuzzy weakly completely 2-absorbing primary $Γ$-ideal of S, we have that

$$f^{-1}(v)(xayβz) = v(f(x)αf(y)βf(z))$$
$$≤ \sqrt{v}(f(x)βf(z)) = \sqrt{v}(f(yβz))$$
$$= f^{-1}(√v)(yβz)$$
$$= \sqrt{f^{-1}(v)(yβz)}.$$

or

$$f^{-1}(v)(xayβz) = v(f(x)αf(y)βf(z))$$
$$≤ \sqrt{v}(f(y)βf(z)) = \sqrt{v}(f(yβz))$$
$$= f^{-1}(√v)(yβz)$$
$$= \sqrt{f^{-1}(v)(yβz)}.$$

Thus $f^{-1}(v)$ is a fuzzy weakly completely 2-absorbing primary $Γ$-ideal of R. □

Corollary 4.14. Let f be a $Γ$-ring homomorphism from R onto S. f induces a one-to-one inclusion preserving correspondence between fuzzy weakly completely 2-absorbing primary $Γ$-ideals of S in such a way that if $μ$ is a fuzzy weakly completely 2-absorbing primary $Γ$-ideal of R constant on $\text{Ker} f$, then $f(μ)$ is the corresponding fuzzy weakly completely 2-absorbing primary $Γ$-ideal of S, and if v is a fuzzy weakly completely 2-absorbing primary $Γ$-ideal of S, then $f^{-1}(v)$ is the corresponding fuzzy weakly completely 2-absorbing primary $Γ$-ideal of R.

5. **Fuzzy K-2-absorbing primary $Γ$-ideals**

Let $μ$ be a fuzzy $Γ$-ideal of R. $μ$ is said to be a fuzzy K-$Γ$-ideal of R if for $x, y \in R$ and $α, β \in Γ$

$$μ(xay) = μ(0)$$

implies that $μ(x) = μ(0)$ or $μ(y) = μ(0)$

and $μ$ is called a fuzzy K-primary $Γ$-ideal of R if

$$μ(xay) = μ(0)$$

implies that $μ(x) = μ(0)$ or $√μ(y) = μ(0)$.

Also, $μ$ is called a fuzzy K-2-absorbing $Γ$-ideal of R if

$$μ(xayβz) = μ(0)$$

implies that $μ(xay) = μ(0)$ or $μ(xβz) = μ(0)$ or $μ(yβz) = μ(0)$

for $x, y, z \in R$ and $α, β \in Γ$. Now, we give the definition of fuzzy K-2-absorbing primary $Γ$-ideal of R.

Definition 5.1. Let $μ$ be a fuzzy $Γ$-ideal of R. $μ$ is called a fuzzy K-2-absorbing primary $Γ$-ideal of R if for $x, y, z \in R$ and $α, β \in Γ$

$$μ(xayβz) = μ(0)$$

implies that $μ(xay) = μ(0)$ or $√μ(xβz) = μ(0)$ or $√μ(yβz) = μ(0)$.

Theorem 5.2. Every fuzzy weakly completely 2-absorbing primary $Γ$-ideal of R is a fuzzy K-2-absorbing primary $Γ$-ideal of R.
Proof. Suppose that \(\mu \) is a fuzzy weakly completely 2-absorbing primary \(\Gamma \)-ideal of \(R \). If \(\mu (xayb)z = \mu (0) \) for any \(x, y, z \in R \) and \(\alpha, \beta \in \Gamma \), then since \(\mu \) is a fuzzy weakly completely 2-absorbing primary \(\Gamma \)-ideal of \(R \), we have
\[
\begin{align*}
\mu (0) &\geq \mu (xay) \geq \mu (xayb)z = \mu (0) \quad \text{or} \\
\mu (0) &\geq \sqrt{\mu} (xzb) \geq \mu (xayb)z = \mu (0) \quad \text{or} \\
\mu (0) &\geq \sqrt{\mu} (ybz) \geq \mu (xayb)z = \mu (0).
\end{align*}
\]
Then,
\[
\mu (xay) = \mu (0) \quad \text{or} \quad \sqrt{\mu} (xzb) = \mu (0) \quad \text{or} \quad \sqrt{\mu} (ybz) = \mu (0).
\]
Therefore \(\mu \) is a fuzzy \(K \)-2-absorbing primary \(\Gamma \)-ideal of \(R \). \(\square \)

Theorem 5.3. Every fuzzy \(K \)-primary \(\Gamma \)-ideal of \(R \) is a fuzzy \(K \)-2-absorbing primary \(\Gamma \)-ideal of \(R \).

Proof. Let \(\mu \) be a fuzzy \(K \)-primary \(\Gamma \)-ideal of \(R \). Then for every \(x, y, z \in R \) and \(\alpha, \beta \in \Gamma \),
\[
\mu (xayb) = \mu (0) \quad \text{implies that} \quad \mu (x) = \mu (0) \quad \text{or} \quad \sqrt{\mu} (y) = \mu (0) \quad \text{or} \quad \sqrt{\mu} (z) = \mu (0).
\]
Suppose that \(\mu (x) = \mu (0) \). Then from
\[
\mu (0) = \mu (xayb) \geq \mu (xay) \geq \mu (x) = \mu (0),
\]
we get \(\mu (xay) = \mu (0) \). If \(\sqrt{\mu} (y) = \mu (0) \), then since \(\mu \) is a fuzzy \(K \)-primary \(\Gamma \)-ideal of \(R \), we have
\[
\mu (0) = \mu (xayb) \geq \sqrt{\mu} (ybz) \geq \sqrt{\mu} (y) = \mu (0).
\]
Thus, \(\sqrt{\mu} (ybz) = \mu (0) \) or if \(\sqrt{\mu} (z) = \mu (0) \). Then
\[
\mu (0) = \mu (xayb) \geq \sqrt{\mu} (xzb) \geq \sqrt{\mu} (z) = \mu (0)
\]
and we get \(\sqrt{\mu} (xzb) = \mu (0) \). We conclude that \(\mu \) is a fuzzy \(K \)-2-absorbing primary \(\Gamma \)-ideal of \(R \). \(\square \)

Theorem 5.4. Every fuzzy \(K \)-2-absorbing \(\Gamma \)-ideal of \(R \) is a fuzzy \(K \)-2-absorbing primary \(\Gamma \)-ideal of \(R \).

Proof. The proof is obvious. \(\square \)

Theorem 5.5. Let \(f : R \to S \) be a surjective \(\Gamma \)-ring homomorphism. If \(\mu \) is a fuzzy \(K \)-2-absorbing primary \(\Gamma \)-ideal of \(R \) which is constant on \(\text{Ker} f \), then \(f (\mu) \) is a fuzzy \(K \)-2-absorbing primary \(\Gamma \)-ideal of \(S \).

Proof. Suppose that \(f (\mu) (aabc) = f (\mu) (0) \) for any \(a, b, c \in S \) and \(\alpha, \beta \in \Gamma \). Since \(f \) is a surjective \(\Gamma \)-ring homomorphism, then \(f (x) = a, f (y) = b, f (z) = c \) for some \(x, y, z \in R \). Hence
\[
\begin{align*}
f (\mu) (aabc) &= f (\mu) (f (x) f (y) f (z)) \\
&= f (\mu) (f (xayb))
\end{align*}
\]
and
\[
f (\mu) (0) = \vee \{ \mu (x) : f (x) = 0 \}.
\]
Thus we have \(x \in \text{Ker} f \) and so \(\mu \) is constant on \(\text{Ker} f \), \(\mu (x) = \mu (0) \)
\[
f (\mu) (0) = \vee \{ \mu (x) : \mu (x) = \mu (0) \}.
\]
Therefore we get
\[
f (\mu) (f (xayb)) = \mu (xayb) = \mu (0).
\]
Since \(\mu \) is a fuzzy \(K \)-2-absorbing primary \(\Gamma \)-ideal of \(R \),
\[
\mu (xayb) = \mu (0) \quad \text{implies that} \quad \mu (xay) = \mu (0) \quad \text{or} \quad \sqrt{\mu} (xzb) = \mu (0) \quad \text{or} \quad \sqrt{\mu} (ybz) = \mu (0).
\]
Then the rest of the proof can easily be made similar to the proof of the previous theorems and we can see that \(f (\mu) \) is a fuzzy \(K \)-2-absorbing primary \(\Gamma \)-ideal of \(S \). \(\square \)
Theorem 5.6. Let \(f : R \to S \) be a \(\Gamma \)-ring homomorphism. If \(v \) is a fuzzy \(K \)-2-absorbing primary \(\Gamma \)-ideal of \(S \), then \(f^{-1}(v) \) is a fuzzy \(K \)-2-absorbing primary \(\Gamma \)-ideal of \(R \).

Proof. Assume that \(f^{-1}(v)(xaybaz) = f^{-1}(v)(0) \) for any \(x, y, z \in R \) and \(\alpha, \beta \in \Gamma \). Then from

\[
\begin{align*}
f^{-1}(v)(xaybaz) &= v(f(xaybaz)) = v(f(x)af(y) bf(z)) \\
&= f^{-1}(v)(0) = v(f(0)) = v(0),
\end{align*}
\]

we have \(v(f(x)af(y) bf(z)) = v(0) \). Since \(v \) is a fuzzy \(K \)-2-absorbing primary \(\Gamma \)-ideal of \(S \), then we get

\[
\begin{align*}
v(f(x)af(y)) &= v(0) \text{ implies that} \\
v(f(x)af(y)) &= v(0) \text{ or } \sqrt{v}(f(x)bf(z)) = v(0) \text{ or } \sqrt{v}(f(y)bf(z)) = v(0).
\end{align*}
\]

From this, we get

\[
\begin{align*}
v(f(x)af(y)) &= v(f(xay)) = f^{-1}(v)(xay) \\
v(0) &= v(f(0)) = f^{-1}(v)(0)
\end{align*}
\]

or

\[
\begin{align*}
\sqrt{v}(f(x)bf(z)) &= \sqrt{v}(f(xaybaz)) = f^{-1}(v)(\sqrt{v}(xaybaz)) \\
v(0) &= v(f(0)) = f^{-1}(v)(0)
\end{align*}
\]

or

\[
\begin{align*}
\sqrt{v}(f(y)bf(z)) &= \sqrt{v}(f(ybaz)) = f^{-1}(v)(\sqrt{v}(ybaz)) \\
v(0) &= v(f(0)) = f^{-1}(v)(0)
\end{align*}
\]

Hence \(f^{-1}(v) \) is fuzzy \(K \)-2-absorbing primary \(\Gamma \)-ideal of \(R \). \(\square \)

Corollary 5.7. Let \(f \) be a \(\Gamma \)-ring homomorphism from \(R \) onto \(S \). \(f \) induces a one-to-one inclusion preserving correspondence between fuzzy \(K \)-2-absorbing primary \(\Gamma \)-ideals of \(S \) in such a way that if \(\mu \) is a fuzzy \(K \)-2-absorbing primary \(\Gamma \)-ideal of \(R \) constant on \(\text{Ker} f \), then \(f(\mu) \) is the corresponding fuzzy \(K \)-2-absorbing primary \(\Gamma \)-ideal of \(S \), and if \(v \) is a fuzzy \(K \)-2-absorbing primary \(\Gamma \)-ideal of \(S \), then \(f^{-1}(v) \) is the corresponding fuzzy \(K \)-2-absorbing primary \(\Gamma \)-ideal of \(R \).

Remark 5.8. The following table summarizes findings of fuzzy 2-absorbing primary \(\Gamma \)-ideals.

| \(f \). primary \(\Gamma \)-i. | \(\rightarrow \) | f. str. 2 – abs. primary \(\Gamma \)-i. | \(\downarrow \) | \(f. \) p. \(\Gamma \)-i. | \(\rightarrow \) | f. 2 – abs. \(\Gamma \)-i. | \(\downarrow \) | \(f. 2 – \) abs. \(\Gamma \)-i. | \(\downarrow \) | \(f. w.c. 2 – \) abs. \(\Gamma \)-i. | \(\downarrow \) | \(f. w.c. 2 – \) abs. \(\Gamma \)-i. | \(\downarrow \) | \(f. K \)-\(\Gamma \)-i. | \(\rightarrow \) | f. \(K \)-2 – abs. \(\Gamma \)-i. | \(\downarrow \) | \(f. K \)-2 – abs. \(\Gamma \)-i. | \(\downarrow \) | \(f. K \)-\(\Gamma \)-i. | \(\rightarrow \) | f. \(K \)-primary \(\Gamma \)-i. |
6. Conclusion

In this paper, the theoretical point of view of fuzzy 2-absorbing primary Γ-ideals in a Γ-ring was discussed. The work was focused on fuzzy 2-absorbing primary Γ-ideals, fuzzy weakly completely 2-absorbing primary Γ-ideals and fuzzy K-2-absorbing primary Γ-ideals of a Γ-ring and their properties were investigated. Finally, we have given a diagram in which transition between definitions of fuzzy 2-absorbing Γ-ideals of a Γ-ring are presented. These concepts are basic structures for improvement of fuzzy primary Γ-ideals in a Γ-ring. In the future, one could investigate intuitionistic fuzzy 2-absorbing primary Γ-ideals and intuitionistic fuzzy weakly completely 2-absorbing primary Γ-ideals in a Γ-ring.

References