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On Gronwall’s Type Integral Inequalities with Singular Kernels
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Abstract. In this paper, the generalizations of Gronwall’s type integral inequalities with singular kernels
are established. In applications, theorems on stability estimates for the solutions of the nonliner inte-
gral equation and the integral-differential equation of the parabolic type are presented. Moreover, these
inequalities can be used in the theory of fractional differential equations.

1. Introduction

Integral inequalities play an important role in the theory of differential equations. They are useful to
investigate properties of solutions of differential equations, such as existence, uniqueness, and stability,
see for instance [1–4]. Gronwall’s integral inequality [5] is one of the most widely applied results in the
theory of integral inequalities. Due to various motivations, several generalizations and applications of
Gronwall’s type integral inequality and their discrete analogues have been obtained and used extensively,
see for instance [1, 6–9]. In [1], the following generalization of Gronwall’s integral inequality with two
dependent limits is obtained.

Theorem 1.1. Assume that v(t) ≥ 0 is a continuous function on [−1, 1] and the inequalities

v(t) ≤ C + L s1n(t)

t∫
−t

v(s)ds, −1 ≤ t ≤ 1

hold, where C = const ≥ 0,L = const ≥ 0. Then for v(t) the following inequalities

v(t) ≤ C exp (2L|t|) , −1 ≤ t ≤ 1

are satisfied.

In the present paper, two generalizations of Gronwall’s type integral inequalities with singular kernels
are presented. In applications, theorems on stability estimates for the solutions of the nonliner integral
equation and the integral-differential equation of the parabolic type are presented. We note that these
results may have an application in the theory of fractional differential equations [10].
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2. Integral Inequalities with Singular Kernels

We consider the generalizations of Gronwall’s type integral inequalities with the singular kernel and
two dependent limits.

Theorem 2.1. Assume that v(t) ≥ 0 is a continuous function on [−1, 1], a(t) ≥ 0 is an integrable function on [−1, 1]
and the inequalities

v(t) ≤ a(t) + L s1n(t)

t∫
−t

(|t| − |s|)β−1v(s)ds, −1 ≤ t ≤ 1 (1)

hold, where L ≥ 0, β ≥ 0. Then for v(t) the inequalities

v(t) ≤ a(t) +

∞∑
n=1

2n−1 (LΓ(β))n

Γ(nβ)
s1n(t)

t∫
−t

(|t| − |s|)nβ−1a(s)ds, −1 ≤ t ≤ 1 (2)

are satisfied, where Γ(β) is the Gamma function.

Proof. We denote

Bv(t) = L s1n(t)

t∫
−t

(|t| − |s|)β−1v(s)ds, −1 ≤ t ≤ 1. (3)

Using (1), for nonnegative functions a and v we get

v(t) ≤
n−1∑
k=0

Bka(t) + Bnv(t), −1 ≤ t ≤ 1, (4)

where n ∈ N. We will now show that Bnv(t)→ 0 as n→∞, which will prove (2). For this we first prove that

Bnv(t) = 2n−1 (LΓ(β))n

Γ(nβ)
s1n(t)

t∫
−t

(|t| − |s|)nβ−1v(s)ds, −1 ≤ t ≤ 1 (5)

holds for any n ∈ N. Note that (5) follows directly from (3) when n = 1. Assume that (5) holds for some
n ∈ N. Then for 0 ≤ t ≤ 1 we have

Bn+1v(t) = L

t∫
−t

(t − |s|)β−1Bnv(s)ds = L 2n−1 (LΓ(β))n

Γ(nβ)

t∫
−t

(t − |s|)β−1s1n(s)

s∫
−s

(|s| − |τ|)nβ−1v(τ)dτds

= L 2n−1 (LΓ(β))n

Γ(nβ)


t∫

0

(t − s)β−1

s∫
−s

(s − |τ|)nβ−1v(τ)dτds +

0∫
−t

(t + s)β−1

−s∫
s

(−s − |τ|)nβ−1v(τ)dτds


= L 2n−1 (LΓ(β))n

Γ(nβ)


t∫

0

v(τ)

t∫
τ

(t − s)β−1(s − τ)nβ−1dsdτ +

0∫
−t

v(τ)

t∫
−τ

(t − s)β−1(s + τ)nβ−1dsdτ

+

t∫
0

v(τ)

−τ∫
−t

(t + s)β−1(−s − τ)nβ−1dsdτ +

0∫
−t

v(τ)

τ∫
−t

(t + s)β−1(−s + τ)nβ−1dsdτ
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= L 2n (LΓ(β))n

Γ(nβ)


t∫

0

v(τ)

t−τ∫
0

zβ−1(t − τ − z)nβ−1dzdτ +

0∫
−t

v(τ)

t+τ∫
0

zβ−1(t + τ − z)nβ−1dzdτ


= L 2n (LΓ(β))n

Γ(nβ)


t∫

0

v(τ)(t − τ)(n+1)β−1dτ +

0∫
−t

v(τ)(t + τ)(n+1)β−1dτ


1∫

0

ρβ−1(1 − ρ)nβ−1dρ

= L 2n (LΓ(β))n

Γ(nβ)
Γ(β)Γ(nβ)
Γ(nβ + β)

t∫
−t

(t − |τ|)(n+1)β−1v(τ)dτ.

So, we have

Bn+1v(t) = 2n (LΓ(β))n+1

Γ((n + 1)β)

t∫
−t

(t − |s|)(n+1)β−1v(s)ds, 0 ≤ t ≤ 1. (6)

In the similar way, for −1 ≤ t < 0 we have

Bn+1v(t) = L

−t∫
t

(−t − |s|)β−1Bnv(s)ds = L 2n−1 (LΓ(β))n

Γ(nβ)

−t∫
t

(−t − |s|)β−1s1n(s)

s∫
−s

(|s| − |τ|)nβ−1v(τ)dτds

= L 2n−1 (LΓ(β))n

Γ(nβ)


−t∫

0

(−t − s)β−1

s∫
−s

(s − |τ|)nβ−1v(τ)dτds +

0∫
t

(−t + s)β−1

−s∫
s

(−s − |τ|)nβ−1v(τ)dτds


= L 2n−1 (LΓ(β))n

Γ(nβ)


−t∫

0

v(τ)

−t∫
τ

(−t − s)β−1(s − τ)nβ−1dsdτ +

0∫
t

v(τ)

−t∫
−τ

(−t − s)β−1(s + τ)nβ−1dsdτ

+

−t∫
0

v(τ)

−τ∫
t

(−t + s)β−1(−s − τ)nβ−1dsdτ +

0∫
t

v(τ)

τ∫
t

(−t + s)β−1(−s + τ)nβ−1dsdτ


= L 2n (LΓ(β))n

Γ(nβ)


−t∫

0

v(τ)

−t−τ∫
0

zβ−1(−t − τ − z)nβ−1dzdτ +

0∫
t

v(τ)

−t+τ∫
0

zβ−1(−t + τ − z)nβ−1dzdτ


= L 2n (LΓ(β))n

Γ(nβ)


−t∫

0

v(τ)(−t − τ)(n+1)β−1dτ +

0∫
t

v(τ)(−t + τ)(n+1)β−1dτ


1∫

0

ρβ−1(1 − ρ)nβ−1dρ

= L 2n (LΓ(β))n

Γ(nβ)
Γ(β)Γ(nβ)
Γ(nβ + β)

−t∫
t

(−t − |τ|)(n+1)β−1v(τ)dτ.

So, we have

Bn+1v(t) = 2n (LΓ(β))n+1

Γ((n + 1)β)

−t∫
t

(−t − |s|)(n+1)β−1v(s)ds, −1 ≤ t < 0. (7)
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Combining (6) and (7), we prove by induction that (5) holds for any n ∈ N. Since Bnv(t) ≥ 0 for any n ∈ N
and t ∈ [−1, 1], we have

Bn+1v(t)
Bnv(t)

=
2LΓ(β)Γ(nβ)
Γ((n + 1)β)

|t|∫
−|t|

(|t| − |s|)(n+1)β−1v(s)ds

|t|∫
−|t|

(|t| − |s|)nβ−1v(s)ds

≤
2LΓ(β)Γ(nβ)
Γ((n + 1)β)

→ 0 as n→∞.

Therefore, lim
n→∞

Bnv(t) = 0. Then, by letting n → ∞ in (4) and using (5), we obtain the inequalities (2).
Theorem 2.1 is proved.

Note that by putting a(t) ≡ const in the Theorem 2.1, we obtain the following result.

Corollary 2.2. Assume that v(t) ≥ 0 is a continuous function on [−1, 1] and the inequalities

v(t) ≤ C + L s1n(t)

t∫
−t

(|t| − |s|)β−1v(s)ds, −1 ≤ t ≤ 1

hold, where C ≥ 0, L ≥ 0, β ≥ 0. Then for v(t) the inequalities

v(t) ≤ C
∞∑

n=0

(
2L|t|Γ(β)

)n

Γ(nβ + 1)
, −1 ≤ t ≤ 1

are satisfied.

Note that by putting β = 1 in the Corollary 2.2, we obtain the Theorem 1.1.

Theorem 2.3. Assume that v(t) ≥ 0 is a continuous function on [−1, 1], a(t) ≥ 0 is an integrable function on [−1, 1]
and the inequalities

v(t) ≤ a(t) + L s1n(t)

t∫
−t

|s|α−1v(s)ds, −1 ≤ t ≤ 1 (8)

hold, where L ≥ 0, 1 ≥ α > 0. Then for v(t) the following inequalities hold

v(t) ≤ a(t) +

∞∑
n=1

2n−1Ln

αn−1(n − 1)!
s1n(t)

t∫
−t

|s|α−1 (|t|α − |s|α)n−1 a(s)ds, −1 ≤ t ≤ 1. (9)

Proof. We denote

Bv(t) = L s1n(t)

t∫
−t

|s|α−1v(s)ds, −1 ≤ t ≤ 1. (10)

Using (8), for nonnegative functions a and v we get

v(t) ≤
n−1∑
k=0

Bka(t) + Bnv(t), −1 ≤ t ≤ 1, (11)
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where n ∈ N. Let us prove that

Bnv(t) =
2n−1Ln

αn−1(n − 1)!
s1n(t)

t∫
−t

|s|α−1 (|t|α − |s|α)n−1 v(s)ds, −1 ≤ t ≤ 1 (12)

holds for any n ∈ N. Note that (12) follows directly from (10) when n = 1. Assume that (12) holds for some
n ∈ N. Then for 0 ≤ t ≤ 1 we have

Bn+1v(t) = L

t∫
−t

|s|α−1Bnv(s)ds =
2n−1Ln+1

αn−1(n − 1)!

t∫
−t

|s|α−1s1n(s)

s∫
−s

|τ|α−1 (|s|α − |τ|α)n−1 v(τ)dτds

=
2n−1Ln+1

αn−1(n − 1)!


t∫

0

sα−1

s∫
−s

|τ|α−1 (sα − |τ|α)n−1 v(τ)dτds +

0∫
−t

(−s)α−1

−s∫
s

|τ|α−1 ((−s)α − |τ|α)n−1 v(τ)dτds


=

2n−1Ln+1

αn−1(n − 1)!


t∫

0

τα−1v(τ)

t∫
τ

sα−1 (sα − τα)n−1 dsdτ +

0∫
−t

(−τ)α−1v(τ)

t∫
−τ

sα−1 (sα − (−τ)α)n−1 dsdτ

+

t∫
0

τα−1v(τ)

−τ∫
−t

(−s)α−1 ((−s)α − τα)n−1 dsdτ +

0∫
−t

(−τ)α−1v(τ)

τ∫
−t

(−s)α−1 ((−s)α − (−τ)α)n−1 dsdτ


=

2nLn+1

αnn!


t∫

0

τα−1 (tα − τα)n v(τ)dτ +

0∫
−t

(−τ)α−1 (tα − (−τ)α)n v(τ)dτ

 .
So, we have

Bn+1v(t) =
2nLn+1

αnn!

t∫
−t

|s|α−1 (tα − |s|α)n v(s)ds, 0 ≤ t ≤ 1. (13)

In the similar way, for −1 ≤ t < 0 we have

Bn+1v(t) = L

−t∫
t

|s|α−1Bnv(s)ds =
2n−1Ln+1

αn−1(n − 1)!

−t∫
t

|s|α−1s1n(s)

s∫
−s

|τ|α−1 (|s|α − |τ|α)n−1 v(τ)dτds

=
2n−1Ln+1

αn−1(n − 1)!


−t∫

0

sα−1

s∫
−s

|τ|α−1 (sα − |τ|α)n−1 v(τ)dτds +

0∫
t

(−s)α−1

−s∫
s

|τ|α−1 ((−s)α − |τ|α)n−1 v(τ)dτds


=

2n−1Ln+1

αn−1(n − 1)!


−t∫

0

τα−1v(τ)

−t∫
τ

sα−1 (sα − τα)n−1 dsdτ +

0∫
t

(−τ)α−1v(τ)

−t∫
−τ

sα−1 (sα − (−τ)α)n−1 dsdτ

+

−t∫
0

τα−1v(τ)

−τ∫
t

(−s)α−1 ((−s)α − τα)n−1 dsdτ +

0∫
t

(−τ)α−1v(τ)

τ∫
t

(−s)α−1 ((−s)α − (−τ)α)n−1 dsdτ


=

2nLn+1

αnn!


−t∫

0

τα−1 ((−t)α − τα)n v(τ)dτ +

0∫
t

(−τ)α−1 ((−t)α − (−τ)α)n v(τ)dτ

 .
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So, we have

Bn+1v(t) =
2nLn+1

αnn!

−t∫
t

|s|α−1 ((−t)α − |s|α)n v(s)ds, −1 ≤ t < 0. (14)

Combining (13) and (14), by induction we prove that (12) holds for any n ∈ N. Since Bnv(t) ≥ 0 for any
n ∈ N and

Bn+1v(t)
Bnv(t)

=
2L
nα

|t|∫
−|t|
|s|α−1 (|t|α − |s|α)n v(s)ds

|t|∫
−|t|
|s|α−1 (|t|α − |s|α)n−1 v(s)ds

≤
2L
nα
→ 0 as n→∞,

we get lim
n→∞

Bnv(t) = 0. Then, by letting n → ∞ in (11) and using (12), we obtain the inequalities (9).
Theorem 2.3 is proved.

Note that by putting a(t) ≡ const in the Theorem 2.3, we obtain the following result.

Corollary 2.4. Assume that v(t) ≥ 0 is a continuous function on [−1, 1] and the inequalities

v(t) ≤ C + L s1n(t)

t∫
−t

|s|α−1v(s)ds, −1 ≤ t ≤ 1

hold, where C ≥ 0, L ≥ 0, 1 ≥ α > 0. Then for v(t) the following inequalities hold

v(t) ≤ C exp
(2L|t|α

α

)
, −1 ≤ t ≤ 1.

Note that by putting α = 1 in the Corollary 2.4, we obtain the Theorem 1.1.

3. Applications

First, we consider the nonliner integral equation

x(t) = 1(t) +

t∫
−t

f (t, s; x(s)) ds, −1 ≤ t ≤ 1. (15)

Assume that the function 1(t) is continuous on [−1, 1]. Suppose the kernel f of the equation (15) is continuous
on [−1, 1] × [−1, 1] × (−∞,∞) and f satisfies on [−1, 1] × [−1, 1] × (−∞,∞) the following condition∣∣∣ f (t, s; x(s))

∣∣∣ ≤ L(|t| − |s|)β−1
|x(s)|, 0 < |s| < |t| ≤ 1 (16)

for L ≥ 0 and β ≥ 0.

Theorem 3.1. Suppose that the assumption (16) holds. Then, for the solution of equation (15) the following stability
estimate

|x(t)| ≤ max
−1≤t≤1

∣∣∣1(t)∣∣∣ ∞∑
n=0

(
2L|t|Γ(β)

)n

Γ(nβ + 1)

is satisfied for any t ∈ [−1, 1].



M. Ashyraliyev / Filomat 31:4 (2017), 1041–1049 1047

The proof of the Theorem 3.1 is based on the Theorem 2.1.

Second, we consider the integral-differential equation (see [11])

du(t)
dt

+ s1n(t)Au(t) =

t∫
−t

B(s)u(s)ds + f (t), −1 ≤ t ≤ 1 (17)

in an arbitrary Banach space E with unbounded linear operators A and B(t) in E with dense domain
D(A) ⊂ D(B(t)) and

‖B(t)A−1
‖E→E ≤

M1

|t|1−α
, 1 ≥ α > 0, t ∈ [−1, 0) ∪ (0, 1]. (18)

A function u(t) is called a solution of the equation (17) if the following conditions are satisfied:

i) u(t) is continuously differentiable on [−1, 1]. The derivatives at the endpoints are understood as the
appropriate unilateral derivatives.

ii) The element u(t) belongs to D(A) for all t ∈ [−1, 1], and the functions Au(t) and B(t)u(t) are continuous
on [−1, 1].

iii) u(t) satisfies the equation (17).

A solution of the equation (17) defined in this manner will from now on be referred to as a solution of
the equation (17) in the space C(E) = C([−1, 1],E) of all continuous functions ϕ(t) defined on [−1, 1] with
values in E equipped with the norm

||ϕ||C(E) = max
−1≤t≤1

||ϕ(t)||E.

We consider (17) under the assumption that the operator −A generates an analytic semigroup exp{−tA}
(t ≥ 0), i.e. the following estimates hold:

‖e−tA
‖E→E ≤M, ‖tAe−tA

‖E→E ≤M, 0 ≤ t ≤ 1. (19)

Theorem 3.2. Suppose that assumptions (18) and (19) for the operators A and B(t) hold. Assume that f (t) is a
continuously differentiable on [−1, 1] function. Then there is a unique solution of the equation (17) and the following
stability inequalities

∥∥∥∥∥du(t)
dt

∥∥∥∥∥
E
, ‖Au(t)‖E ≤M∗

‖ f (0)‖E +

1∫
−1

‖ f ′(s)‖Eds


hold for any t ∈ [−1, 1], where M∗ does not depend on f (t) and t.

The proof of the Theorem 3.2 is based on the following formula [11]

u(t) = s1n(t)A−1 f (t) − s1n(t)e−|t|AA−1 f (0) − s1n(t)

t∫
0

e−(|t|−|s|)AA−1 f ′(s)ds

+ s1n(t)

t∫
−t

[
I − e−(|t|−|s|)A

]
A−1B(s)u(s)ds, −1 ≤ t ≤ 1

and the Theorem 2.3.
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We note that the inequality

max
−1≤t≤1

∥∥∥∥∥du(t)
dt

∥∥∥∥∥
E

+ max
−1≤t≤1

‖Au(t)‖E ≤M∗ max
−1≤t≤1

‖ f (t)‖E

does not hold in general in the arbitrary Banach space E and for the general strong positive operator A
(see [12]). Nevertheless, we can establish the following theorem.

Theorem 3.3. Suppose that the estimates (19) for the operator A hold and

‖B(t)A−1
‖Eλ→Eλ ≤

M1

|t|1−α
, 1 ≥ α > 0, t ∈ [−1, 0) ∪ (0, 1].

Assume that f (t) is a continuous function on [−1, 1]. Then there is a unique solution of the equation (17) and stability
inequalities∥∥∥∥∥du(t)

dt

∥∥∥∥∥
Eλ
, ‖Au(t)‖Eλ ≤M∗(λ) max

−1≤t≤1
‖ f (t)‖Eλ

hold for any t ∈ [−1, 1], where M∗(λ) does not depend on f (t) and t. Here the fractional spaces Eλ = Eλ(E,A)
(0 < λ < 1), consisting of all v ∈ E for which the following norms are finite:

‖ v ‖Eλ= sup
0<z

z1−λ
‖ Aexp{−zA}v ‖E .

Finally, we note that this approach allows us to extend our discussion to the study of the initial-value
problem

d2u(t)
dt2 + Au(t) =

t∫
−t

B(ρ)u(ρ)dρ + f (t), −1 ≤ t ≤ 1,

u(0) = u0, u′(0) = u′0

(20)

for integral-differential equation in an arbitrary Banach space E with unbounded linear operators A and
B(t) in E with dense domain D(A) ⊂ D(B(t)) satisfying the assumption (18). The stability estimates for the
solution of the equation (20) can be obtained in the similar way.

4. Conclusions

In this paper, two generalizations of Gronwall’s type integral inequalities with singular kernels are
presented. In applications, theorems on stability estimates for the solutions of the nonliner integral equation
and the integral-differential equation of the parabolic type are presented. Moreover, applying the results of
the paper [10], the fractional differential equation

Dα
±v(t) = f (t, v(t)) , 0 < α < 1, −1 ≤ t ≤ 1

can be investigated in the similar way, where

Dα
±v(t) =

1
Γ(1 − α)

s1n(t)

t∫
−t

(|t| − |s|)−αv′(s)ds.

The stability estimates for the solution of this fractional differential equation can be obtained in the similar
way.
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