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Sturm-Liouville Problem via Coulomb Type in Difference Equations

Erdal Basa, Ramazan Ozarslana

aFirat University, Science Faculty, Department of Mathematics, Elazig/Turkey

Abstract. We present Sturm-Liouville problem via Coulomb type in difference equations. The represen-
tation of solutions is found. We proved that these solutions satisfy the equation. Asymptotic formulas of
eigenfunctions are set.

1. Introduction

Difference equations have always been an attractive subject because of the discrete analogue of differen-
tial equations. The basic theory of linear difference equations was developed by [1, 3, 4, 15, 16, 18–20, 22].

Spectral analysis of difference equations has seen a great interest. Recently, especially Sturm-Liouville
difference equations and applications have formed a renewed classical research topic and it has attracted
the attention of many scientists, see [1, 3, 16, 23].

Self-adjoint second-order difference equations are considered in [10] and developed by [1]. Spectral
properties of second-order difference equations and operators are analyzed in [5, 11, 17, 21, 24, 25]. Eigen-
values of second order difference equations are considered in [13, 14, 26].

The representation of solutions and asymptotic formulas for eigenfunctions for Sturm-Liouville problem
in differential equations are obtained in [2]. Sturm-Liouville operator with Coulomb potential in differential
equations is studied in [9]. Fractional singular Sturm-Liouville operator for Coulomb potential is studied
in [7]. The representation of solutions and asymptotic formulas for eigenfunctions for Sturm-Liouville
problem in difference equations are obtained in [8].

We argue that any example of Sturm-Liouville problem via Coulomb type in difference equations isn’t
known.

Truly, as Sturm-Liouville difference equations are investigated with constant potential function, we
present a new approach for the problem via Coulomb type. We obtain the representation of solutions with
different initial conditions and asymptotic formulas for eigenfunctions in this study. Besides, it is shown
that application of variation of parameters method in difference equations and these results satisfy the
equation.

Primarily, we briefly consider Sturm-Liouville operator with Coulomb potential in differential equations.
Motion of electrons moving under the Coulomb potential is of significance in quantum theory. This problem
enable us to find energy levels for both hydrogen atom and single valence electron atoms. For hydrogen
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atom, the Coulomb potential is given by U = −e2

r , where r is the radius of the nucleus, e is electronic charge.
Accordingly, we use the time-dependent Schrödinger equation

ih̃
∂ω
∂t

= −
h̃2

2m
∂2ω

∂x2 + U
(
x, y, z

)
ω,

∫
R3

|ω|2 dxdydz = 1,

where ω is the wave function, h̃ is a Planck’s constant and m is the mass of electron. In this equation, if
Fourier transform is applied

ω̃ =
1
√

2π

∞∫
−∞

e−iλtωdt,

it will transform the energy equation dependent upon the situation,

h̃2

2m
∇

2ω̃ + Ũω̃ = Eω̃.

Hence, energy equation in the field with the Coulomb potential transforms

h̃2

2m
∇

2ω̃ +

(
E +

e2

r

)
ω̃ = 0.

If this hydrogen atom is replaced to other potential area, then the energy equation is as follows

−
h̃2

2m
∇

2ω̃ +

(
E +

e2

r
+ q

(
x, y, z

))
ω̃ = 0.

As a result of some transformations, we have Sturm-Liouville equation with Coulomb potential in differ-
ential equations

−y′′ +
[A

x
+ q (x)

]
y = λy,

where λ is a parameter which corresponds to the energy [6].
Our aim is to present similar results to the following studies [2, 7–9]. The following problem (1) − (3)

−∆2u (n − 1) +
(A

n
+ q (n)

)
u (n) = λu (n) , n = a, ..., b, (1)

u (a − 1) + hu (a) = 0, (2)
u (b + 1) + ku (b) = 0, (3)

is called Sturm-Liouville problem via Coulomb type in difference equations.
Basic theorems and definitions are presented in Section 2, representations of solutions with two different

initial conditions in Section 3 and asymptotic behaviors of eigenfunctions in Section 3 are presented.

2. Preliminaries

Definition 2.1. [23] The matrix of Casoratian is given by

w (n) =


u1 (n) u2 (n) ... ur (n)

u1 (n + 1) u2 (n + 1) ... ur (n + 1)
...

...
. . .

...
u1 (n + r − 1) u2 (n + r − 1) ... ur (n + r − 1)
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where u1 (n) ,u2 (n) , ...,ur (n) are given functions. The determinant

W (n) = det w (n)

is called Casoratian. Recall that, it is discrete analogous of Wronskian determinant.

Theorem 2.2. [1] (Wronskian-Type Identity) Let r and u be solutions of (1) . Then, for a ≤ n ≤ b

W [r,u] (n) = [r (n) ∆u (n − 1) − u (n) ∆r (n − 1)] (4)
= − [r (n) u (n − 1) − r (n − 1) u (n)]

is a constant (In particular equal to W [r,u] (a)).

Definition 2.3. [1] Let’s express Sturm-Liouville equation (1) as follows,

Lu (n) = −λu (n) , n ∈ [a, b] , (5)

with initial conditions

cosαu (a) − sinα (∇u (a)) = 0, (6)

where 0 < α, ∇ is the backward difference operator, ∇u (n) = u (n) − u (n − 1) , (6) is equivalent to

u (a − 1) + (cotα − 1) u (a) = 0, (7)

in other words,

u (a − 1) + hu (a) = 0, (8)

where L is a self-adjoint Sturm-Liouville operator via Coulomb type and h is a real number. Initial value problem
(5) − (8) is called Sturm-Liouville problem via Coulomb type.

Theorem 2.4. [23]
(
Summation by parts

)
If m < n, then

n−1∑
k=m

u (k) ∆r (k) = [u (k) r (k)]n
m −

n−1∑
k=m

∆u (k) r (k + 1) . (9)

Theorem 2.5. [23] If zn is an indefinite sum of un, then

n−1∑
k=m

z (k) = u (n) − u (m) . (10)

Theorem 2.6. [23],[12] (Annihilator method) Suppose that u (n) solves the following difference equation, E is the
shift operator, Etu (n) = u (n + t) , m and t are positive integers,(

Et + p (t − 1) Et−1 + ... + p (0)
)

u (n) = z (n) ,

and that z (n) satisfies(
Em + q (m − 1) Em−1 + ... + q (0)

)
z (n) = 0.

Then u (n) satisfies(
Em + q (m − 1) Em−1 + ... + q (0)

) (
Et + p (t − 1) Et−1 + ... + p (0)

)
u (n) = 0.
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3. Main Results

In this paper, we are interested in the representation of solutions of Sturm-Liouville problem via Coulomb
type in difference equations,

−∆2u (n − 1) +
(A

n
+ q (n)

)
u (n) = λu (n) , n = a, ..., b, (11)

with initial conditions,

u (a − 1) + hu (a) = 0, (12)

where a, b are nonzero finite integers with a > 0, a ≤ b, h, A are real numbers, ∆ is the forward difference
operator, ∆u (n) = u (n + 1) − u (n) , λ is a spectral parameter, q (n) is a real valued potential function for
n ∈ [a, b] , n is a finite integer.
A self-adjoint difference operator corresponds to equation (11) shown by,

Lu (n) = −∆2u (n − 1) +
(A

n
+ q (n)

)
u (n) = λu (n) .

In `2 (a, b) , the Hilbert space of sequences of complex numbers u (a) , ...,u (b) with the inner product,

< u (n) , r (n) >=

b∑
n=a

u (n) r (n) ,

for every u ∈ DL, let’s define as follows

DL =
{
u (n) ∈ `2 (a, b) : Lu (n) ∈ `2 (a, b) , u (1) = −h, u (2) = 1

}
.

Hence, equation (11) can be written as follows,

Lu (n) = λu (n) .

At this section, we give the representation of solutions of Sturm-Liouville problem via Coulomb type
(11) − (12) by the variation of parameters method and show that the solutions satisfy the problem.

Theorem 3.1. Let’s define Sturm-Liouville problem via Coulomb type in difference equations as follows

Lϕ (n) = λϕ (n) , (13)

ϕ (1) = −h, ϕ (2) = 1, (14)

then the problem (13) − (14) has a unique solution for ϕ (n) as follows,

ϕ (n, λ) =
[
−2h cosθ − 1 + h

(
A + q (1)

)]
cos nθ +

( [
1 − h

(
A + q (1)

)]
cosθ − h cos 2θ

sinθ

)
sin nθ

+
1

sinθ

n∑
i=1

(A
i

+ q (i)
)
ϕ (i) sin (i − n)θ,

where, | λ − 2 |< 2, θ = arctan
( √

λ(4−λ)
2−λ

)
,

0∑
i=1
. = 0.
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Proof. It is proved at two parts. At the first part, it is proved that how solution is found and at the second
part, it is proved that the result satisfies the equation.

Firstly, if ϕ1 (n) and ϕ2 (n) are linearly independent solutions for homogeneous part of (13) , then it is
found by characteristic polynomial and since | λ − 2 |< 2, characteristic roots are complex pair [23],

ϕh (n) = v1ϕ1 (n) + v2ϕ2 (n) , (15)

ϕh (n) = v1 cos nθ + v2 sin nθ. (16)

By the variation of parameters method [23],[3], we take

ϕp (n) = v1 (n)ϕ1 (n) + v2 (n)ϕ2 (n) , (17)

∆ϕp (n − 1) = ∆v1 (n − 1)ϕ1 (n) + ∆v2 (n − 1)ϕ2 (n)
+v1 (n − 1) ∆ϕ1 (n − 1) + v2 (n − 1) ∆ϕ2 (n − 1) .

Let’s take the first two terms are zero, so that

∆v1 (n − 1)ϕ1 (n) + ∆v2 (n − 1)ϕ2 (n) = 0, (18)

we obtain,

∆ϕp (n − 1) = v1 (n − 1) ∆ϕ1 (n − 1) + v2 (n − 1) ∆ϕ2 (n − 1) , (19)

and if we apply ∆ operator to the equation (18) and substitute obtained datas into (13) and collect terms
involving v1 (n) and v2 (n) , we find

v1 (n − 1) ∆2ϕ1 (n − 1) + ∆ϕ1 (n) ∆v1 (n − 1) + v2 (n − 1) ∆2ϕ2 (n − 1)

+∆ϕ2 (n) ∆v2 (n − 1) + λ
[
v1 (n)ϕ1 (n) + v2 (n)ϕ2 (n)

]
=

(A
n

+ q (n)
)
ϕ (n) . (20)

We can write v1 (n − 1)ϕ1 (n) + v2 (n − 1)ϕ2 (n) in place of the expression in bracket from (18) and collect
terms involving v1 (n − 1) and v2 (n − 1), so

v1 (n − 1)
[
∆2ϕ1 (n − 1) + λϕ1 (n)

]
+ v2 (n − 1)

[
∆2ϕ2 (n − 1) + λϕ2 (n)

]
(21)

+∆ϕ1 (n) ∆v1 (n − 1) + ∆ϕ2 (n) ∆v2 (n − 1) =
(A

n
+ q (n)

)
ϕ (n) ,

and since ϕ1 (n) and ϕ2 (n) hold for homogeneous part of (13), first two terms are zero,

∆v1 (n − 1) ∆ϕ1 (n) + ∆v2 (n − 1) ∆ϕ2 (n) =
(A

n
+ q (n)

)
ϕ (n) . (22)

Thus, we obtain equation system from (18) and (22) , and its solution is

v1 (n − 1) =

n−1∑
i=1

(
A
i + q (i)

)
ϕ (i)ϕ2 (i)

W
(
ϕ1 (i) , ϕ2 (i)

) ,

v2 (n − 1) = −

n−1∑
i=1

(
A
i + q (i)

)
ϕ (i)ϕ1 (i)

W
(
ϕ1 (i) , ϕ2 (i)

) .

Finally, we find general solution

ϕ (n, λ) = v1 cos nθ + v2 sin nθ +

n∑
i=1

(
A
i + q (i)

)
ϕ (i)

W
(
ϕ1 (i) , ϕ2 (i)

) sin (i − n)θ.
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Where, Casoratian determinant W is a constant by Theorem 2.2,

W
(
ϕ1 (i) , ϕ2 (i)

)
= sinθ.

If we use the initial conditions (14), then we obtain the representation of the solution of Sturm-Liouville
problem via Coulomb type in difference equations as follows,

ϕ (n, λ) =
[
−2h cosθ − 1 + h

(
A + q (1)

)]
cos nθ +

(
[1−h(A+q(1))] cosθ−h cos 2θ

sinθ

)
sin nθ (23)

+
1

sinθ

n∑
i=1

(A
i

+ q (i)
)
ϕ (i) sin (i − n)θ,

Secondly, let’s prove that this result satisfies the problem. Since ϕ (n, λ) satisfies problem (13)− (14) ,we
have (A

n
+ q (n)

)
ϕ (n) = ∆2ϕ (n − 1) + λϕ (n) ,

n∑
i=1

[∆2ϕ(i−1)+λϕ(i)]
sinθ sin (i − n)θ =

n∑
i=1

∆2ϕ(i−1)
sinθ sin (i − n)θ +

n∑
i=1

λϕ(i)
sinθ sin (i − n)θ. (24)

By using twice summation by parts method to the first term at the right hand side of equation (24) by
Theorem 2.4 and substituting initial conditions (14), we have (23) .
The proof completes.

Theorem 3.2. Let’s define Sturm-Liouville problem via Coulomb type in difference equations as follows;

Lψ (n) = λψ (n) , (25)

ψ (1) = 1, ψ (2) = 0, (26)

then the problem (25) − (26) has a unique solution for ψ (n) as follows,

ψ (n, λ) =
[
2 cosθ − A − q (1)

]
cos nθ −

(
cosθ

(
A + q (1)

)
− cos 2θ

sinθ

)
sin nθ (27)

+
1

sinθ

n∑
i=1

(A
i

+ q (i)
)
ψ (i) sin (i − n)θ.

Proof. This is proved similarly to the proof of Theorem 3.1.

4. Asymptotic Formulas for Sturm-Liouville Problems via Coulomb Type in Difference Equations

At this section, we give the asymptotic formulas for the solution of Sturm-Liouville problem via Coulomb
type.

Theorem 4.1. Sturm-Liouville problem via Coulomb type (13) − (14) has the estimates

ϕ (n) = O (| h |) ,

ϕ (n) =
[
−2h cosθ − 1 − h

(
A + q (1)

)]
cos nθ + O (| h |) .
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Proof. If we apply triangle inequality to the equation (23) , we have

∣∣∣ϕ (n)
∣∣∣ ≤ 2

[
|h| + 1 + |h|

(
|A| +

∣∣∣q (1)
∣∣∣)]

|sinθ|
+

1
|sinθ|

n∑
j=1

 |A|∣∣∣ j∣∣∣ +
∣∣∣q (

j
)∣∣∣ ∣∣∣ϕ (

j
)∣∣∣ . (28)

By the equation (24) and Theorem 2.5,

∣∣∣ϕ (n)
∣∣∣ ≤ 2[|h|+1+|h|(|A|+|q(1)|)]

|sinθ| + 1
|sinθ|

∣∣∣∆ϕ (n)
∣∣∣ + 2 |h| + 1 + |h|

(
|A| +

∣∣∣q (1)
∣∣∣) + λ

n∑
j=1

| ϕ
(
j
)
|

 . (29)

Applying ∆ operator both side of the equation (29) by Theorem 2.5,(
E2 + E (|sinθ| + 2 + λ) − 1 − |sinθ|

) ∣∣∣ϕ (n)
∣∣∣ ≤ λ |h| ,

R (E)ϕ (n) ≤ λ |h| ,

ϕ (n) ≤
1

R (E)
λ |h| ,

ϕ (n) ≤
1

R (1 + ∆)
λ |h| ,

By means of Theorem 2.6

| ϕ (n) |
| h |

≤ 24,

ϕ (n) = O (| h |) ,

where R (E) = E2 + E (|sinθ| + 2 + λ) − 1 − |sinθ| . For obtaining the second formula, similar operations are
applied.
The proof completes.

Theorem 4.2. Sturm-Liouville problem via Coulomb type (25) − (26) has the estimates

ψ (n) = O (1) ,

ψ (n) =
[
2 cosθ − A − q (1)

]
cos nθ + O (1) .

Proof. Proof is similar to the proof of Theorem 4.1.

5. Applications

Application 1. Obtain eigenpairs for Sturm-Liouville problem

∆2u (n − 1) + (λ + 6) u (n) = 0, (30)

u (0) = 0, u (5) = 0.

The characteristic equation for equation (30) is

m2 + (λ + 4) m + 1 = 0,

hence

m1,2 =
(−4 − λ) ±

√
(λ + 4)2

− 4

2
.
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It is straightforward there are no eigenvalues, when |λ + 4| ≥ 2. Take that |λ + 4| < 2 and so

λ + 4 = −2 cosθ.

Then

m1,2 = e±iθ,

thus,

u (n) = c1 cosθn + c2 sinθn.

Due to the boundary conditions,

u (0) = c1 = 0,
u (5) = c2 sin 5θ = 0.

Assuming

θ =
kπ
5
, (k = 1, 2, ..., 4) ;

then

λk = −4 − 2 cos
kπ
5
, (k = 1, 2, ..., 4) ,

so

uk (n) = sin
kπn

5
, (k = 1, 2, ..., 4) , (n = 0, 1, ..., 5) ,

are eigenpairs for this problem.

Application 2. Obtain eigenpairs for Sturm-Liouville problem

∆2u (n − 1) + (λ + 10) u (n) = 0, (31)

x (0) = 0, x (7) = 0.

The characteristic equation for equation (31) is

m2 + (λ + 8) m + 1 = 0,

hence

m1,2 =
(−8 − λ) ±

√
(λ + 8)2

− 4

2
.

Suppose that |λ + 8| < 2 and so

λ + 8 = −2 cosθ.

Then

m1,2 = e±iθ,

thus,

u (n) = c1 cosθn + c2 sinθn.
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Due to the boundary conditions

u (0) = c1 = 0,
u (7) = c2 sin 7θ = 0.

Assuming

θ =
kπ
7
, (k = 1, 2, ..., 6) ;

then

λk = −8 − 2 cos
kπ
7
, (k = 1, 2, ..., 7) ,

so

uk (n) = sin
kπn

7
, (k = 1, 2, ..., 6) , (n = 0, 1, ..., 7) ,

are eigenpairs for this problem.

6. Conclusion

The article aims to contribute to the spectral theory of Sturm-Liouville problem via Coulomb type in
difference equations by obtaining the representation of solution and asymptotic formulas.
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