The αAB-, βAB-, γAB- and NAB-duals for Sequence Spaces

D. Foroutanniaa, H. Roopaeia

aDepartment of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

Abstract. Let $A = (a_{nk})$ and $B = (b_{nk})$ be two infinite matrices with real entries. The main purpose of this paper is to generalize the multiplier space for introducing the concepts of αAB-, βAB-, γAB-duals and NAB-duals. Moreover, these duals are investigated for the sequence spaces X and $X(A)$, where $X \in \{c_0, c, l_p\}$ for $1 \leq p \leq \infty$. The other purpose of the present study is to introduce the sequence spaces $X(A, \Delta) = \{x = (x_k) : \sum_{k=1}^{\infty} \left(\sum_{l=1}^{k} a_{nk}x_l - \sum_{l=1}^{k-1} a_{n-1,l}x_l \right) \in X\}$, where $X \in \{l_\infty, c, c_0\}$, and computing the NAB-(or Null) duals and βAB-duals for these spaces.

1. Introduction

Let ω denote the space of all real-valued sequences. Any vector subspace of ω is called a sequence space. For $1 \leq p < \infty$, denote by l_p the space of all real sequences $x = (x_n) \in \omega$ such that $\|x\|_p = \left(\sum_{n=1}^{\infty} |x_n|^p \right)^{1/p} < \infty$.

For $p = \infty$, $\left(\sum_{n=1}^{\infty} |x_n|^p \right)^{1/p}$ is interpreted as $\sup_{n \geq 1} |x_n|$. We write c and c_0 for the spaces of all convergent and null sequences, respectively. Also, bs and cs are used for the spaces of all bounded and convergent series, respectively. Kizmaz [8] defined the backward difference sequence space $X(\Delta) = \{x = (x_k) : \Delta x \in X\}$, for $X \in \{l_\infty, c, c_0\}$, where $\Delta x = (x_k - x_{k-1})_{k=1}^{\infty}$, $x_0 = 0$. Observe that $X(\Delta)$ is a Banach space with the norm $\|x\|_\Delta = \sup_{k \geq 1} |x_k - x_{k-1}|$.

In the summability theory, the β-dual of a sequence space is very important in connection with inclusion theorems. The idea of dual sequence space was introduced by Köthe and Toeplitz [9], and it is generalized

2010 Mathematics Subject Classification. 40A05, 40C05, 46A45.

Keywords. Semi-normed sequence spaces, difference sequence spaces, Matrix domains, α-, β-, γ- and N-duals.

Received: 11 January 2017; Accepted: 05 April 2017
Communicated by Eberhard Malkowsky
Email addresses: foroutan@vru.ac.ir (D. Foroutannia), h.roopaei@gmail.com (H. Roopaei)
to the vector-valued sequence spaces by Maddox [10]. For the sequence spaces X and Y, the set $M(X, Y)$ defined by

$M(X, Y) = \{ z = (z_k) \in \omega : (z_k x_k)_{n=1}^{\infty} \in Y \forall x = (x_k) \in X \},$

is called the multiplier space of X and Y. With the above notation, the α, β, γ and N-duals of a sequence space X, which are respectively denoted by X^α, X^β, X^γ and X^N, are defined by

$X^\alpha = M(X, l_1), \quad X^\beta = M(X, c_s), \quad X^\gamma = M(X, b_s), \quad X^N = M(X, c_0).$

For a sequence space X, the matrix domain $X(A)$ of an infinite matrix A is defined by

$X(A) = \{ x = (x_n) \in \omega : A x \in X \},$ (1)

which is a sequence space. The new sequence space $X(A)$ generated by the limitation matrix A from a sequence space X can be the expansion or the contraction and or the overlap of the original space X.

In the past, several authors studied Köthe-Toeplitz duals of sequence spaces that are the matrix domains in classical spaces l_p, l_∞, c and c_0. For instance, some matrix domains of the difference operator was studied in [4]. Domain of backward difference matrix in the space l_p was investigated for $1 \leq p \leq \infty$ by Başar and Altay in [3] and was studied for $0 < p < 1$ by Altay and Başar in [1]. Recently the Köthe-Toeplitz duals were computed for some new sequence spaces by Erfanmanesh and Foroutannia [5], [6] and Foroutannia [7]. For more details on the domain of triangle matrices in some sequence spaces, the reader may refer to Chapter 4 of [2].

In this study, the concept of the multiplier space is generalized and the αAB, βAB, γAB- and NAB-duals are determined for the classical sequence spaces l_{ω_1}, c and c_0. Also the normed sequence space $X(\Delta)$ is extended to semi-normed space $X(\Delta, \Lambda)$, where $X \in \{l_{\omega_1}, c, c_0\}$. We consider some topological properties of this space and derive inclusion relations concerning with its. Moreover, we compute the NAB-(or Null) duals for the space $X(\Delta, \Lambda)$. The results are generalizations of some results of Malkowsky and Rakocevic [11], Kizmaz [8] and Erfanmanesh and Foroutannia [5].

2. The Generalized Multiplier Space and its Köthe-Toeplitz Duals and Null Duals

In this section, we introduce the generalization of multiplier space and present the new generalizations of Köthe-Toeplitz duals and Null duals of sequence spaces. Furthermore, we obtain these duals for the sequence spaces l_{ω_1}, c and c_0. Throughout this paper, let I be the identity matrix.

Definition 2.1. Suppose that $A = (a_{n,k})$ and $B = (b_{n,k})$ are two infinite matrices with real entries such that $\sum_{k=1}^{\infty} a_{n,k} z_k < \infty$ for all $x = (x_k) \in X$ and $n = 1, 2, \ldots$. For the sequence spaces X and Y, the set $M_{A,B}(X, Y)$ defined by

$M_{A,B}(X, Y) = \{ z \in \omega : \sum_{k=1}^{\infty} b_{n,k} z_k < \infty, \forall n \text{ and } \left(\sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k \right)_{n=1}^{\infty} \in Y, \forall x \in X \},$

is called the generalized multiplier space of X and Y.

The αAB, βAB, γAB- and NAB-duals of a sequence space X, which are respectively denoted by $X^{\alpha AB}$, $X^{\beta AB}$, $X^{\gamma AB}$ and X^{NAB}, are defined by

$X^{\alpha AB} = M_{A,B}(X, l_1), \quad X^{\beta AB} = M_{A,B}(X, c_s), \quad X^{\gamma AB} = M_{A,B}(X, b_s), \quad X^{NAB} = M_{A,B}(X, c_0).$

It should be noted that in the special case $A = B = I$, we have $M_{A,B}(X, Y) = M(X, Y)$. So

$X^{\alpha AB} = X^\alpha, \quad X^{\beta AB} = X^\beta, \quad X^{\gamma AB} = X^\gamma, \quad X^{NAB} = X^N.$

Let $E = (E_n)$ and $F = (F_n)$ be two partitions of finite subsets of the positive integers such that

$max E_n < min E_{n+1}, \quad max F_n < min F_{n+1},$
for $n = 1, 2, \ldots$. If the infinite matrices $A = (a_{n,k})$ and $B = (b_{n,k})$ are defined by

$$a_{n,k} = \begin{cases} 1 & \text{if } k \in E_n \\ 0 & \text{otherwise,} \end{cases} \quad (2)$$

and

$$b_{n,k} = \begin{cases} 1 & \text{if } k \in F_n \\ 0 & \text{otherwise,} \end{cases} \quad (3)$$

then $M_{A,B}(X, Y) = M_{E,F}(X, Y)$ and the new multiplier space $M_{A,B}(X, Y)$ is a generalization of the multiplier space $M_{E,F}(X, Y)$ introduced in [5].

Lemma 2.2. Let $X, Y, Z \subset \omega$ and $\{X_\delta: \delta \in I\}$ be any collection of subsets of ω, then

(i) $X \subset Z$ implies $M_{A,B}(Z, Y) \subset M_{A,B}(X, Y)$,

(ii) $Y \subset Z$ implies $M_{A,B}(X, Y) \subset M_{A,B}(X, Z)$,

(iii) $X \subset M_{A,B}(M_{A,B}(X, Y), Y)$,

(iv) $M_{A,B}(X, Y) = M_{A,B}(M_{A,B}(X, Y), Y), Y$,

(v) $M_{A,B}(\bigcup_{\delta \in I} X_\delta, Y) = \bigcap_{\delta \in I} M_{A,B}(X_\delta, Y)$.

Proof. Parts (i) and (ii) are obvious, by using the definition of generalized multiplier space.

(iii) Let $x \in X$. We have $(\sum_{k=1}^{\infty} a_{n,k} x_k)^{\infty}_{k=1} \in Y$ for all $z \in M_{A,B}(X, Y)$, and consequently $x \in M_{A,B}(M_{A,B}(X, Y), Y)$.

(iv) By applying (iii) with X replaced by $M_{A,B}(X, Y)$, we deduce that

$$M_{A,B}(X, Y) \subset M_{A,B}(M_{A,B}(X, Y), Y).$$

Conversely, due to (iii), we have $X \subset M_{A,B}(M_{A,B}(X, Y), Y)$. So

$$M_{A,B}(M_{A,B}(M_{A,B}(X, Y), Y), Y) \subset M_{A,B}(X, Y),$$

by part (i).

(v) First, $X_\delta \subset \bigcup_{\delta \in I} X_\delta$ for all $\delta \in I$ implies

$$M_{A,B}(\bigcup_{\delta \in I} X_\delta, Y) \subset \bigcap_{\delta \in I} M_{A,B}(X_\delta, Y),$$

by part (i). Conversely, if $a \in \bigcap_{\delta \in I} M_{A,B}(X_\delta, Y)$, then $z \in M_{A,B}(X_\delta, Y)$ for all $\delta \in I$. So

$$\left(\sum_{k=1}^{\infty} b_{n,k} x_k \sum_{k=1}^{\infty} a_{n,k} x_k\right)^{\infty}_{n=1} \in Y,$$

for all $\delta \in I$ and for all $x \in X_\delta$. This implies $(\sum_{k=1}^{\infty} b_{n,k} x_k \sum_{k=1}^{\infty} a_{n,k} x_k)^{\infty}_{n=1} \in Y$ for all $x \in \bigcup_{\delta \in I} X_\delta$, hence $z \in M_{A,B}(\bigcup_{\delta \in I} X_\delta, Y)$. Thus $\bigcap_{\delta \in I} M_{A,B}(X_\delta, Y) \subset M_{A,B}(\bigcup_{\delta \in I} X_\delta, Y)$. \hfill \Box

Remark 2.3. If $A = B = I$, we have Lemma 1.25 from [11].

Remark 2.4. If two matrices A and B are defined by (2) and (3), then we obtain Lemma 2.1 from [5].

If \dagger denotes either of the symbols α, β, γ or N, from now on we will use the following notation

$$(X^{\dagger AB})^{\dagger AB} = X^{\dagger AB}.$$
Corollary 2.5. Let \(X, Y \subseteq \omega \) and \(\{ X_\delta : \delta \in I \} \) be any collection of subsets of \(\omega \), also \(+ \) denotes either of the symbols \(\alpha, \beta, \gamma \), or \(N \), then

(i) \(X^{AB} \subseteq X^{BA} \subseteq X^{\gamma AB} \subseteq \omega \); in particular, \(X^{\gamma AB} \) is a sequence space.
(ii) \(X \subseteq Z \) implies \(Z^{AB} \subseteq X^{\gamma AB} \).
(iii) \(X \subseteq X^{ABA} \).
(iv) \(X^{AA} \subseteq X^{AAA} \).
(v) \((\bigcup_{\delta \in I} X_\delta)^{AB} \subseteq \bigcap_{\delta \in I} X_\delta^{AB} \).

Remark 2.6. If \(A = B = I \), we have Corollary 2.16 from [11].

Remark 2.7. If two matrices \(A \) and \(B \) are defined by (2) and (3), then we obtain Corollary 2.1 from [5].

Below, we determine the generalized multiplier space for some sequence spaces. For this purpose, we recall the following theorem from [11]. Let \(X \) and \(Y \) be two sequence spaces and \(A = (a_{nk}) \) be an infinite matrix of real numbers \(a_{nk} \), where \(n, k \in \mathbb{N} = \{1, 2, \cdots \} \). We say that \(A \) defines a matrix mapping from \(X \) into \(Y \), and we denote it by \(A : X \rightarrow Y \), if for every sequence \(x \in X \) the sequence \(Ax = \{(Ax)_n\}_{n=1}^{\infty} \) exists and is in \(Y \), where \((Ax)_n = \sum_{k=1}^{\infty} a_{nk}x_k \) for \(n = 1, 2, \cdots \). By \((X, Y)\), we denote the class of all infinite matrices \(A \) such that \(A : X \rightarrow Y \). We consider the conditions

\[
\sup_n \left(\sum_{k=1}^{\infty} |a_{nk}| \right) < \infty, \quad (4)
\]

\[
limit_{n \to \infty} a_{nk} = 0 \quad (k = 1, 2, \cdots), \quad (5)
\]

\[
limit_{n \to \infty} a_{nk} = l_k \quad \text{for some } l_i \in \mathbb{R} \quad (i = 1, 2, \cdots), \quad (6)
\]

\[
\sum_{k=1}^{\infty} a_{nk} = l \quad \text{for some } l \in \mathbb{R}. \quad (7)
\]

With the notation of (1), the spaces \(l_\omega(A), c(A) \) and \(c_0(A) \) contain all of the sequences \(x = (x_n) \) that \(Ax = \{(Ax)_n\} \) are the bounded, convergent and null sequences, respectively.

Theorem 2.8. ([11], Theorem 1.36) We have

(i) \(A \in (l_\omega, l_\omega) \) if and only if the condition (4) holds, in this case \(l_\omega \subseteq l_\omega(A) \);
(ii) \(A \in (c_0, c_0) \) if and only if the conditions (4) and (5) hold, in this case \(c_0 \subseteq c_0(A) \);
(iii) \(A \in (c, c) \) if and only if the conditions (4), (6) and (7) hold, in this case \(c \subseteq c(A) \);
(iv) \(A \in (c_0, c) \) if and only if the conditions (4) and (6) hold, in this case \(c_0 \subseteq c(A) \).

Theorem 2.9. Let \(A \) be an invertible matrix. We have the following statements.

(i) \(M_{A,B}(c_0, X) = l_\omega(B) \), where \(X \subseteq \{l_\omega, c, c_0\} \) and \(A \) satisfies the conditions (4) and (5);
(ii) \(M_{A,B}(l_\omega, X) = c_0(B) \), where \(X \subseteq \{c, c_0\} \) and \(A \) satisfies the condition (4);
(iii) If in addition \(\sum_{k=1}^{\infty} a_{nk} = R \) for all \(n \), then \(M_{A,B}(c, c) = l_\omega(B) \) and \(A \) satisfies the conditions (4), (6) and (7).

Proof. (i) Since \(c_0 \subseteq c \subseteq l_\omega \), by applying Lemma 2.2(ii), we have

\[
M_{A,B}(c_0, c_0) \subseteq M_{A,B}(c_0, c) \subseteq M_{A,B}(c_0, l_\omega).
\]

So it is sufficient to verify \(l_\omega(B) \subseteq M_{A,B}(c_0, c_0) \) and \(M_{A,B}(c_0, l_\omega) \subseteq l_\omega(B) \). Suppose that \(z \in l_\omega(B) \) and \(x \in c_0 \). Due to Theorem 2.8(ii) we have \(x \in c_0(A) \), so

\[
\lim_{n \to \infty} \left(\sum_{k=1}^{\infty} b_{nk}z_k \sum_{k=1}^{\infty} a_{nk}x_k \right) = 0,
\]

this means that \(z \in M_{A,B}(c_0, c_0) \). Thus \(l_\omega(B) \subseteq M_{A,B}(c_0, c_0) \).
Now we assume $z \notin l_\infty(B)$. Then there is a subsequence $\left(\sum_{k=1}^{\infty} b_{n,k}z_k\right)^{\infty}_{n=1}$ of the sequence $\left(\sum_{k=1}^{\infty} b_{n,k}z_k\right)^{\infty}_{k=1}$ such that $|\sum_{k=1}^{\infty} b_{n,k}z_k| > \beta$ for $j = 1, 2, \cdots$. Since A is an invertible matrix, there exists a sequence $x = (x_k)$ such that

$$\sum_{k=1}^{\infty} a_{n,k}x_k = \frac{(-1)^j}{\sum_{k=1}^{\infty} b_{n,k}z_k},$$

for all j. Hence

$$\left(\sum_{k=1}^{\infty} b_{n,k}z_k \sum_{k=1}^{\infty} a_{n,k}x_k\right)^{\infty}_{n=1} \notin \bigcap_{n=1}^{\infty} A,$$

this shows that $M_{A,B}(c_0, l_\infty) \subset l_\infty(B)$.

(ii) We have

$$M_{A,B}(l_\infty, c_0) \subset M_{A,B}(l_\infty, c),$$

by applying Lemma 2.2(ii). It is sufficient to prove $c_0(B) \subset M_{A,B}(l_\infty, c_0)$ and $M_{A,B}(l_\infty, c) \subset c_0(B)$. Suppose that $z \in c_0(B)$. By Theorem 2.8, we have lim$_{n \rightarrow \infty}$ $\left(\sum_{k=1}^{\infty} b_{n,k}z_k \sum_{k=1}^{\infty} a_{n,k}x_k\right) = 0$ for all $x \in l_\infty$, that is $z \in M_{A,B}(l_\infty, c_0)$. Thus $c_0(B) \subset M_{A,B}(l_\infty, c_0)$.

Now we assume $z \notin c_0(B)$. Then there is a real number as $b > 0$ and a subsequence $\left(\sum_{k=1}^{\infty} b_{n,k}z_k\right)^{\infty}_{n=1}$ of the sequence $\left(\sum_{k=1}^{\infty} b_{n,k}z_k\right)^{\infty}_{k=1}$ such that $|\sum_{k=1}^{\infty} b_{n,k}z_k| > b$ for all $j = 1, 2, \cdots$. We define the sequence x as in part (ii). We have $x \in l_\infty$ and

$$\left(\sum_{k=1}^{\infty} b_{n,k}z_k \sum_{k=1}^{\infty} a_{n,k}x_k\right)^{\infty}_{n=1} \notin c,$$

which implies $z \notin M_{A,B}(l_\infty, c)$. This shows that $M_{A,B}(l_\infty, c) \subset c_0(B)$.

(iii) Suppose that $z \in c(B)$. By applying Theorem 2.8(iii), we deduce that lim$_{n \rightarrow \infty}$ $\left(\sum_{k=1}^{\infty} b_{n,k}z_k \sum_{k=1}^{\infty} a_{n,k}x_k\right)$ exists for all $x \in c$. So $z \in M_{A,B}(c, c)$ and $c(B) \subset M_{A,B}(c, c)$.

Conversely we assume $z \notin c(B)$. We define the sequence x by $x = (\frac{1}{n}, \frac{1}{n}, \cdots)$. It is obvious that $x \in c$ and $\left(\sum_{k=1}^{\infty} b_{n,k}z_k \sum_{k=1}^{\infty} a_{n,k}x_k\right)^{\infty}_{n=1} = (\sum_{k=1}^{\infty} b_{n,k}z_k)^{\infty}_{k=1} \notin c$. So $z \notin M_{A,B}(c, c)$, this shows $M_{A,B}(c, c) \subset c(B)$. \qed

Remark 2.10. If $A = B = I$, we have Example 1.28 from [11].

Remark 2.11. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 2.2 from [5].

Corollary 2.12. Suppose that sup$_n \sum_{k=1}^{\infty} |a_{n,k}| < \infty$, we have $c_0^{NAB} = l_\infty(B)$ and $l_\infty^{NAB} = c_0(B)$.

Proof. The desired result follows from Theorem 2.9. \qed

Theorem 2.13. If matrix A satisfies the conditions in Theorem 2.9, then we have the following statements.

(i) $M_{A,B}(c_0(A), X) = l_\infty(B)$, where $X \in [l_\infty, c, c_0]$. In particular $(c_0(A))^{NAB} = l_\infty(B)$.

(ii) $M_{A,B}(l_\infty(A), X) = c_0(B)$, where $X \in [c, c_0]$. In particular $(l_\infty(A))^{NAB} = c_0(B)$.

(iii) If in addition $\sum_{k=1}^{\infty} a_{n,k} = R$ for all n, then $M_{A,B}(c(A), c) = c(B)$.

Proof. We only prove the part (i), the other parts are proved similarly. Since $c_0 \subset c_0(A)$, according to Corollary 2.5(ii) and Theorem 2.9 we obtain

$$M_{A,B}(c_0(A), X) \subset M_{A,B}(c_0, X) = l_\infty(B).$$

The inclusion $l_\infty(B) \subset M_{A,B}(c_0(A), X)$ is gained by the relation (8). \qed

In the following, we obtain the αAB, βAB- and γAB-duals for the sequence spaces l_∞, c and c_0.
Theorem 2.14. Suppose that \(A \) is an invertible matrix that satisfies the condition (4), and \(\star \) denote either of the symbols \(\alpha, \beta \) or \(\gamma \). We have
\[
c^\star_0 = c^\star_1 = l^\star_0 = l^\star_1.
\]
In particular for \(B = I \),
\[
c^\star_0 = c^\star_1 = l^\star_0 = l^\star_1.
\]

Remark 2.15. If \(A = B = I \) and \(\star \) denote either of the symbols \(\alpha, \beta \) or \(\gamma \), we have
\[
c^\star_0 = c^\star_1 = l^\star_0 = l^\star_1,
\]
hence Theorem 1.29 from [11] is resulted.

Remark 2.16. If two matrices \(A \) and \(B \) are defined by (2) and (3), then we obtain Theorem 2.3 from [5].

In the next theorem, we examine the \(\alpha AB \), \(\beta AB \) and \(\gamma AB \)-duals for the sequence spaces \(l^\alpha_0(A) \), \(c^\alpha(A) \) and \(c_0(A) \).

Theorem 2.17. Let \(A \) be a matrix which satisfies the conditions in Theorem 2.8. If \(\star \) denote either of the symbols \(\alpha, \beta \) or \(\gamma \), then
\[
(c_0(A))^\star_1 = (c(A))^\star_1 = (l^\alpha_0(A))^\star_1 = l^\alpha_1(B).
\]

Proof. We only prove the statement for the case \(\star = \beta \), the other case prove similarly. Obviously
\[
(l^\alpha_0(A))^\beta_1 \subset (c(A))^\beta_1 \subset (c_0(A))^\beta_1,
\]
by Corollary 2.5(ii). So it is sufficient to verify \((c_0(A))^\beta_1 \subset l^\beta_1(B)\) and \(l^\beta_1(B) \subset (l^\alpha_0(A))^\beta_1\). By applying Corollary 2.5(ii) and Theorem 2.14, we deduce that \((c_0(A))^\beta_1 \subset c_0^\beta_1 \subset l^\beta_1(B)\). The other inclusion will gain by the relation (9). \(\square\)
Theorem 2.18. Suppose that A is an invertible matrix. If $1 < p < \infty$ and $q = p/(p-1)$, then $(l_p(A))^{\ell AB} = l_q(B)$. Moreover for $p = 1$, we have $(l_1(A))^{\ell AB} = l_\infty(B)$.

Proof. We only prove the statement for the case $1 < p < \infty$, the case $p = 1$ will prove similarly. Let $z \in l_q(B)$ be given. By Hölder’s inequality, we have

$$
\left| \sum_{k=1}^n \left(\left| \sum_{j=1}^n b_{k,j}z_j \right| \right) \right| \leq \left(\sum_{k=1}^n \left(\left| \sum_{j=1}^n b_{k,j}z_j \right|^p \right) \right)^{1/p} \left(\sum_{j=1}^n \left| a_{k,j}x_j \right|^q \right)^{1/q},
$$

for all $x \in l_p(A)$. This shows $z \in (l_p(A))^{\ell AB}$ and hence $l_q(B) \subset (l_p(A))^{\ell AB}$.

Now, let $z \in (l_p(A))^{\ell AB}$ be given. We consider the linear functional $f_n : l_p(A) \to \mathbb{R}$ defined by

$$
f_n(x) = \sum_{k=1}^n \left(\left| \sum_{j=1}^n b_{k,j}z_j \right| \right) \left(\sum_{j=1}^n \left| a_{k,j}x_j \right| \right)^{1/q},
$$

for $n = 1, 2, \ldots$. Similar to (10), we obtain

$$
|f_n(x)| \leq \left(\sum_{k=1}^n \left| \sum_{j=1}^n b_{k,j}z_j \right|^q \right)^{1/q} \left(\sum_{j=1}^n \left| a_{k,j}x_j \right|^q \right)^{1/p},
$$

for every $x \in l_p(A)$. So the linear functional f_n is bounded and

$$
\|f_n\| \leq \left(\sum_{k=1}^n \left| \sum_{j=1}^n b_{k,j}z_j \right|^q \right)^{1/q},
$$

for all n. We now prove reverse of the above inequality. Since A is invertible, we define the sequence $x = (x_k)$ such that

$$
\sum_{j=1}^n a_{k,j}x_j = \left(\text{sgn} \sum_{j=1}^n b_{k,j}z_j \right) \left(\sum_{j=1}^n b_{k,j}z_j \right)^{1/p-1},
$$

for $1 \leq k \leq n$, and put the remaining elements zero. Obviously $x \in l_p(A)$, so

$$
\|f_n\| \geq \frac{|f_n(x)|}{\|x\|_p} = \frac{\sum_{k=1}^n \left| \sum_{j=1}^n b_{k,j}z_j \right|^q \left(\sum_{j=1}^n \left| a_{k,j}x_j \right| \right)^{1/q}}{\left(\sum_{k=1}^n \left| \sum_{j=1}^n b_{k,j}z_j \right|^q \right)^{1/q}} = \left(\sum_{k=1}^n \left| \sum_{j=1}^n b_{k,j}z_j \right|^q \right)^{1/q},
$$

for $n = 1, 2, \ldots$. Since $z \in l_p(A)^{\ell AB}$, the map $f_z : l_p(A) \to \mathbb{R}$ defined by

$$
f_z(x) = \sum_{k=1}^n \left(\left| \sum_{j=1}^n b_{k,j}z_j \right| \right) x_k \qquad (x \in l_p(A)),
$$

is well-defined and linear, and also the sequence (f_n) is pointwise convergent to f_z. By using the Banach-Steinhaus theorem, it can be shown that $\|f_z\| \leq \sup_n \|f_n\| < \infty$, so $\left(\sum_{k=1}^\infty \left| \sum_{j=1}^\infty b_{k,j}z_j \right|^q \right)^{1/q} < \infty$ and $z \in l_q(B)$. This establishes the proof of theorem. □

Remark 2.19. If $A = B = I$ and $1 < p < \infty$ and $q = p/(p-1)$. Then we have $\ell_p^I = l_p$. Moreover for $p = 1$, $\ell_1^I = l_\infty$.

Definition 2.20. A subset X of ω is said to be A-normal if $y \in X$ and $|\sum_{k=1}^\infty a_{n,k}y_k| \leq |\sum_{k=1}^\infty a_{n,k}x_k|$ for $n = 1, 2, \ldots$, together imply $x \in X$. In the special case that $A = I$, the set X is called normal.
Example 2.21. The sequence spaces c_0 and l_∞ are normal, but they are not A-normal. Since if $x = (1, -1, 2, -2, \cdots)$, $y = (1, \frac{1}{2}, \cdots)$ and the matrix $A = (a_{n,k})$ is defined by

$$a_{n,k} = \begin{cases} 1 & \text{if } k \in \{2n - 1, 2n\} \\ 0 & \text{otherwise} \end{cases}$$

We have $|\sum_{k=1}^\infty a_{n,k}x_k| \leq |\sum_{k=1}^\infty a_{n,k}y_k|$ and $y \in c_0, l_\infty$, while $x \notin c_0, l_\infty$.

Example 2.22. The sequence spaces $c_0(A)$ and $l_\infty(A)$ are A-normal, but they are not normal. Because, if $x = (1, 1, 2, 2, \cdots)$ and $y = (1, -1, 2, -2, \cdots)$ and A is the matrix as in Example 2.21, then it is obvious that $|x| \leq |y|$, $y \in c_0(A)$ and $y \in l_\infty(A)$, while $x \notin c_0(A)$ and $x \notin l_\infty(A)$.

Example 2.23. The sequence spaces c and $c(A)$ are neither A-normal nor normal.

Theorem 2.24. Suppose that A is an invertible matrix and X is a A-normal subset of \mathbb{w}. We have

$$X^{\omega AB} = X^{\delta AB} = X^{\gamma AB}.$$

Proof. Obviously $X^{\omega AB} \subseteq X^{\delta AB} \subseteq X^{\gamma AB}$, by Corollary 2.5(i). To prove the statement, it is sufficient to verify $X^{\gamma AB} \subseteq X^{\omega AB}$. Let $z \in X^{\gamma AB}$ and $x \in X$ be given. Since A is invertible, we define the sequence y such that

$$\sum_{k=1}^\infty a_{n,k}y_k = \left(\operatorname{sgn} \sum_{k=1}^\infty b_{n,k}z_k \right) \left| \sum_{k=1}^\infty a_{n,k}x_k \right|,$$

for $n = 1, 2, \cdots$. It is clear $\left| \sum_{k=1}^\infty a_{n,k}y_k \right| \leq \left| \sum_{k=1}^\infty a_{n,k}x_k \right|$ for all n. Consequently $y \in X$, since X is A-normal. So

$$\sup_n \left| \sum_{k=1}^n \sum_{k=1}^\infty b_{n,k}z_k \sum_{k=1}^\infty a_{n,k}x_k \right| < \infty.$$

Furthermore, by the definition of the sequence y, $\sum_{k=1}^\infty b_{n,k}z_k \sum_{k=1}^\infty a_{n,k}x_k < \infty$. Since $x \in X$ was arbitrary, $z \in X^{\omega AB}$. This finishes the proof of the theorem. \qed

Remark 2.25. If $A = B = I$ and X be a normal subset of \mathbb{w}, we have

$$X^\alpha = X^\beta = X^\gamma,$$

hence Remark 1.27 from [11] is gained.

Remark 2.26. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 2.4 from [5].

3. The Difference Sequence Space $X(A, \Delta)$

Suppose that $A = (a_{n,k})$ is an infinite matrix with real entries. For every sequence space X, we define the generalized difference sequence space $X(A, \Delta)$ as follows:

$$X(A, \Delta) = \left\{ x = (x_k) : \left(\sum_{k=1}^\infty (a_{n,k} - a_{n-1,k}) x_k \right)_{n=1}^\infty \in X \right\},$$

where $X \in \{l_\infty, c, c_0\}$. The seminorm $|\cdot|_{A,\Delta}$ on $X(A, \Delta)$ is defined by

$$|x|_{A,\Delta} = \sup_n \left| \sum_{k=1}^\infty (a_{n,k} - a_{n-1,k}) x_k \right|.$$

(11)
It should be noted that the function $||| \cdot |||_{A, \Delta}$ cannot be the norm. Since if $x = (1, -1, 0, 0, \cdots)$ and $A = (a_{n,k})$ is defined by,

$$a_{n,k} = \begin{cases} 1 & \text{if } k \in \{2n - 1, 2n\} \\ 0 & \text{otherwise}, \end{cases}$$

then $||| x |||_{A, \Delta} = 0$ while $x \neq 0$. It is also significant that in the special case $A = I$, we have $X(A, \Delta) = X(\Delta)$ and $||| x |||_{A, \Delta} = ||| x |||_{\Delta}$.

If the infinite matrix $\Delta = (\delta_{n,k})$ is defined by

$$\delta_{n,k} = \begin{cases} 1 & \text{if } k = n \\ -1 & \text{if } k = n - 1 \\ 0 & \text{otherwise}, \end{cases}$$

with the notation of (1), we can redefine the spaces $l_\infty(A, \Delta)$, $c(A, \Delta)$ and $c_0(A, \Delta)$ as follows:

$$l_\infty(A, \Delta) = (l_\infty)_{\Delta A}, \quad c(A, \Delta) = (c)_{\Delta A}, \quad c_0(A, \Delta) = (c_0)_{\Delta A}.$$

The purpose of this section is to consider some properties of the sequence spaces $X(A, \Delta)$ and is to derive some inclusion relations related to them. We also characterize NAB-duals and βAB-duals of $X(A, \Delta)$ where $X \in \{l_\infty, c, c_0\}$.

Now, we may begin with the following theorem which is essential in the study.

Theorem 3.1. The sequence spaces $X(A, \Delta)$ for $X \in \{l_\infty, c, c_0\}$ are complete semi-normed linear spaces with respect to the semi-norm defined by (11).

Proof. This is a routine verification and so we omit the details. □

It can easily be checked that the absolute property does not hold on the space $X(A, \Delta)$, that is $||| x |||_{A, \Delta} \neq ||| x |||_{\Delta A}$ for at least one sequence in this space which says that $X(A, \Delta)$ is the sequence space of non-absolute type, where $|x| = (|x|_{\Delta})$.

Theorem 3.2. Let $A = (a_{n,k})$ be an invertible matrix. The space $X(A, \Delta)$ is linearly isomorphic to the space $X(\Delta)$, for $X \in \{l_\infty, c, c_0\}$.

Proof. Consider the map

$$T : X(A, \Delta) \rightarrow X(\Delta)$$

$$x \mapsto \left(\sum_{k=1}^{\infty} a_{n,k}x_k \right)_{n=1}^{\infty},$$

obviously the map T is linear, surjective and injective. □

In the following, we derive some inclusion relations concerning with the spaces X, $X(A)$, $X(\Delta)$ and $X(A, \Delta)$ where $X \in \{l_\infty, c, c_0\}$.

Theorem 3.3. We have the following inclusions.

(i) If the condition (4) holds, then $l_\infty \subset l_\infty(A, \Delta)$.

(ii) If the conditions (4) and (5) hold, then $c_0 \subset c_0(A, \Delta)$.

(iii) If the conditions (4), (6) and (7) hold, then $c \subset c(A, \Delta)$.

(iv) We have $X(A) \subset X(A, \Delta)$ where $X \in \{l_\infty, c, c_0\}$.

Proof. The parts (i), (ii) and (iii) obtain by applying Theorem 2.8.

(iv) Put $A = I$ in parts (i), (ii) and (iii), it can conclude that $X \subset X(\Delta)$. Let $x \in X(A)$ be given. We deduce that $\left(\sum_{k=1}^{\infty} a_{n,k}x_k \right)_{n=1}^{\infty} \in X$ so $\left(\sum_{k=1}^{\infty} a_{n,k}x_k \right)_{n=1}^{\infty} \in X(\Delta)$. Hence $x \in X(A, \Delta)$ and $X(A) \subset X(A, \Delta)$. □
Below, we compute NAB-dual of the difference sequence spaces $X(A, \Delta)$ where $X \in \{l_\infty, c, c_0\}$. In order to do this, we first give a preliminary lemma.

Lemma 3.4. (i) If $x \in l_\infty(A) \Delta$ then $\sup_{k} \frac{|a_k|}{\Delta_k} < \infty$.

(ii) If $x \in c(A) \Delta$ then $\frac{\Delta_k}{\Delta} \to \xi (k \to \infty)$ where $\Delta_k \to \xi (k \to \infty)$.

(iii) If $x \in c_0(A) \Delta$ then $\frac{\Delta_k}{\Delta} \to 0 (k \to \infty)$.

Proof. The proof is trivial and so is omitted. \square

Theorem 3.5. Define the set d_1 as follows:

$$d_1 = \left\{ z = (z_k) : \left(\lim_{n \to \infty} \sum_{k=1}^{\infty} b_{nk} z_k \right)_{n=1}^{\infty} \in c_0 \right\},$$

then

$$c^{NAB}(A, \Delta) = l_\infty^{NAB}(A, \Delta) = d_1.$$

Proof. We first show that $c^{NAB}(A, \Delta) = d_1$. Suppose that $z \in c^{NAB}(A, \Delta)$, we have

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} b_{nk} z_k = 0,$$

for all $x \in c(A, \Delta)$. Since A is invertible, we can choose the sequence such that $\sum_{k=1}^{\infty} a_{nk} x_k = n$ for all n, so $x \in c(A, \Delta)$ and hence $\lim_{n \to \infty} n \sum_{k=1}^{\infty} b_{nk} z_k = 0$. Thus $c^{NAB}(A, \Delta) \subseteq d_1$. Now let $z \in d_1$. Since $\sum_{k=1}^{\infty} a_{nk} x_k = n$, by previous lemma $\lim_{n \to \infty} \sum_{k=1}^{\infty} a_{nk} x_k = \xi$, where $\xi = \lim_{n \to \infty} \sum_{k=1}^{\infty} (a_{nk} - a_{n-1,k}) x_k$. Hence

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} b_{nk} z_k \sum_{k=1}^{\infty} a_{nk} x_k = \lim_{n \to \infty} \sum_{k=1}^{\infty} b_{nk} z_k \frac{\sum_{k=1}^{\infty} a_{nk} x_k}{n} = 0,$$

therefore $z \in c^{NAB}(A, \Delta)$ and $d_1 \subseteq c^{NAB}(A, \Delta)$.

Below, we prove that $l_\infty^{NAB}(A, \Delta) = d_1$. It is clear that $c(A, \Delta) \subseteq l_\infty(A, \Delta)$, so $l_\infty^{NAB}(A, \Delta) \subseteq c^{NAB}(A, \Delta) = d_1$. Now let $z \in d_1$ and $x \in l_\infty(A, \Delta)$. We have $\sum_{k=1}^{\infty} a_{nk} x_k = n$, and $\lim_{n \to \infty} \sum_{k=1}^{\infty} a_{nk} x_k = \xi$ by Lemma 3.4. So

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} b_{nk} z_k \sum_{k=1}^{\infty} a_{nk} x_k = \lim_{n \to \infty} \sum_{k=1}^{\infty} b_{nk} z_k \frac{\sum_{k=1}^{\infty} a_{nk} x_k}{n} = 0.$$

This implies that $z \in l_\infty^{NAB}(A, \Delta)$. \square

Remark 3.6. If $A = B = I$, we have $c^N(\Delta) = l_\infty^N(\Delta) = \{ z = (z_k) : (ka_k) \in c_0 \}$, [8].

Remark 3.7. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 3.4 from [5].

Theorem 3.8. Let $A = (a_{nk})$ be an invertible matrix. We define the set d_2 as follows:

$$d_2 = \left\{ z = (z_k) : \left(\lim_{n \to \infty} \sum_{k=1}^{\infty} b_{nk} z_k \right)_{n=1}^{\infty} \in l_\infty \right\},$$

then $c^{NAB}(A, \Delta) = d_2$.
Proof. Suppose that \(z \in d_2 \). Since \(\left(\sum_{k=1}^{\infty} a_{n,k} x_k \right)_{n=1}^{\infty} \in c_0(\Lambda) \) for all \(x \in c_0(\Lambda, \Lambda) \), we have \(\lim_{n \to \infty} \frac{\sum_{k=1}^{\infty} a_{n,k} x_k}{n} = 0 \), by Lemma 3.4. So

\[
\lim_{n \to \infty} \sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k = \lim_{n \to \infty} n \sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} \frac{a_{n,k} x_k}{n} = 0,
\]

this implies that \(z \in c_0^{NAB}(\Lambda, \Lambda) \).

Now let \(z \in c_0^{NAB}(\Lambda, \Lambda) \) and \(x \in c_0(\Lambda, \Lambda) \) be given. By Theorem 3.2, there exists one and only one \(y = (y_k) \in c_0 \) such that \(\sum_{k=1}^{\infty} a_{n,k} x_k = \sum_{j=1}^{n} y_j \). So

\[
\lim_{n \to \infty} \sum_{j=1}^{n} \sum_{k=1}^{\infty} b_{n,k} z_k y_j = \lim_{n \to \infty} \sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k = 0,
\]

for all \(y = (y_k) \in c_0 \). If we define the matrix \(D = (d_{n,j})_{n=1}^{\infty} \) by

\[
d_{n,j} = \begin{cases} \sum_{k=1}^{\infty} b_{n,k} z_k & \text{for } 1 \leq j \leq n \\ 0 & \text{for } j > n, \end{cases}
\]

then \(\lim_{n \to \infty} \sum_{j=1}^{\infty} d_{n,j} y_j = 0 \) for all \(y \in c_0 \). So \(D = (d_{i,j}) \in (c_0, c_0) \) and

\[
\sup_{n} \left| \sum_{j=1}^{n} \sum_{k=1}^{\infty} b_{n,k} z_k \right| = \sup_{n} \left| \sum_{j=1}^{n} \sum_{k=1}^{\infty} b_{n,k} z_k \right| = \sup_{n} \left| \sum_{j=1}^{n} d_{n,j} \right| < \infty,
\]

by Theorem 2.8(ii). This completes the proof of the theorem. \(\square \)

\[
\textbf{Remark 3.9.} \quad \text{If } A = B = I, \text{ we have } c_0^N(\Lambda) = \{ z = (z_k) : (k a_n) \in l_1(\omega) \}, \text{ hence Lemma 2 from [8] is resulted.}
\]

\[
\textbf{Remark 3.10.} \quad \text{If two matrices } A \text{ and } B \text{ are defined by (2) and (3), then we obtain Theorem 3.6 from [5].}
\]

In order to investigate the \(\beta AB \)-dual of the difference sequence space \(c_0^N(\Lambda) \), we need the following lemma.

\[
\textbf{Lemma 3.11.} \quad \text{(8), Lemma 1} \quad \text{Let } (z_k) \in l_1 \text{ and if } \lim_{k \to \infty} |z_k x_k| = L \text{ exists for an } x \in c_0(\Lambda), \text{ then } L = 0.
\]

For the next result, we introduce the sequence \((R_k) \) given by

\[
R_k = \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} b_{n,j} z_j.
\]

\[
\textbf{Theorem 3.12.} \quad \text{Let } A = (a_{n,k}) \text{ be an invertible matrix. If}
\]

\[
d_3 = \{ z = (z_k) \in l_1(B) : (R_k) \in l_1(\Lambda) \},
\]

then we have \(c_0^{\beta AB}(\Lambda, \Lambda) = d_3 \)

\[
\text{Proof.} \quad \text{Suppose that } z \in d_3 \text{ and } x \in c_0(\Lambda, \Lambda), \text{ by using Abel’s summation formula we have}
\]

\[
\sum_{n=1}^{m} \left(\sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{n,k} x_k \right)
\]

\[
= \sum_{n=1}^{m} \left(\sum_{j=1}^{n} \sum_{k=1}^{\infty} b_{j,k} z_k + \sum_{k=1}^{\infty} a_{n,k} x_k - \sum_{k=1}^{\infty} a_{n+1,k} x_k \right)
\]

\[
+ \sum_{n=1}^{m} \left(\sum_{k=1}^{\infty} b_{n,k} z_k \sum_{k=1}^{\infty} a_{m+1,k} x_k \right)
\]

\[
= \sum_{n=1}^{m} \left(R_n - R_{n+1} \right) \left(\sum_{k=1}^{\infty} a_{n,k} x_k - \sum_{k=1}^{\infty} a_{n+1,k} x_k \right)
\]

\[
+ \sum_{n=1}^{m} \sum_{k=1}^{\infty} a_{n,k} x_k \sum_{k=1}^{\infty} \left(R_n - R_{n+1} \right) a_{m+1,k} x_k
\]

\[
= \sum_{n=1}^{m} \left(\sum_{k=1}^{\infty} a_{n,k} x_k \sum_{k=1}^{\infty} d_{n-k,1} x_k \right) - R_{m+1} \sum_{k=1}^{\infty} a_{m+1,k} x_k.
\]
This implies that \(\sum_{k=1}^{\infty} (\sum_{l=1}^{\infty} b_{n,l}x_k) = \sum_{k=1}^{\infty} a_{n,k}x_k \) is convergent, so \(z \in c_0^{AB}(A, \Delta) \).

Conversely let \(z \in c_0^{AB}(A, \Delta) \), we show that \(z \in d_3 \). Obviously \(z \in l_1(B) \). Suppose that \(z \not\in l_1(B) \), we can choose an index sequence \((n_v) \) in \(\mathbb{N} \) with

\[
n_0 = 1 \quad \text{and} \quad \sum_{n=n_v-1}^{n_v} \sum_{k=1}^{\infty} b_{n,k}z_k > v \quad (v \in \mathbb{N}),
\]

since \(A \) is an invertible matrix, we may find \(x = (x_k) \in c_0(A) \subset c_0(A, \Delta) \) such that

\[
\sum_{k=1}^{\infty} a_{n,k}x_k = \frac{1}{v} \sum_{n=n_v-1}^{n_v} \sum_{k=1}^{\infty} b_{n,k}z_k \quad (n_v-1 \leq n < n_v \quad \text{and} \quad v \in \mathbb{N}),
\]

hence

\[
\sum_{n=n_v-1}^{n_v} \sum_{k=1}^{\infty} b_{n,k}z_k = \frac{1}{v} \sum_{n=n_v-1}^{n_v} \sum_{k=1}^{\infty} b_{n,k}z_k > 1 \quad (v \in \mathbb{N}),
\]

therefore \((\sum_{k=1}^{\infty} b_{n,k}z_k, \sum_{k=1}^{\infty} a_{n,k}x_k) \not\in cs \) and \(z \not\in c_0^{AB}(A, \Delta) \).

Let \(x \in c_0(A, \Delta) \). Since \(A \) is invertible, by Theorem 3.2 there exist \(y = (y_k) \in c_0 \) such that \(\sum_{k=1}^{\infty} a_{n,k}x_k = \sum_{k=1}^{n} y_k \), then by Abel’s summation formula

\[
\sum_{n=1}^{m} R_n y_n = \sum_{n=1}^{m} (R_n - R_{n+1}) \left(\sum_{j=1}^{n} y_j \right) + \sum_{n=1}^{m} R_{n+1} y_n
\]

\[
= \sum_{n=1}^{m} \left(\sum_{j=1}^{n} y_j \right) \left(\sum_{k=1}^{\infty} b_{n,k}z_k \right) + \sum_{n=1}^{m} R_{n+1} y_n.
\]

So

\[
\sum_{n=1}^{m} \left(\sum_{k=1}^{\infty} b_{n,k}z_k \sum_{k=1}^{\infty} a_{n,k}x_k \right) = \sum_{n=1}^{m} (R_n - R_{n+1}) y_n = \sum_{n=1}^{m} \left(\sum_{j=1}^{m} \sum_{k=1}^{n} b_{n,k}z_k \right) y_n.
\]

(13)

Now we define the matrix \(D = (d_{n,k}) \) by

\[
d_{n,k} = \begin{cases} \sum_{i=k}^{\infty} \sum_{j=1}^{\infty} b_{i,j}z_j & \text{for } 1 \leq k \leq n \\ 0 & \text{for } k > n, \end{cases}
\]

Since \(\lim_{n \to \infty} \sum_{k=1}^{\infty} d_{n,k} y_k = \lim_{n \to \infty} \sum_{k=1}^{n} d_{n,k} y_k \) exists for all \(y \in c_0 \) by (13), then \(D = (d_{n,k}) \in (c_0, c) \). This implies that

\[
\sup_{n} \sum_{k=1}^{\infty} |d_{n,k}| = \sup_{n} \sum_{k=1}^{n} \left| \sum_{i=k}^{\infty} \sum_{j=1}^{\infty} b_{i,j}z_j \right| < \infty,
\]

by Theorem 2.8(iv). Thus we conclude \(\sum_{k=1}^{\infty} |R_k| < \infty \). Furthermore (12) implies that \(\lim_{n \to \infty} R_{n+1} \sum_{k=1}^{\infty} d_{n+1,k} x_k \) exists for each \(x \in c_0(A, \Delta) \). So by Lemma 3.11 we have \((R_n) \in c_0^N(\Delta) \), which completes the proof.

Remark 3.13. If \(A = B = I \), we have \(c_0^N(\Delta) = \{ z = (z_k) \in l_1 : (R_k) \in l_1 \cap c_0^N(\Delta) \} \) where \(R_k = \sum_{i=k}^{\infty} z_i \), hence Lemma 3 from [8] is resulted.
References