Some Mixed Paranorm Spaces

Eberhard Malkowsky ${ }^{\text {a }}$, Faruk Özger ${ }^{\text {b }}$, Vesna Veličković ${ }^{\text {c }}$
${ }^{a}$ Državni Univerzitet u Novom Pazaru, Vuka Karadžića bb, 36300 Novi Pazar, Serbia
${ }^{b}$ Izmir Katip Celebi University, Department of Engineering Sciences, Izmir, Turkey
${ }^{c}$ Department of Computer Science, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia

Abstract

We generalize the concept of mixed norm spaces and define a class of mixed paranorm spaces, study their fundamental topological properties and determine their first and second duals. Furthermore we obtain the corresponding known results for mixed norm spaces and spaces of sequences that are strongly summable to zero as special cases of our new results.

1. Introduction and Notations

Let $1 \leq p \leq \infty$. By ω we denote the set of all complex sequences $x=\left(x_{k}\right)_{k=1}^{\infty}$.
In 1968, Maddox [8] introduced and studied the sets

$$
w_{0}^{p}=\left\{x \in \omega: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left|x_{k}\right|^{p}=0\right\}
$$

of sequences that are strongly summable to zero with index p by the Cesàro method of order 1. He also observed that the sections $1 / n \sum_{k=1}^{n}$ can be replaced by the dyadic blocks $1 / 2^{v} \sum_{k=2^{v}}^{2^{v+1}-1}$, and that the section and block norms $\|\cdot\|_{s}$ and $\|\cdot\|_{b}$ are equivalent where

$$
\|x\|_{s}=\sup _{n}\left(\frac{1}{n} \sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{1 / p} \text { and }\|x\|_{b}=\sup _{v}\left(\frac{1}{2^{v}} \sum_{k=2^{v}}^{2^{v+1}-1}\left|x_{k}\right|^{p}\right)^{1 / p}
$$

In 1974, Jagers [5] studied the Cesàro sequence spaces

$$
\operatorname{ces}_{p}=\left\{x \in \omega: \sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n}\left|x_{k}\right|\right)^{p}<\infty\right\}
$$

[^0]which are Banach spaces with the norm given by
$$
\|x\|_{\operatorname{ces}_{p}}=\left(\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n}\left|x_{k}\right|\right)^{p}\right)^{1 / p} .
$$

It can be found in [3] that an equivalent norm on ces_{p} is

$$
\|x\|=\left(\sum_{v=0}^{\infty} 2^{v(1-p)}\left(\sum_{k=2^{v}}^{2^{v+1}-1}\left|x_{k}\right|\right)^{p}\right)^{1 / p}
$$

In 1969, Hedlund [4] introduced the mixed norm spaces

$$
\ell(r, p)=\left\{x \in \omega: \sum_{v=0}^{\infty}\left(\sum_{k=2^{v}}^{2^{v+1}-1}\left|x_{k}\right|^{p}\right)^{r / p}<\infty\right\} \text { (see also Kellog [6]); }
$$

obviously the Cesàro sequence spaces ces_{p} are weighted $\ell(p, 1)$ mixed norm spaces. Results on the equivalence of block and section norms on mixed norm spaces can also be found in [3].

In this paper, we generalize the definition of mixed norm spaces to that of mixed paranorm spaces. This is achieved by replacing the dyadic blocks by arbitrary blocks, the constant exponent r by an arbitrary positive sequence $\left(r_{v}\right)_{v=0}^{\infty}$ and the spaces ℓ_{r} by $\ell(r)$ and $c_{0}(r)$. We are going to show among other things that our new spaces are $F K$ spaces with $A K$ if and only if the sequence $\left(r_{v}\right)_{v=0}^{\infty}$ is bounded. Furthermore we determine their first and second β-duals. Finally, we obtain many known results as special cases.

As usual, we denote by ℓ_{∞}, c, c_{0} and ϕ the sets of all bounded, convergent, null and finite sequences, respectively. If $p=\left(p_{k}\right)_{k=1}^{\infty}$ is a sequence of positive reals then the sets

$$
\ell(p)=\left\{x \in \omega: \sum_{k=1}^{\infty}\left|x_{k}\right|^{p_{k}}<\infty\right\} \text { and } c_{0}(p)=\left\{x \in \omega: \lim _{x \rightarrow \infty}\left|x_{k}\right|^{p_{k}}=0\right\}
$$

are generalizations of the sets ℓ_{p} and c_{0}. Furthermore, let $c s$ and $b s$ be the sets of all convergent and bounded sequences. We write $\ell_{p}=\left\{x \in \omega: \sum_{k=1}^{\infty}\left|x_{k}\right|<\infty\right\}$ for $1 \leq p<\infty$, and e and $e^{(n)}(n=1,2, \ldots)$ for the sequences with $e_{k}=1$ for all k, and $e_{n}^{(n)}=1$ and $e_{k}^{(n)}=0(k \neq 0)$, respectively.

An $F K$ space X is a Fréchet sequence space with continuous coordinates $P_{n}: X \rightarrow \mathbb{C}$ where $P_{n}(x)=x_{n}$ for all $x=\left(x_{k}\right)_{k=1}^{\infty} \in X$ and $n=1,2, \ldots$. We say that an $F K$ space $X \supset \phi$ has $A K$ if $x^{[m]}=\sum_{k=1}^{m} x_{k} e^{(k)} \rightarrow x(m \rightarrow \infty)$; $x^{[m]}$ is called the m-section of the sequence x. A normable $F K$ space is said to be a $B K$ space.

If X and Y are subsets of ω and z is a sequence, we write $z^{-1} * Y=\left\{a \in \omega: a \cdot z=\left(a_{k} z_{k}\right)_{k=1}^{\infty} \in Y\right\}$ and $M(X, Y)=\bigcap_{x \in X} x^{-1} * Y=\{a \in \omega: a \cdot x \in Y$ for all $x \in X\}$. The special cases $X^{\alpha}=M\left(X, \ell_{1}\right), X^{\beta}=M(X, c s)$ and $X^{\gamma}=M(X, b s)$ are called the $\alpha-, \beta$ - and γ-duals of X.

2. The Definition of Our Spaces and Their Topological Structures

Throughout, let $(k(v))_{v=0}^{\infty}$ be a sequence of integers with

$$
\begin{equation*}
1=k(0)<k(1)<\cdots \tag{1}
\end{equation*}
$$

By $K^{<k(v)>}(v=0,1, \ldots)$, we denote the set of all integers k that satisfy the inequality

$$
k(v) \leq k \leq k(v+1)-1
$$

and we write $\sum_{v}=\sum_{k \in K<(v)>}$ and $\max _{v}=\max _{k \in K<k(v)\rangle}$. Given any sequence $x=\left(x_{k}\right)_{k=1}^{\infty} \in \omega$, we define the $K^{<k(v)>}$ blocks of x by

$$
x^{\langle v\rangle}=\sum_{v} x_{k} e^{(k)} \text { for } v=0,1, \ldots
$$

Now we define the mixed paranorm-norm spaces.

Definition 2.1. Let $(k(v))_{v=0}^{\infty}$ be a sequence of integers that satisfy the condition in (1). Furthermore, let $\left(X_{i},\|\cdot\|_{i}\right)$ be a normed space, $\left(X_{0}, g_{0}\right)$ be a paranormed space and $\phi \subset X_{i}, X_{0}$. We denote the sequences in X_{i} by $x=\left(x_{k}\right)_{k=1}^{\infty}$ and those in X_{o} by $y=\left(y_{v}\right)_{v=0}^{\infty}$ and define the set

$$
Z=\left[X_{o}, X_{i}\right]^{<k(v)>}=\left\{z=\left(z_{k}\right)_{k=1}^{\infty} \in \omega:\left(\left\|z^{<v>}\right\|_{i}\right)_{v=0}^{\infty} \in X_{o}\right\}
$$

and write

$$
h(z)=g_{o}\left(\left(\left\|z^{<v>}\right\|_{i}\right)_{v=0}^{\infty}\right) \text { for all } z \in Z .
$$

Remark 2.2. (a) Since $\phi \subset X_{i},\left\|z^{<v>}\right\|_{i}$ is defined for all $z \in \omega$ and all $v=0,1, \ldots$. Hence the sequence

$$
\begin{equation*}
y=\left(y_{v}\right)_{v=0}^{\infty}=\left(\left\|z^{<v>}\right\|_{i}\right)_{v=0}^{\infty} \tag{2}
\end{equation*}
$$

is defined.
(b) Since $\phi \subset X_{i}, X_{o}$, we obviously have $\phi \subset Z$.

We say that a norm $\|\cdot\|$ or a paranorm g on a sequence space X is monotonous, if $x, \tilde{x} \in X$ and $\left|x_{k}\right| \leq\left|\tilde{x}_{k}\right|$ for all $k=1,2, \ldots$ together imply $\|x\| \leq\|\tilde{x}\|$ or $g(x) \leq g(\tilde{x})$. We also recall that a subset X of ω is said to be normal if $x \in X$ and $\left|\tilde{x}_{k}\right| \leq\left|x_{k}\right|$ for all $k=1,2, \ldots$ together imply $\tilde{x} \in X$.

Example 2.3. (a) The natural norms on $\ell_{p}(1 \leq p<\infty), \ell_{\infty}, c$ and c_{0} are monotonous.
(b) Let $p=\left(p_{k}\right)_{k=1}^{\infty}$ be a bounded sequence of positive reals and $M(p)=\max \left\{1, \sup _{k} p_{k}\right\}$. Then the paranorms g_{p} and $g_{p, 0}$ with

$$
g_{p}(x)=\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{p_{k}}\right)^{1 / M(p)} \text { and } g_{p, 0}(x)=\sup _{k}\left|x_{k}\right|^{p_{k} / M(p)}
$$

on $\ell(p)$ and $c_{0}(p)$ are monotonous.
(c) The sets $\ell(p), \ell_{\infty}(p)$ and $c_{0}(p)$ are normal, but $c(p)$ is not normal.

Remark 2.4. Let $(X,\|\cdot\|)$ be a normed space. Then neither does the monotony of $\|\cdot\|$ imply that X is normal, nor does the converse implication hold, in general.

Proof. If we choose $X=c$ and $\|\cdot\|=\|\cdot\|_{\infty}$, then $\|\cdot\|$ is monotonous, but c is not normal.
To prove the second part, we choose $X=\ell_{1}$ and $\|\cdot\|=\|\cdot\|_{b v}$ where $\|x\|_{b v}=\sum_{k=1}^{\infty}\left|x_{k}-x_{k-1}\right|$ with the convention $x_{0}=0$. Then $\|\cdot\|$ obviously is defined on X and X is normal. But, for $x=e^{(1)}+e^{(3)}$ and $\tilde{x}=e^{(1)}+e^{(2)}+e^{(3)}$, we obtain $\left|x_{k}\right| \leq\left|\tilde{x}_{k}\right|$ for $k=1,2, \ldots$ and $\|x\|=4>2=\|\tilde{x}\|$.

Now we establish some general results on the structures of the mixed paranorm spaces.
Theorem 2.5. Let $\left(X_{i},\|\cdot\|_{i}\right)$ be a normed space, $\left(X_{o}, g_{o}\right)$ be a paranormed space, $\phi \subset X_{i}, X_{o}$, and $Z=\left[X_{o}, X_{i}\right]^{<k(v)>}$. (a) If X_{o} is normal and $\|\cdot\|_{i}$ is monotonous, then Z is normal.
(b) If g_{0} is monotonous, then Z is paranormed with respect to h; if g_{0} is total, so is h. If, however, g_{0} is not monotonous, then h does not satisfy the triangle inequality, in general.
(c) If $\left(X,\|\cdot\|_{i}\right)$ and $\left(X_{o}, g_{o}\right)$ both are FK spaces, g_{o} is monotonous, and Z is complete, then Z is and FK space.
(d) If X_{i} is any of the spaces $\ell_{p}(1 \leq p \leq \infty)$ and X_{o} is any of the spaces $\ell(r)$ or $c_{0}(r)$ for $r=\left(r_{v}\right)_{v=0}^{\infty} \in \ell_{\infty}$, then Z is complete.

Proof. For any sequence $z \in Z$, we define the sequence $y \in X_{o}$ by (2).
(a) Let $z \in Z$ and $\left|\tilde{z}_{k}\right| \leq\left|z_{k}\right|$ for $k=1,2, \ldots$. Then it follows from the monotony of $\|\cdot\|_{i}$ that $\tilde{y}_{v}=\left\|\tilde{z}^{<v>}\right\|_{i} \leq$ $\left\|z^{<v>}\right\|_{i}=y_{v}$ for $v=0,1, \ldots$ and, since X_{o} is normal, this implies $\tilde{y} \in X_{o}$, hence $\tilde{z} \in Z$.
(b) Obviously, h is defined on $Z, h(0)=0, h(z) \geq 0$ and $h(z)=h(-z)$ for all $z \in Z$. Let $z, \tilde{z} \in Z$ be given. Then we obtain by the triangle inequality for $\|\cdot\|_{i}$, the monotony of g_{0} and the triangle inequality for g_{0}

$$
\begin{aligned}
h(z+\tilde{z}) & =g_{o}\left(\left(\left\|(z+\tilde{z})^{<v>}\right\|_{i}\right)_{v=0}^{\infty}\right)=g_{o}\left(\left(\left\|z^{<v>}+\tilde{z}^{<v>}\right\|_{i}\right)_{v=0}^{\infty}\right) \\
& \leq g_{o}\left(\left(\left\|z^{<v>}\right\|_{i}+\left\|\tilde{z}^{<v>}\right\|_{i}\right)_{v=0}^{\infty}\right)=g_{0}\left(\left(\left\|z^{<v>}\right\|_{i}\right)_{v=0}^{\infty}+\left(\left\|\tilde{z}^{<v>}\right\|_{i}\right)_{v=0}^{\infty}\right) \\
& \leq g_{o}\left(\left(\left\|z^{<v>}\right\|_{i}\right)_{v=0}^{\infty}\right)+g_{0}\left(\left(\left\|\tilde{z}^{<v>}\right\|_{i}\right)_{v=0}^{\infty}\right)=h(z)+h(\tilde{z}) .
\end{aligned}
$$

Finally, let $\lambda_{n} \rightarrow \lambda$ and $h\left(z^{(n)}-z\right) \rightarrow 0(n \rightarrow \infty)$. Then we have

$$
0 \leq h\left(\lambda_{n} z^{(n)}-\lambda z\right) \leq S_{1}(n)+S_{2}(n)+S_{3}(n)
$$

where

$$
\begin{aligned}
0 & \leq S_{1}(n)=h\left(\left(\lambda_{n}-\lambda\right)\left(z^{(n)}-z\right)\right)=g_{0}\left(\left(\left\|\left(\lambda_{n}-\lambda\right)\left(z^{(n)}-z\right)^{<v>}\right\|_{i}\right)_{v=0}^{\infty}\right) \\
& =g_{o}\left(\left|\lambda_{n}-\lambda\right| \cdot\left(\left\|\left(z^{(n)}-z\right)^{<v>}\right\|_{i}\right)_{v=0}^{\infty}\right) \leq g_{o}\left(\left(\left\|\left(z^{(n)}-z\right)^{<v>}\right\|_{i}\right)_{v=0}^{\infty}\right) \\
& =h\left(z^{(n)}-z\right) \text { for all sufficiently large } n,
\end{aligned}
$$

since $\left|\lambda_{n}-\lambda\right| \leq 1$ for all sufficiently large n and g_{o} is monotonous, hence $\lim _{n \rightarrow \infty} S_{1}(n)=0$; also

$$
\begin{aligned}
0 & \leq S_{2}(n)=h\left(\left(\lambda_{n}-\lambda\right) z\right)=g_{o}\left(\left(\left\|\left(\lambda_{n}-\lambda\right) z^{<v>}\right\|_{i}\right)_{v=0}^{\infty}\right) \\
& =g_{o}\left(\left|\lambda_{n}-\lambda\right| \cdot\left(\left\|z^{<v>}\right\|_{i}\right)_{v=0}^{\infty}\right)
\end{aligned}
$$

and putting $\mu_{n}=\left|\lambda_{n}-\lambda\right|$ and $y^{(n)}=y=\left(\left\|z^{<v>}\right\|_{i}\right)_{v=0}^{\infty}$ for $v=0,1, \ldots$, we have $\mu_{n} \rightarrow 0, g_{o}\left(y^{(n)}-y\right) \rightarrow 0$ $(n \rightarrow \infty)$, and so, since g_{o} is a paranorm, it follows that $g_{o}\left(\mu_{n} y^{(n)}\right) \rightarrow 0(n \rightarrow \infty)$, that is $\lim _{n \rightarrow \infty} S_{2}(n)=0$; finally

$$
S_{3}(n)=h\left(\lambda\left(z^{(n)}-z\right)\right)=g_{0}\left(|\lambda|\left(\left\|\left(z^{(n)}-z\right)^{<v>}\right\|_{i}\right)_{v=0}^{\infty}\right)
$$

and putting $\mu_{n}=\mu=|\lambda|$ and $y^{(n)}=\left(\left\|\mid\left(z^{(n)}-z\right)^{\langle v>}\right\|_{i}\right)_{v=0}^{\infty}$ for all n, we have $\mu_{n} \rightarrow \mu, g_{0}\left(y^{(n)}\right) \rightarrow 0(n \rightarrow \infty)$, and so, since g_{o} is a paranorm, $g_{0}\left(\mu_{n} y^{(n)}-0\right) \rightarrow 0(n \rightarrow \infty)$, that is, $\lim _{n \rightarrow \infty} S_{3}(n)=0$.
Thus we have shown $h\left(\lambda_{n} z_{n}-\lambda z\right) \rightarrow 0(n \rightarrow \infty)$.
Furthermore, if g_{0} is total, then $h(z)=g_{o}\left(\left(\left\|z^{\langle v\rangle}\right\|_{i}\right)_{v=0}^{\infty}\right)=0$ if and only if $\left\|z^{\langle v\rangle}\right\|_{i}=0$ for $v=0,1, \ldots$, and this is the case if and only if $z_{k}=0$ for $k=1,2, \ldots$, that is, $z=0$.
To see the last part, we consider $X_{o}=b v$ and $g_{o}=\|\cdot\|_{b v}$. Then g_{o} is a norm on X_{o} which is not monotonous, as we have seen in the proof of Remark 2.4. Now we choose $k(v)=v+1$ for $v=0,1, \ldots, X_{i}=\ell_{\infty},\|\cdot\|_{i}=\|\cdot\|_{\infty}$, $z=e^{(1)}+e^{(2)}+e^{(3)}$ and $\tilde{z}=e^{(1)}-e^{(2)}+e^{(3)}$, and obtain $h(z+\tilde{z})=2 h\left(e^{(1)}+e^{(3)}\right)=8>4=h(z)+h(\tilde{z})$.
(c) We have to show that $z^{(n)} \rightarrow z(n \rightarrow \infty)$ implies $z_{k}^{(n)} \rightarrow z_{k}(n \rightarrow \infty)$ for each k.

Let

$$
h\left(z^{(n)}-z\right)=g_{0}\left(\left(\left\|\left(z^{(n)}-z\right)^{<v>}\right\|_{i}\right)_{v=0}^{\infty}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Since X_{o} is an FK space, this implies $\left.\|\left(z^{(n)}-z\right)^{<v>}\right) \|_{i} \rightarrow 0(n \rightarrow \infty)$ for each v, and since X_{i} is an FK space, this implies $z_{k}^{(n)} \rightarrow z_{k}$ for each $k \in K^{<k(v)>}$ and $v=0,1, \ldots$
(d) We have to show that $Z=\left[X_{o}, X_{i}\right]^{<k(v)>}$ is complete when X_{i} is any of the spaces $\ell_{p}(1 \leq p \leq \infty)$ and X_{o} is any of the spaces $\ell(r)$ or $c_{0}(r)$.
Let $\left(z^{(n)}\right)_{n=1}^{\infty}$ be a Cauchy sequence in Z and $\varepsilon>0$ be given. Then there exists an $N=N(\varepsilon) \in \mathbb{N}$ such that $h\left(z^{(n)}-z^{(m)}\right)<\varepsilon / 2$ for all $n, m \geq N$. Since X_{i} and X_{o} are $F K$ spaces, it follows that $\left(z_{k}^{(n)}\right)_{n=1}^{\infty}$ is a Cauchy
sequence of complex numbers for each fixed k, hence convergent by the completeness of $\mathbb{C}, z_{k}=\lim _{m \rightarrow \infty} z_{k}^{(m)}$ $(k=1,2, \ldots)$, say. Let $\mu \in \mathbb{N}_{0}$ be given and $z(\mu)=z^{[k(\mu+1)-1]}=\sum_{k=1}^{k(\mu+1)-1} z_{k} e^{(k)}$. We fix $n \geq N$. Then we have for $X_{o}=\ell(r)$

$$
\begin{aligned}
\lim _{m \rightarrow \infty} h\left(\left(z^{(n)}-z^{(m)}\right)(\mu)\right) & =\lim _{m \rightarrow \infty}\left(\sum_{v=0}^{\mu}\left\|\left(z_{k}^{(n)}-z_{k}^{(m)}\right)^{<v>}\right\|_{p}^{r v}\right)^{1 / M(r)} \\
& =\left(\sum_{v=0}^{\mu}\left\|\left(z_{k}^{(n)}-z_{k}\right)^{<v>}\right\|_{p}^{r v}\right)^{1 / M(r)} \\
& =h\left(\left(z^{(n)}-z\right)(\mu)\right) \leq \frac{\varepsilon}{2}<\varepsilon .
\end{aligned}
$$

Since $\mu \in \mathbb{N}_{0}$ was arbitrary, we have

$$
\begin{equation*}
h\left(z^{(n)}-z\right)<\varepsilon \text { for all } n \geq N . \tag{3}
\end{equation*}
$$

Now (3) implies $z^{(N)}-z \in Z=\left[\ell(r), \ell_{p}\right]^{<k(v)\rangle}$, and since Z is a linear space, we have $z \in Z$. Thus we have shown that $\left[\ell(r), \ell_{p}\right]^{<k(\nu)\rangle}$ is complete.
Finally let $X_{o}=c_{0}(r)$. As before, it can be shown that (3) holds for all $n \geq N$. Since $z^{(N)} \in Z=\left[c_{0}(r), \ell_{p}\right]^{\kappa k(\nu)\rangle}$, there is an integer v_{0} such that

$$
\begin{equation*}
\left\|\left(z^{(N)}\right)^{\langle v\rangle}\right\|_{p}^{r_{v} / M(r)}<\frac{\varepsilon}{2} \text { for all } v \geq v_{0} \tag{4}
\end{equation*}
$$

and we obtain from (4) and (3) for all $v \geq v_{0}$

$$
\left\|z^{\langle v\rangle}\right\|_{i}^{r_{v} / M(r)} \leq\left\|\left(z-z^{(N)}\right)^{\langle\nu\rangle}\right\|_{p}^{r_{v} / M(r)}+\left\|\left(z^{(N)}\right)^{\langle\nu\rangle}\right\|_{p}^{r_{v} / M(r)}<\varepsilon,
$$

hence $z \in Z$. Thus we have shown that $Z=\left[c_{0}(r), \ell_{p}\right]^{\kappa k(v)>}$ is complete.
Corollary 2.6. Let $1 \leq p \leq \infty$ and $r=\left(r_{v}\right)_{v=0}^{\infty}$ be a bounded positive sequence. Then $Z=\left[\ell(r), \ell_{p}\right]^{k k(v)>}$ and $Z=\left[c_{0}(r), \ell_{p}\right]^{<k(v)\rangle>}$ are FK spaces with AK with respect to the total paranorms h defined by

$$
h(z)= \begin{cases}\left(\sum_{v=0}^{\infty}\left\|z^{\langle v>}\right\|_{p}^{r_{v}}\right)^{1 / M(r)} & \left(z \in Z=\left[\ell(r), \ell_{p}\right]^{<k(v)\rangle}\right) \tag{5}\\ \sup _{v}\left\|z^{\langle v\rangle}\right\|_{p}^{r_{p}^{r / M(r)}} & \left(z \in Z=\left[c_{0}(r), \ell_{p}\right]^{<k(v)\rangle}\right) .\end{cases}
$$

Proof. In view of Theorem 2.5 and Example 2.3, the spaces Z are $F K$ spaces in both cases with respect to h defined in (5); hence we have to show that they have $A K$. First we observe that $\phi \subset Z$ by Remark 2.2 (b). We consider the case of $Z=\left[\ell(r), \ell_{p}\right]^{<k(v)\rangle}$. Let $z \in Z$ and $\varepsilon>0$ be given. Then there exists $v_{0} \in \mathbb{N}_{0}$ such that

$$
\begin{equation*}
\left(\sum_{v=v_{0}}^{\infty}\left\|z^{<v>}\right\|_{p}^{r v}\right)^{1 / M(r)}<\varepsilon \tag{6}
\end{equation*}
$$

We choose $m_{0}=k\left(v_{0}\right) \in \mathbb{N}$. For $m \geq m_{0}$, let $v(m)$ denote the integer such that $m \in K^{<\nu(m)>}$. Then we have for all $m \geq m_{0}$

$$
h\left(z^{[m]}-z\right)=\left(\sum_{v=0}^{\infty}\left\|\left(z^{[m]}-z\right)^{<v\rangle}\right\|_{p}^{r v}\right)^{1 / M(r)}
$$

$$
\begin{aligned}
& =\left(\left\|\left(z^{[m]}-z\right)^{<v(m)>}\right\|_{p}^{r_{v}}+\sum_{v=v(m+1)}^{\infty}\left\|z^{<v>}\right\|_{p}^{r_{v}}\right)^{1 / M(r)} \\
& \leq\left(\sum_{v=v_{0}}^{\infty}\left\|z^{<v>}\right\|_{p}^{r_{v}}\right)^{1 / M(r)}<\varepsilon
\end{aligned}
$$

and so $z=\lim _{m \rightarrow \infty} z^{[m]}=\sum_{k=1}^{\infty} x_{k} e^{(k)}$.
It is easy to see that this representation is unique.
The case of $\left[c_{0}(p), \ell_{r}\right]^{<k(v)>}$ is proved analogously.
Remark 2.7. Let r be a sequence of positive reals and $1 \leq p \leq \infty$. Then $\left[\ell(r), \ell_{p}\right]^{<k(v)>}$ and $\left[c_{0}(r), \ell_{p}\right]^{<k(v)>}$ are linear spaces if and only if $r \in \ell_{\infty}$.

Proof. The sufficiency of the condition $r \in \ell_{\infty}$ is clear by Corollary 2.6.
To show the necessity of the condition we assume that $r \notin \ell_{\infty}$. Then there exists a strictly increasing sequence $(v(i))_{i=0}^{\infty}$ of positive integers such that $r_{v(i)}>i$ for $i=0,1, \ldots$. We define the sequence x by $x_{k(v(i))}=1 / 2$ and $x_{k}=0$ for $k \neq(k(v(i)))(i=0,1, \ldots)$. Then we have $\sum_{v=0}^{\infty}\left\|x^{<v>}\right\|_{p}^{r(v)}=\sum_{i=0}^{\infty} 2^{r_{v(i)}}<\sum_{i=0}^{\infty} 2^{-i}<\infty$, that is, $x \in\left[\ell(r), \ell_{p}\right]^{<k(v)>}$, but

$$
\left\|2 \cdot x^{<v(i)>}\right\|_{p}^{r_{v(i)}}=1 \text { for all } i \text {, that is, } 2 x \notin\left[c_{0}(r), \ell_{p}\right]^{<k(v)>} .
$$

The statement now is clear, since obviously $\left[\ell(r), \ell_{p}\right]^{<k(v)>} \subset\left[c_{0}(r), \ell_{p}\right]^{<k(v)>}$.
The following figures show the projections on $\left(x_{2}, x_{3}, x_{4}\right)$ of the unit balls in $\left[\ell(r), \ell_{p}\right]^{<k(v)>}$ when $k(v)=2^{v}$ ($v=0,1, \ldots$)

Figure 1: Left $r_{1}=3 / 4, r_{2}=4 / 5, p=5 / 4$. Right $r_{1}=2 / 3, r_{2}=2, p=5 / 4$.

Figure 2: Left $r_{1}=1 / 2, r_{2}=4 / 5, p=4$. Right $r_{1}=3 / 2, r_{2}=5 / 2, p=7 / 2$.

Figure 3: Left $r_{1}=2, r_{2}=2, p=1$. Right $r_{1}=1, r_{2}=1 / 2, p=1$.

We close this section by considering some special cases.
Example 2.8. (a) Let $r_{v}=r \geq 1(v=0,1, \ldots)$ and $1 \leq p \leq \infty$. Then the spaces $\left[\ell(r), \ell_{p}\right]^{<k(v)>}$ reduce to the mixed norm spaces $\ell(r, p)=\left[\ell_{r}, \ell_{p}\right]^{<k(v)>}([3,5])$.
(b) If $k(v)=2^{v}$ and $r_{v}=1$ for $v=0,1, \ldots$, and the sequence $u=\left(u_{k}\right)_{k=1}^{\infty}$ is defined by $u_{k}=2^{-v / p}\left(k \in K^{<k(v)>} ; v=\right.$ $0,1, \ldots)$, then we obtain the sets

$$
w_{0}^{p}=u^{-1} *\left[c_{0}, \ell_{p}\right]^{<k(v)>}=\left\{x \in \omega: \lim _{v \rightarrow \infty} \frac{1}{2^{v}} \sum_{k=2^{v}}^{2^{v+1}-1}\left|x_{k}\right|^{p}=0\right\}
$$

of sequences that are strongly summable C_{1} to 0 , with index p ([8]).
(c) By Corollary 2.6 and [14, Theorem 4.3.6], the sets $\ell(r, p)$ and w_{0}^{p} are BK space with AK with respect to the norms $\|\cdot\|_{(r, p)}$ and $\|\cdot\|_{(0, p)}$ defined by

$$
\|x\|_{(r, p)}=\left\|\left(\left\|x^{<v>}\right\|_{p}\right)_{v=0}^{\infty}\right\|_{r}=\left(\sum_{v=0}^{\infty}\left\|x^{<v>}\right\|_{p}^{r}\right)^{1 / r}
$$

and

$$
\|x\|_{(0, p)}=\left\|\left(\left\|(u \cdot x)^{<v>}\right\|_{p}\right)_{v=0}^{\infty}\right\|_{\infty}=\sup _{v}\left(\frac{1}{2^{v}} \sum_{k=2^{v}}^{2^{v+1}-1}\left|x_{k}\right|^{p}\right)^{1 / p} \quad([8], \text { [10, Proposition 3.44] }) .
$$

Example 2.9. Let $r=\left(r_{v}\right)_{v=0}^{\infty}$ be any sequence of positive reals and $1 \leq p \leq \infty$. If $k(v)=v+1$ for $v=0,1, \ldots$, then we obtain $\left[\ell(r), \ell_{p}\right]^{<k(v)>}=\ell(r)$ and $\left[c_{0}(r), \ell_{p}\right]^{<k(v)>}=c_{0}(r)$. It follows from Corollary 2.6 and Remark 2.7 that $\ell(r)$ and $c_{0}(p)$ are $F K$ spaces with $A K$ if and only if $r \in \ell_{\infty}$ ([2] and [1, Remark]).

3. The Dual Spaces

Here we determine the dual spaces of $\left[c_{0}(p), \ell_{r}\right]^{<k(v)>}$ and $\left[\ell(p), \ell_{r}\right]^{<k(v)>}$.
Since both $\left[c_{0}(p), \ell_{r}\right]^{<k(v)>}$ and $\left[\ell(p), \ell_{r}\right]^{<k(v)>}$ are normal by Theorem 2.5 (a), the α-, β - and γ-duals coincide. Also if $r=\left(r_{v}\right)_{v=0}^{\infty} \in \ell_{\infty}$, then $\left[c_{0}(p), \ell_{r}\right]^{<k(v)>}$ and $\left[\ell(p), \ell_{r}\right]^{<k(v)>}$ are $F K$ spaces with $A K$ by Corollary 2.6 and so the β - and functional duals conicide ([14, Theorem 7.2.7 (ii)]).

Throughout, let $r=\left(r_{v}\right)_{v=0}^{\infty}$ be a sequence of positive reals, not necessarily bounded, $1 \leq p \leq \infty$ and q the conjugate number of p, that is, $q=\infty$ for $p=1, q=p /(p-1)$ for $1<p<\infty$ and $q=1$ for $p=\infty$; also let $s_{v}=r_{v} /\left(r_{v}-1\right)$ for $r_{v}>1$. We define the following sets

$$
\begin{aligned}
& M_{0}((r), p)=\bigcup_{N>1}\left\{a \in \omega: \sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{q} \cdot N^{-1 / r_{v}}<\infty\right\}, \\
& M((r), p)= \begin{cases}\bigcup_{N>1}\left\{a \in \omega: \sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{q}^{s_{v}} \cdot N^{-s_{v} / r_{v}}<\infty\right\} & \text { if } r_{v}>1 \text { for all } v \\
{\left[\ell_{\infty}(r), \ell_{q}\right]^{<k(v)>}} & \text { if } r_{v} \leq 1 \text { for all } v .\end{cases}
\end{aligned}
$$

Theorem 3.1. We have

$$
\begin{equation*}
\left(\left[c_{0}(r), \ell_{p}\right]^{<k(v)>}\right)^{\beta}=M_{0}((r), p) \tag{7}
\end{equation*}
$$

Proof. First we show

$$
\begin{equation*}
M_{0}((r), p) \subset\left(\left[c_{0}(r), \ell_{p}\right]^{<k(v)>}\right)^{\beta} . \tag{8}
\end{equation*}
$$

We assume $a \in M_{0}((r), p)$. Then there is $N>1$ such that $\sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{q} \cdot N^{-1 / r_{v}}<\infty$. Let $x \in\left[c_{0}(r), \ell_{p}\right]^{<k(v)>}$ be given. Then there exists $v_{0} \in \mathbb{N}_{0}$ such that we have for all $v \geq v_{0}$

$$
\left\|x^{<v>}\right\|_{p}^{r_{v}} \leq \frac{1}{N}, \text { that is, }\left\|x^{<v>}\right\|_{p} \leq N^{-1 / r_{v}} .
$$

Since

$$
\begin{equation*}
\sum_{v}\left|a_{k} x_{k}\right| \leq\left\|a^{<v>}\right\|_{q} \cdot\left\|x^{<v>}\right\|_{p} \text { for all } v \text { and for } 1 \leq p \leq \infty \tag{9}
\end{equation*}
$$

(the case $1<p<\infty$ by Hölder's inequality), we obtain

$$
\sum_{k=1}^{\infty}\left|a_{k} x_{k}\right| \leq \sum_{v=0}^{\infty} \sum_{v}\left|a_{k} x_{k}\right| \leq \sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{q} \cdot\left\|x^{<v>}\right\|_{p} \leq \sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{q} \cdot N^{-1 / r_{v}}<\infty,
$$

that is, $a \in\left(\left[c_{0}(r), \ell_{p}\right]^{<k(v)>}\right)^{\beta}$. Thus we have shown (8).
Now we show

$$
\begin{equation*}
\left(\left[c_{0}(r), \ell_{p}\right]^{<k(v)>}\right)^{\beta} \subset M_{0}((r), p) \tag{10}
\end{equation*}
$$

We assume that $a \notin M_{0}((r), p)$. Then $\sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{q} \cdot N^{-1 / r_{v}}=\infty$ for all $N>1$, and consequently we can determine a sequence $(v(n))_{n=0}^{\infty}$ of integers $0=v(0)<v(1)<v(2)<\ldots$ such that

$$
M_{n}=\sum_{v=v(n)}^{v(n+1)-1}\left\|a^{<v>}\right\|_{q} \cdot(n+1)^{-1 / r_{v}}>1 \text { for } n=0,1, \ldots
$$

If $1<p<\infty$, we define the sequence x by

$$
x_{k}=\operatorname{sgn}\left(a_{k}\right)\left|a_{k}\right|^{q-1}\left\|a^{<v>}\right\|_{q}^{-q / p}(n+1)^{-1 / r_{v}} M_{n}^{-1} \quad\left(k \in K^{<k(v)>} ; v(n) \leq v \leq v(n+1)-1 ; n=0,1, \ldots\right) .
$$

Then we have for $n=0,1, \ldots$

$$
\begin{aligned}
\sum_{v=v(n)}^{v(n+1)-1} \sum_{v} a_{k} x_{k} & =\sum_{v=v(n)}^{v(n+1)-1}\left\|a^{<v>}\right\|_{q}^{q(1-1 / p)}(n+1)^{-1 / r_{v}} M_{n}^{-1} \\
& =\frac{1}{M_{n}} \sum_{v=v(n)}^{v(n+1)-1}\left\|a^{<v>}\right\|_{q}(n+1)^{-1 / r_{v}}=1
\end{aligned}
$$

hence $\sum_{k=1}^{\infty} a_{k} x_{k}$ diverges. But, since $M_{n}>1$ for all n, we have for $v(n) \leq v \leq v(n+1)-1$

$$
\left\|x^{<v>}\right\|_{p}^{r_{v}}=\left(\sum_{v}\left|a_{k}\right|^{q p-p}\left\|a^{<v>}\right\|_{q}^{-q}(n+1)^{-p / r_{v}} M_{n}^{-p}\right)^{r_{v} / p}=\frac{M_{n}^{-r_{v}}}{n+1}\left\|a^{<v>}\right\|_{q}^{(q-q) r_{v} / p} \leq \frac{1}{n+1},
$$

that is, $x \in\left[c_{0}(r), \ell_{p}\right]^{<k(v)>}$. Thus we have shown (10) when $1<p<\infty$. If $p=1$, we define the sequence x by

$$
x_{k}= \begin{cases}\operatorname{sgn}\left(a_{k_{0}(v)}\right)(n+1)^{-1 / r_{v}} M_{n}^{-1} & \left(k=k_{0}(v)\right) \\ \text { where } k_{0}(v) \text { is the smallest integer in } K^{<k(v)>} & \\ \text { with }\left|a_{k_{0}(v)}\right|=\left\|a^{<v>}\right\|_{\infty} & \left(k \neq k_{0}(v)\right) \\ 0 & \left(k \in K^{<k(v)>} ; v(n) \leq v \leq v(n+1)-1 ; n=0,1, \ldots\right) .\end{cases}
$$

Then we have for $n=0,1, \ldots$

$$
\left.\sum_{v=v(n)}^{v(n+1)-1} \sum_{v} a_{k} x_{k}=\sum_{v=v(n)}^{v(n+1)-1}\left|a_{k_{0}(v) \mid}\right| n+1\right)^{-1 / r_{v}} M_{n}^{-1}=\frac{1}{M_{n}} \sum_{v=v(n)}^{v(n+1)-1}\left\|a^{<v>}\right\|_{\infty}(n+1)^{-1 / r_{v}}=1
$$

hence $\sum_{k=1}^{\infty} a_{k} x_{k}$ diverges. But, since $M_{n}>1$ for all n, we have for $v(n) \leq v \leq v(n+1)-1$

$$
\left\|x^{<v>}\right\|_{1}^{r_{v}} \leq \frac{M_{n}^{-r_{v}}}{n+1} \leq \frac{1}{n+1}
$$

hence $x \in\left[c_{0}(r), \ell_{1}\right]^{<k(v)>}$. Thus we have shown (10) when $p=1$.
Finally, if $p=\infty$, we define the sequence x by

$$
x_{k}=\operatorname{sgn}\left(a_{k}\right)(n+1)^{-1 / r_{v}} M_{n}^{-1}\left(k \in K^{<k(v)>} ; v(n) \leq v \leq v(n+1)-1 ; n=0,1, \ldots\right)
$$

Then we have for $n=0,1, \ldots$

$$
\begin{aligned}
\sum_{v=v(n)}^{v(n+1)-1} \sum_{v} a_{k} x_{k} & =\sum_{v=v(n)}^{v(n+1)-1} \sum_{v}\left|a_{k}\right|(n+1)^{-1 / r_{v}} M_{n}^{-1} \\
& =\frac{1}{M_{n}} \sum_{v=v(n)}^{v(n+1)-1}\left\|a^{<v>}\right\|_{1}(n+1)^{-1 / r_{v}}=1
\end{aligned}
$$

hence $\sum_{k=1}^{\infty} a_{k} x_{k}$ diverges. But, since $M_{n}>1$ for all n, we have for $v(n) \leq v \leq v(n+1)-1$

$$
\left\|x^{<v>}\right\|_{\infty}^{r_{v}} \leq \frac{M_{n}^{-r_{v}}}{n+1} \leq \frac{1}{n+1}
$$

hence $x \in\left[c_{0}(r), \ell_{1}\right]^{<k(v)>}$. Thus we have shown (10), when $p=\infty$.
Consequently, we have established (10) for $1 \leq p \leq \infty$, and finally, (10) and (8) yield (7).
Theorem 3.2. We have

$$
\begin{equation*}
\left(\left[\ell(r), \ell_{p}\right]^{<k(v)>}\right)^{\beta}=M((r), p) \tag{11}
\end{equation*}
$$

Proof. Case 1. $r_{v}>1$ for all $v=0,1, \ldots$. First we show

$$
\begin{equation*}
M((r), p) \subset\left(\left[\ell(r), \ell_{p}\right]^{<k(v)>}\right)^{\beta} \tag{12}
\end{equation*}
$$

Let $a \in M((r), p)$ be given. Then there exists $N>1$ such that $\sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{q}^{s_{v}} N^{-s_{v} / r_{v}}<\infty$. Let $x \in\left[\ell(r), \ell_{p}\right]^{<k(v)>}$ be given. Using (9) and applying the well-known inequality $\left|b_{v} y_{v}\right| \leq\left|b_{v}\right|^{s_{v}}+\left|y_{v}\right|^{r_{v}}$ with $b_{v}=\left\|a^{\langle v\rangle}\right\|_{q} N^{-1 / r_{v}}$ and $y=\left\|x^{<v>}\right\|_{p} N^{1 / r_{v}}(v=0,1, \ldots)$, we obtain

$$
\sum_{v}\left|a_{k} x_{k}\right| \leq\left\|a^{<v>}\right\|_{q} \cdot\left\|x^{<v>}\right\|_{p} \leq\left\|a^{<v>}\right\|_{q}^{s_{v}} N^{-s_{v} / r_{v}}+N\left\|x^{<v>}\right\|_{p}^{r_{v}} \text { for } v=0,1, \ldots
$$

hence

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left|a_{k} x_{k}\right| & \leq \sum_{v=0}^{\infty}\left(\left\|a^{<v>}\right\|_{q}^{s_{v}} N^{-s_{v} / r_{v}}+N\left\|x^{<v>}\right\|_{p}^{r_{v}}\right) \\
& =\sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{q}^{s_{v}} N^{-s_{v} / r_{v}}+N \sum_{v=0}^{\infty}\left\|x^{<v>}\right\|_{p}^{r_{v}}<\infty .
\end{aligned}
$$

Thus we have shown (12).
Now we show

$$
\begin{equation*}
\left(\left[\ell(r), \ell_{p}\right]^{<k(v)>}\right)^{\beta} \subset M((r), p) \tag{13}
\end{equation*}
$$

We assume $a \notin M((r), p)$. Then $\sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{q}^{-s_{v}} \cdot N^{-s_{v} / r_{v}}=\infty$ for all $N>1$, and consequently we can determine a sequence $(v(n))_{n=0}^{\infty}$ of integers $0=v(0)<v(1)<v(2)<\ldots$ such that

$$
M_{n}=\sum_{v=v(n)}^{v(n+1)-1}\left\|a^{<v>}\right\|_{q}^{s_{v}} \cdot(n+1)^{-s_{v} / r_{v}}>1 \text { for } n=0,1, \ldots
$$

If $1<p<\infty$ then we define the sequence x by

$$
x_{k}=\operatorname{sgn}\left(a_{k}\right)\left|a_{k}\right|^{q-1}\left\|a^{<v>}\right\|_{q}^{s_{v}-q} \cdot(n+1)^{-s_{v}} M_{n}^{-1} \quad\left(k \in K^{<k(v)>} ; v(n) \leq v \leq v(n+1)-1 ; n=0,1, \ldots\right) .
$$

Since $1-s_{v}=-s_{v} / r_{v}$ for all v, we obtain for all n

$$
\begin{aligned}
\sum_{v=v(n)}^{v(n+1)-1} \sum_{v} a_{k} x_{k} & =\sum_{v=v(n)}^{v(n+1)-1}\left|a_{k}\right|^{\mid}\left\|a^{<v>}\right\|_{q}^{s_{v}-q} \cdot(n+1)^{-s_{v}} M_{n}^{-1} \\
& =\frac{1}{(n+1) M_{n}} \sum_{v=v(n)}^{v(n+1)-1}\left\|a^{\langle v>}\right\|_{q}^{s_{v}} \cdot(n+1)^{-s_{v} / r_{(v)}}=\frac{1}{n+1}
\end{aligned}
$$

and so $\sum_{k=1}^{\infty} a_{k} x_{k}$ diverges. But, since $r_{v}\left(s_{v}-q+q / p\right)=s_{v}$, we have for all v with $v(n) \leq v \leq v(n+1)-1$ and for all n

$$
\begin{aligned}
\left\|x^{<v>}\right\|_{p}^{r_{v}} & =\left(\sum_{v}\left|a_{k}\right|^{p q-p}\right)^{r_{v} / p}\left\|a^{<v>}\right\|_{q}^{r_{v}\left(s_{v}-q\right)}(n+1)^{-s_{v} r_{v}} M_{n}^{-r_{v}} \\
& =\left\|a^{<v>}\right\|_{q}^{r_{v}\left(s_{v}-q+q / p\right)}(n+1)^{-s_{v} r_{v}} M_{n}^{-r_{v}}=\left\|a^{<v>}\right\|_{q}^{s_{v}}(n+1)^{-s_{v} r_{v}} M_{n}^{-r_{v}} .
\end{aligned}
$$

Furthermore, since $M_{n}>1$ for all $n, r_{v}>1$ and $s_{v}=1+s_{v} / r_{v}$, it follows that for all n

$$
\begin{aligned}
\sum_{v=v(n)}^{v(n+1)-1}\left\|x^{<v>}\right\|_{p}^{r_{v}} & \leq \frac{1}{M_{n}} \sum_{v=v(n)}^{v(n+1)-1}\left\|a^{<v>}\right\|_{q}^{s_{v}}(n+1)^{-s_{v}-r_{v}} \\
& \leq \frac{1}{(n+1) M_{n}} \sum_{v=v(n)}^{v(n+1)-1}\left\|a^{<v>}\right\|_{q}^{s_{v}}(n+1)^{-s_{v}} \\
& =\frac{1}{(n+1)^{2} M_{n}} \sum_{v=v(n)}^{v(n+1)-1}\left\|a^{<v>}\right\|_{q}^{s_{v}}(n+1)^{-s_{v} / r_{v}}=\frac{1}{(n+1)^{2}}
\end{aligned}
$$

that is,

$$
\sum_{v=0}^{\infty}\left\|x^{\langle v\rangle}\right\|_{p}^{r_{v}}=\sum_{n=0}^{\infty} \sum_{v=v(n)}^{v(n+1)-1}\left\|x^{<v>}\right\|_{p}^{r_{v}} \leq \sum_{n=0}^{\infty} \frac{1}{(n+1)^{2}}<\infty,
$$

and so $x \in\left[\ell(r), \ell_{p}\right]^{<k(v)>}$. Thus we have shown (13) when $1<p<\infty$.

If $p=1$ then we define the sequence x by

$$
x_{k}=\left\{\begin{array}{lr}
\operatorname{sgn}\left(a_{k_{0}(v)}\right)\left\|a^{<v>}\right\|_{\infty}^{s_{v}-1}(n+1)^{-s_{v}} M_{n}^{-1} & \left(k=k_{0}(v)\right) \\
\text { where } k_{0}(v) \text { is the smallest integer in } K^{<k(v)>} & \\
\text { with }\left|a_{k_{0}(v) \mid}\right|=\left\|a^{<v>}\right\|_{\infty} & \left(k \neq k_{0}(v)\right) \\
0 & \left(k \in K^{<k(v)>} ; v(n) \leq v \leq v(n+1)-1 ; n=0,1, \ldots\right) .
\end{array}\right.
$$

Again, since $1-s_{v}=-s_{v} / r_{v}$ for all v, we obtain for all n

$$
\begin{aligned}
\sum_{v=v(n)}^{v(n+1)-1} \sum_{v} a_{k} x_{k} & =\sum_{v=v(n)}^{v(n+1)-1}\left|a_{k_{0}(v)}\right| \cdot\left\|a^{\langle v>}\right\|_{\infty}^{s_{\nu}-1}(n+1)^{-s_{v}} M_{n}^{-1} \\
& =\frac{1}{M_{n}(n+1)} \sum_{v=v(n)}^{v(n+1)-1}\left\|a^{<v>}\right\|_{\infty}^{s_{\nu}}(n+1)^{-s_{v} / r_{v}}=\frac{1}{n+1},
\end{aligned}
$$

and so $\sum_{k=1}^{\infty} a_{k} x_{k}$ diverges. But, since $s_{v} r_{v}-r_{v}=s_{v}$, we have for all v with $v(n) \leq v \leq v(n+1)-1$ and for all n

$$
\left\|x^{<v>}\right\|_{1}^{r_{v}} \leq\left(\left\|a^{<v>}\right\|_{\infty}^{s_{v}-1}\right)^{r_{v}}(n+1)^{-s_{v} r_{v}} M_{n}^{-r_{v}}=\left\|a^{<v>}\right\|_{\infty}^{s_{v}}(n+1)^{-s_{v}-r_{v}} M_{n}^{-r_{v}}
$$

Furthermore, since $M_{n}>1, r_{v}>1$ and $-s_{v}=-1-s_{v} / r_{v}$, it follows that for all n

$$
\begin{aligned}
\sum_{v=v(n)}^{v(n+1)-1}\left\|x^{<v>}\right\|_{1}^{r_{v}} & \leq \frac{1}{(n+1) M_{n}} \sum_{v=v(n)}^{v(n+1)-1}\left\|a^{<v>}\right\|_{\infty}^{s_{v}}(n+1)^{-s_{v}} \\
& =\frac{1}{(n+1)^{2} M_{n}} \sum_{v=v(n)}^{v(n+1)-1}\left\|a^{<v>}\right\|_{\infty}^{s_{v}}(n+1)^{-s_{v} / r_{v}}=\frac{1}{(n+1)^{2}}
\end{aligned}
$$

that is,

$$
\sum_{v=0}^{\infty}\left\|x^{<v>}\right\|_{1}^{r_{v}}=\sum_{n=0}^{\infty} \sum_{v=v(n)}^{v(n+1)-1}\left\|x^{\langle v>}\right\|_{1}^{r_{v}} \leq \sum_{n=0}^{\infty} \frac{1}{(n+1)^{2}}<\infty,
$$

and so $x \in\left[\ell(r), \ell_{1}\right]^{<k(v)>}$. Thus we have shown (13) when $p=1$.
Finally if $p=\infty$ then we define the sequence x by

$$
x_{k}=\operatorname{sgn}\left(a_{k}\right)\left\|a^{<v>}\right\|_{1}^{s_{v}-1}(n+1)^{-s_{v}} M_{n}^{-1}
$$

$$
\left(k \in K^{<k(v)>} ; v(n) \leq v \leq v(n+1)-1 ; n=0,1, \ldots\right) .
$$

Again, since $1-s_{v}=-s_{v} / r_{v}$, we obtain for all n

$$
\begin{aligned}
\sum_{v=v(n)}^{v(n+1)-1} \sum_{v} a_{k} x_{k} & =\sum_{v=v(n)}^{v(n+1)-1}\left\|a^{\langle v\rangle}\right\|_{1}^{s_{v}-1}\left(\sum_{v}\left|a_{k}\right|\right)(n+1)^{-s_{v}} M_{n}^{-1} \\
& =\frac{1}{(n+1) M_{n}} \sum_{v=v(n)}^{v(n+1)-1}\left\|a^{\langle v>}\right\|_{1}^{s_{v}}(n+1)^{-s_{v} / r_{v}}=\frac{1}{n+1}
\end{aligned}
$$

and so $\sum_{k=1}^{\infty} a_{k} x_{k}$ diverges. But, since $s_{v} r_{v}-r_{v}=s_{v}$, we have for all v with $v(n) \leq v \leq v(n+1)-1$ and for all n

$$
\left\|x^{<v>}\right\|_{\infty}^{r_{v}} \leq\left(\left\|a^{<v>}\right\|_{1}^{s_{v}-1}\right)^{r_{v}}(n+1)^{-s_{v} r_{v}} M_{n}^{-r_{v}}=\left\|a^{<v>}\right\|_{1}^{s_{v}}(n+1)^{-s_{v}-r_{v}} M_{n}^{-r_{v}}
$$

Furthermore, since $M_{n}>1, r_{v}>1$ and $1-s_{v}=-s_{v} / r_{v}$, it follows that for all n

$$
\begin{aligned}
\sum_{v=v(n)}^{v(n+1)-1}\left\|x^{<v>}\right\|_{\infty}^{r_{v}} & \leq \frac{1}{(n+1) M_{n}} \sum_{v=v(n)}^{v(n+1)-1}\left\|a^{<v>}\right\|_{1}^{-s_{v}}(n+1)^{-s_{v}} \\
& =\frac{1}{(n+1)^{2} M_{n}} \sum_{v=v(n)}^{v(n+1)-1}\left\|a^{<v>}\right\|_{1}^{s_{v}}(n+1)^{-s_{v} / r_{v}}=\frac{1}{(n+1)^{2}}
\end{aligned}
$$

that is,

$$
\sum_{v=0}^{\infty}\left\|x^{\langle v\rangle}\right\|_{\infty}^{r_{v}}=\sum_{n=0}^{\infty} \sum_{v=v(n)}^{v(n+1)-1}\left\|x^{\langle v\rangle}\right\|_{\infty}^{r_{v}} \leq \sum_{n=0}^{\infty} \frac{1}{(n+1)^{2}}<\infty
$$

and so $x \in\left[\ell(r), \ell_{\infty}\right]^{<k(v)>}$. Thus we have shown (13) when $p=\infty$.
Consequently, we have established (13) for $1 \leq p \leq \infty$, and finally, (13) and (12) yield (11).
This concludes the proof of Case 1.
Case 2. $r_{v} \leq 1$ for all $v=0,1,2 \ldots$. First we show (12).
Let $a \in M((r), p)=\left[\ell_{\infty}(r), \ell_{q}\right]^{<k(v)>}$ be given. Then there exists $N \in \mathbb{N}$ such that $\sup _{v}\left\|a^{<v>}\right\|_{q}^{r_{v}} \leq N$. Let

$$
\bar{B}_{1 / N}=\left\{x \in \omega: \sum_{v=1}^{\infty}\left\|x^{<v>}\right\|_{p}^{r_{v}} \leq \frac{1}{N}\right\}
$$

be the closed ball in $\left[\ell(r), \ell_{p}\right]^{<k(v)>}$ with radius $1 / N$ and centre in the origin. Then, by (9), we have $\left(\sum_{v}\left|a_{k} x_{k}\right|\right)^{r_{v}} \leq$ $\left\|a^{<v>}\right\|_{q}^{r_{v}} \cdot\left\|x^{<v>}\right\|_{p}^{r_{v}} \leq 1$ for all $x \in \bar{B}_{1 / N}$ and for all v. But we have $\sum_{v}\left|a_{k} x_{k}\right| \leq\left(\sum_{v}\left|a_{k} x_{k}\right|\right)^{r_{v}}$, since $r_{v} \leq 1$ for all v, and so

$$
\begin{align*}
\sum_{k=1}^{\infty}\left|a_{k} x_{k}\right| & =\sum_{v=0}^{\infty} \sum_{v}\left|a_{k} x_{k}\right| \leq \sum_{v=0}^{\infty}\left(\sum_{v}\left|a_{k} x_{k}\right|\right)^{r_{v}} \leq \sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{q}^{r_{v}} \cdot\left\|x^{<v>}\right\|_{p}^{r_{v}} \\
& \leq \sup _{v}\left\|a^{<v>}\right\|_{q}^{r_{v}} \cdot \sum_{v=0}^{\infty}\left\|x^{<v>}\right\|_{p}^{r_{v}} \leq 1 \tag{14}
\end{align*}
$$

This shows $\sum_{k=1}^{\infty}\left|a_{k} x_{k}\right|<\infty$ for all $x \in \bar{B}_{1 / N}$.
Now let $x \in\left[\ell(r), \ell_{p}\right]^{<k(v)>}$ be arbitrary. Since $\left[\ell(r), \ell_{p}\right]^{<k(v)>}$ is a paranormed space by Corollary $2.6, \bar{B}_{1 / N}$ is absorbing ([13, Fact (ix), p. 53]), and so there exists a positive constant C such that $y=C^{-1} x \in \bar{B}_{1 / N}$. Now (14) yields $\sum_{k=1}^{\infty}\left|a_{k} x_{k}\right|=C \sum_{k=1}^{\infty}\left|a_{k} y_{k}\right| \leq C$. Thus $\sum_{k=1}^{\infty}\left|a_{k} x_{k}\right|<\infty$ for all $x \in\left[\ell(r), \ell_{p}\right]^{<k(v)>}$, and we have shown (12).

Now we show (13). We assume $a \notin M((r), p)=\left[\ell_{\infty}(r), \ell_{q}\right]^{<k(v)>}$. Then there exists a sequence $(v(n))_{n=0}^{\infty}$ of integers $v(0)<v(1)<v(2)<\ldots$ such that $\left\|a^{<v(n)>}\right\|_{q}^{r_{v}(n)}>(n+1)^{2}$ for $n=0,1, \ldots$
If $1<p<\infty$, then we define the sequence x by

$$
x_{k}=\left\{\begin{array}{ll}
\operatorname{sgn}\left(a_{k}\right)\left|a_{k}\right|^{q-1}\left\|a^{<v(n)>}\right\|_{q}^{-q} & \left(k \in K^{<v(n)>}\right) \\
0 & \left(k \notin K^{<v(n)>}\right)
\end{array} \quad(n=0,1, \ldots) .\right.
$$

Then we have

$$
\begin{aligned}
\sum_{v=0}^{\infty}\left\|x^{<v>}\right\|_{p}^{r_{v}} & =\sum_{n=0}^{\infty}\left(\sum_{v(n)}\left|x_{k}\right|^{p}\right)^{r_{v(n)} / p}=\sum_{n=0}^{\infty}\left\|a^{<v(n)>}\right\|_{q}^{r_{v(n)} q(1 / p-1)} \\
& =\sum_{n=0}^{\infty} \frac{1}{\left\|a^{<v(n)>}\right\|_{q}^{r_{v(n)}}}<\sum_{n=0}^{\infty} \frac{1}{(n+1)^{2}}<\infty
\end{aligned}
$$

that is, $x \in\left[\ell(r), \ell_{p}\right]^{<k(v)>}$, but

$$
\sum_{k=1}^{\infty} a_{k} x_{k}=\sum_{n=0}^{\infty}\left(\sum_{v(n)}\left|a_{k}\right|^{q}\right)\left\|a^{<v>}\right\|_{q}^{-q}=\sum_{n=0}^{\infty} 1=\infty
$$

Thus we have shown (13) when $1<p<\infty$.
If $p=1$, then we define the sequence x by

$$
x_{k}= \begin{cases}\operatorname{sgn}\left(a_{k_{(n)}}\right)\| \|^{<v(n)>} \|_{\infty}^{-1} & \left(k=k_{v(n)}\right) \\ \text { where } k_{v(n)} \text { is the smallest integer in } K^{<v(n)>} & \\ \text { with }\left|a_{k_{v(n)}}\right|=\left\|a^{<v(n)>}\right\|_{\infty} & \left(k \neq k_{v(n)} \text { or } k \notin K^{<v(n)>}\right) \\ 0 & \end{cases}
$$

$$
(n=0,1, \ldots)
$$

Then we have

$$
\sum_{v=0}^{\infty}\left\|x^{<v>}\right\|_{1}^{r_{v}} \leq \sum_{n=0}^{\infty}\left\|a^{<v(n)>}\right\|_{\infty}^{-r_{v(n)}}<\sum_{n=0}^{\infty} \frac{1}{(n+1)^{2}}<\infty
$$

that is, $x \in\left[\ell(r), \ell_{p}\right]^{<k(v)>}$, but

$$
\sum_{k=1}^{\infty} a_{k} x_{k}=\sum_{n=0}^{\infty}\left|a_{k_{v(n)}}\right| \cdot\left\|a^{<v(n)>}\right\|_{\infty}^{-1}=\sum_{n=0}^{\infty} 1=\infty
$$

Thus we have shown (13) when $p=1$.
Finally, let $p=\infty$. We define the sequence x by

$$
x_{k}=\left\{\begin{array}{ll}
\operatorname{sgn}\left(a_{k}\right)\left\|a^{<v(n)>}\right\|_{1}^{-1} & \left(k \in K^{<v(n)>}\right) \\
0 & \left(k \notin K^{<v(n)>}\right)
\end{array} \quad(n=0,1, \ldots) .\right.
$$

Then we obtain

$$
\sum_{v=0}^{\infty}\left\|x^{<v>}\right\|_{\infty}^{r_{v}} \leq \sum_{n=0}^{\infty}\left\|a^{<v(n)>}\right\|_{1}^{-r_{v}(n)}<\sum_{n=0}^{\infty} \frac{1}{(n+1)^{2}}<\infty
$$

that is, $x \in\left[\ell(r), \ell_{\infty}\right]^{<k(v)>}$. But we have

$$
\sum_{k=1}^{\infty} a_{k} x_{k}=\sum_{n=0}^{\infty} \sum_{v(n)}\left|a_{k}\right| \cdot\left\|a^{<v(n)>}\right\|_{1}^{-1}=\sum_{n=0}^{\infty} 1=\infty
$$

Thus we have shown (13) when $p=\infty$.
Consequently, we have established (13) for $1 \leq p \leq \infty$, and finally, (13) and (12) yield (11).
This concludes the proof of Case 2 .
Now we obtain the β-duals of the sets considered in examples 2.8 and 2.9 as an immediate consequence of Theorems 3.1 and 3.2.

Example 3.3. (a) Let $r_{v}=r>0$ for all v and $1 \leq p \leq \infty$. Then we obviously have by Theorem 3.1

$$
\left(\left[c_{0}, \ell_{p}\right]^{<k(v)>}\right)^{\beta}=\ell(1, q)=\left[c_{0}^{\beta}, \ell_{p}^{\beta}\right]^{<k(v)>}
$$

and by Theorem 3.2, for $1<r<\infty$ and $s=r /(r-1)$,

$$
(\ell(r, p))^{\beta}=\left\{a \in \omega: \sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{q}^{s}<\infty\right\}=\ell(s, q)
$$

and for $r \leq 1,(\ell(r, p))^{\beta}=\ell(\infty, q)$, that is,

$$
(\ell(r, p))^{\beta}=\left[\ell_{r}^{\beta}, \ell_{p}^{\beta}\right]^{<k(v)>} \text { in both cases. }
$$

(b) If $k=2^{v}, r_{v}=1$ for all $v, 1 \leq p<\infty, q=\infty$ for $p=1, q=p /(p-1)$ for $1<p<\infty$ and u is the sequence with $u_{k}=2^{-v / p}\left(k \in K^{<k(v)>} ; v=0,1, \ldots\right)$, then we obtain by Part (a)

$$
\begin{aligned}
\left(w_{0}^{p}\right)^{\beta} & =\left(u^{-1} *\left[c_{0}, \ell_{p}\right]^{<k(v)>}\right)^{\beta}=(1 / u)^{-1} * \ell(1, q) \\
& = \begin{cases}\left\{a \in \omega: \sum_{v=0}^{\infty} 2^{v} \max _{2^{v} \leq k \leq 2^{v+1}-1}\left|a_{k}\right|<\infty\right\} & (p=1) \\
\left\{a \in \omega: \sum_{v=0}^{\infty} 2^{v / p}\left(\sum_{k=2^{v}}^{2^{v+1}-1}\left|a_{k}\right|^{q}\right)^{1 / q}<\infty\right\} & (1<p<\infty)\end{cases}
\end{aligned}
$$

Example 3.4. Let $r=\left(r_{v}\right)_{v=0}^{\infty}$ be any sequence of positive reals, $1 \leq p \leq \infty$ and $k(v)=v+1$ for all v. Then we obtain from Theorems 3.1 and 3.2

$$
\left(c_{0}(r)\right)^{\beta}=M_{0}(r)=\bigcup_{N>1}\left\{a \in \omega: \sum_{k=1}^{\infty}\left|a_{k}\right| N^{-1 / r_{k}}<\infty\right\}([9, \text { Theorem 6] })
$$

and

$$
(\ell(r))^{\beta}=M(r)= \begin{cases}\bigcup_{N>1}\left\{a \in \omega: \sum_{k=1}^{\infty}\left|a_{k}\right|^{s_{k}} N^{-s_{k} / r_{k}}<\infty\right\} & \left(r_{k}>1\right)([9, \text { Theorem 1] }) \\ \ell_{\infty}(r) & \left(r_{k} \leq 1\right)([12, \text { Theorem 10] })\end{cases}
$$

Remark 3.5. We obtain from Examples 3.3 and 3.4

$$
\left(\left[c_{0}(r), \ell_{p}\right]^{<k(v)>}\right)^{\beta}=\left[\left(c_{0}(r)\right)^{\beta}, \ell_{p}^{\beta}\right]^{<k(v)>} \text { and }\left(\left[\ell(r), \ell_{p}\right]^{<k(v)>}\right)^{\beta}=\left[(\ell(r))^{\beta}, \ell_{p}^{\beta}\right]^{<k(v)>}
$$

Now we determine the second β-duals of the sets $\left[c_{0}(r), \ell_{p}\right]^{<k(v)>}$ and $\left[\ell(r), \ell_{p}\right]^{<k(v)>}$. We put

$$
\begin{aligned}
& M_{\infty}((r), p)=\bigcap_{N>1}\left\{a \in \omega: \sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{q} N^{1 / r_{v}}<\infty\right\}, \\
& M_{0}^{(2)}((r), p)=\bigcap_{N>1}\left\{a \in \omega: \sup _{v}\left\|a^{<v>}\right\|_{p} N^{1 / r_{v}}<\infty\right\}
\end{aligned}
$$

and

$$
M^{(2)}((r), p)= \begin{cases}M((s), q) & \text { if } r_{v}>1 \text { for all } v \\ M_{\infty}((r), q) & \text { if } r_{v} \leq 1 \text { for all } v\end{cases}
$$

We need the following result for the determination of the second β-dual of $\left[\ell(r), \ell_{p}\right]^{<k(v)>}$ in the case of $r_{v} \leq 1$ for all v.

Lemma 3.6. Let $r=\left(r_{v}\right)_{v=0}^{\infty}$ be a sequence of positive reals and $1 \leq p \leq \infty$. Then we have

$$
\begin{equation*}
\left(\left[\ell_{\infty}(r), \ell_{p}\right]^{<k(v)>}\right)^{\beta}=M_{\infty}((r), p) \tag{15}
\end{equation*}
$$

Proof. First we show

$$
\begin{equation*}
M_{\infty}((r), p) \subset\left(\left[\ell_{\infty}(r), \ell_{p}\right]^{<k(v)>}\right)^{\beta} \tag{16}
\end{equation*}
$$

Let $a \in M_{\infty}((r), p)$ and $x \in\left[\ell_{\infty}(r), \ell_{p}\right]^{<k(v)>}$ be given. Then there exists $N_{0} \in \mathbb{N} \backslash\{1\}$ such that

$$
\max \left\{1, \sup _{v}\left\|x^{<v>}\right\|_{p}^{r_{v}}\right\}<N_{0} \text {, hence } \sup _{v}\left\|x^{<v>}\right\|_{p}<N_{0}^{1 / r_{v}}
$$

and we obtain as in (9)

$$
\sum_{k=1}^{\infty}\left|a_{k} x_{k}\right| \leq \sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{q}\left\|x^{<v>}\right\|_{p} \leq \sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{q} \cdot N_{0}^{1 / r_{v}}<\infty .
$$

Thus we have shown (16).
Now we show

$$
\begin{equation*}
\left(\left[\ell_{\infty}(r), \ell_{p}\right]^{<k(v)>}\right)^{\beta} \subset M_{\infty}((r), p) \tag{17}
\end{equation*}
$$

We assume $a \notin M_{\infty}((r), p)$. Then there exists $N_{0} \in \mathbb{N} \backslash\{1\}$ such that $\sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{q} N_{0}^{1 / r_{v}}=\infty$.
If $1<p<\infty$, then we define the sequence x by

$$
x_{k}=\left.\operatorname{sgn}\left(a_{k}\right)\left|a_{k}\right|\right|^{q-1}\left\|a^{<v>}\right\|_{q}^{-q / p} N_{0}^{1 / r_{v}}\left(k \in K^{<k(v)>} ; v=0,1, \ldots\right) .
$$

Then we have for all v

$$
\left\|x^{<v>}\right\|_{p}^{r_{v}}=\left(\left(\sum_{v}\left|a_{k}\right|^{q}\right)^{1 / p}\left\|a^{<v>}\right\|_{q}^{-q / p} N_{0}^{1 / r_{v}}\right)^{1 / r_{v}}=\left(\left\|a^{<v>}\right\|_{q}^{q / p-q / p}\right)^{r_{v}} N_{0}=N_{0}
$$

that is, $x \in\left[\ell_{\infty}(r), \ell_{p}\right]^{<k(v)>}$, but for all v

$$
\sum_{v} a_{k} x_{k}=\left(\sum_{v}\left|a_{k}\right|^{q}\right)\left\|a^{<v>}\right\|_{q}^{-q / p} N_{0}^{1 / r_{v}}=\left\|a^{\langle v>}\right\|_{q}^{q(1-1 / p)} N_{0}^{1 / r_{v}}=\left\|a^{<v>}\right\|_{q} N_{0}^{1 / r_{v}}
$$

hence $\sum_{k=1}^{\infty} a_{k} x_{k}=\infty$.
Thus we have shown (17) for $1<p<\infty$.
If $p=1$, then we define the sequence x by

$$
x_{k}= \begin{cases}\operatorname{sgn}\left(a_{k_{v}}\right) N_{0}^{1 / r_{v}} & \left(k=k_{v}\right) \\ \text { where } k_{v} \text { is the smallest integer in } K^{<k(v)>} & \\ \text { with }\left|a_{k_{v}}\right|=\left\|a^{<v>}\right\|_{\infty} & \left(k \neq k_{v}\right) \\ 0 & (v=0,1, \ldots) .\end{cases}
$$

Then we have $\left\|x^{<v>}\right\|_{1}^{r_{v}} \leq N_{0}$ for all v, that is, $x \in\left[\ell_{\infty}(r), \ell_{1}\right]^{<k(v)>}$, but $\sum_{v} a_{k} x_{k}=\left|a_{k_{v}}\right| N_{0}^{1 / r_{v}}=\left\|a^{<v>}\right\|_{\infty} N_{0}^{1 / r_{v}}$ for all v, hence $\sum_{k=1}^{\infty} a_{k} x_{k}=\infty$.
Thus we have shown (17) for $p=1$.
Finally, if $p=\infty$, then we define the sequence x by $x_{k}=\operatorname{sgn}\left(a_{k}\right) N_{0}^{1 / r_{v}}\left(k \in K^{<k(v)>} ; v=0,1, \ldots\right)$. Then we have $\left\|x^{<v>}\right\|_{\infty}^{r_{v}} \leq N_{0}$ for all v, that is, $x \in\left[\ell_{\infty}(r), \ell_{\infty}\right]^{<k(v) \gg}$, but for all $v \sum_{v} a_{k} x_{k}=\sum_{v}\left|a_{k}\right| N_{0}^{1 / r_{v}}=\left\|a^{<v>}\right\|_{1} N_{0}^{1 / r_{v}}$, hence $\sum_{k=1}^{\infty} a_{k} x_{k}=\infty$.
Thus we have shown (17) for $p=1$.
Consequently, we have established (17) for $1 \leq p \leq \infty$, and finally, (17) and (16) yield (15).

Theorem 3.7. We have

$$
\begin{align*}
& \left(\left[c_{0}(r), \ell_{p}\right]^{<k(v)>}\right)^{\beta \beta}=M_{0}^{(2)}((r), p) \tag{a}\\
& \left(\left[\ell(r), \ell_{p}\right]^{<k(v)>}\right)^{\beta \beta}=M^{(2)}((r), p) \tag{b}
\end{align*}
$$

Proof. We write for each $N \in \mathbb{N} \backslash\{1\}$

$$
S_{N}(0)=S_{N}(0,(r), p)=\left\{a \in \omega:\left(\left\|a^{<v>}\right\|_{q} N^{-1 / r_{v}}\right)_{v=0}^{\infty} \in \ell_{1}\right\}
$$

and

$$
S_{N}=S_{N}((r), p)=\left\{a \in \omega:\left(\left\|a^{<v>}\right\|_{q} N^{-1 / r_{v}}\right)_{v=0}^{\infty} \in \ell(s)\right\}\left(r_{v}>1 \text { for all } v\right) .
$$

It follows by a well-known result ([7, Lemma 1 (iv)]) that

$$
\begin{equation*}
\left(\bigcup_{N>1} S_{N}(0)\right)^{\beta}=\bigcap_{N>1}\left(S_{N}(0)\right)^{\beta} \text { and }\left(\bigcup_{N>1} S_{N}\right)^{\beta}=\bigcap_{N>1} S_{N}^{\beta} . \tag{18}
\end{equation*}
$$

We define the sequence $v(N)=\left(v_{k}(N)\right)_{k=1}^{\infty}$ by $v_{k}(N)=N^{-1 / r_{v}}$ for $k \in K^{<k(v)>}$ and $v=0,1, \ldots$. Then we have $S_{N}(0)=(v(N))^{-1} *\left[\ell_{1}, \ell_{q}\right]^{<k(v)>}$ and $S_{N}=(v(N))^{-1} *\left[\ell(s), \ell_{q}\right]^{<k(v)>}$. We conclude

$$
\begin{equation*}
\left(S_{N}(0)\right)^{\beta}=(1 / v(N))^{-1} *\left(\left[\ell_{1}, \ell_{q}\right]^{<k(v)>}\right)^{\beta} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{N}^{\beta}=(1 / v(N))^{-1} *\left(\left[\ell(s), \ell_{q}\right]^{<k(v)>}\right)^{\beta} . \tag{20}
\end{equation*}
$$

(a) It follows from Theorem 3.1, (18), (19) and Example 3.3 (a)

$$
\begin{aligned}
\left(\left[c_{0}(r), \ell_{p}\right]^{<k(v)>}\right)^{\beta \beta} & =\left(M_{0}((r), p)\right)^{\beta}=\left(\bigcup_{N>1} S_{N}(0)\right)^{\beta}=\bigcap_{N>1}\left(S_{N}(0)\right)^{\beta} \\
& =\bigcap_{N>1}(1 / v(N))^{-1} *\left(\left[\ell_{1}, \ell_{q}\right]^{<k(v)>}\right)^{\beta} \\
& =\bigcap_{N>1}(1 / v(N))^{-1} *\left[\ell_{\infty}, \ell_{p}\right]^{<k(v)>}=M_{0}^{(2)}((r), p) .
\end{aligned}
$$

(b) If $r_{v}>1$ for all v, then it follows, similarly as in the proof of Part (a), from Theorem 3.2, (18), (20) and Theorem 3.2 with r_{v} and p interchanged with s_{v} and q that

$$
\begin{aligned}
\left(\left[\ell(r), \ell_{p}\right]^{<k(v)>}\right)^{\beta \beta} & =(M((r), p))^{\beta}=\left(\bigcup_{N>1} S_{N}\right)^{\beta}=\bigcap_{N>1} S_{N}^{\beta} \\
& =\bigcap_{N>1}(1 / v(N))^{-1} *\left(\left[\ell(s), \ell_{q}\right]^{<k(v)>}\right)^{\beta} \\
& =\bigcap_{N>1}(1 / v(N))^{-1} *\left(\bigcup_{M>1} S_{M}((s), q)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\bigcap_{N>1} \bigcup_{M>1}\left\{a \in \omega:\left\|a^{<v>} N^{1 / r_{v}}\right\|_{p}^{r_{v}} M^{-r_{v} / s_{v}}<\infty\right\} \\
& =\bigcup_{M>1}\left\{a \in \omega:\left\|a^{<v>}\right\|_{p}^{r_{v}} M^{-r_{v} / s_{v}}<\infty\right\}=M((s), q) \\
& =M^{(2)}((r), p) .
\end{aligned}
$$

Finally, if $r_{v} \leq 1$ for all v, then it follows from Theorem 3.2 and (15) with q instead of p that

$$
\left(\left[\ell(r), \ell_{p}\right]^{<k(v)>}\right)^{\beta \beta}=(M((r), p))^{\beta}=\left(\left[\ell_{\infty}(r), \ell_{q}\right]^{<k(v)>}\right)^{\beta}=M_{\infty}((r), q)=M^{(2)}((r), p) .
$$

Corollary 3.8. Let $r=\left(r_{v}\right)_{v=0}^{\infty}$ be a sequence of positive reals with $r_{v}>1$ for all v, and $1 \leq p \leq \infty$. Then $\left[\ell(r), \ell_{p}\right]^{<k(v)>}$ is β-perfect if and only if $r \in \ell_{\infty}$.

Proof. First, we assume $1<r_{v} \leq M(r)=\sup _{v} r_{v}<\infty$ for all v. Then we have

$$
\begin{equation*}
s_{v}=\frac{1}{1-1 / r_{v}} \geq \frac{1}{1-1 / M(r)}=\frac{M(r)}{M(r)-1} \text { for } v=0,1, \ldots \tag{21}
\end{equation*}
$$

Theorem 3.2 implies

$$
\left[\ell(s), \ell_{q}\right]^{<k(v)>} \subset M((r), p)=\left(\left[\ell(r), \ell_{p}\right]^{<k(v)>}\right)^{\beta}
$$

and so by [14, Theorem 7.2.2 (iii)] and Theorem 3.2 with r and p replaced by s and q

$$
\begin{equation*}
\left(\left[\ell(r), \ell_{p}\right]^{<k(v)>}\right)^{\beta \beta} \subset\left(\left[\ell(s), \ell_{q}\right]^{<k(v)>}\right)^{\beta}=M((s), q) \tag{22}
\end{equation*}
$$

It also follows from (21) that $m(s)=\inf _{v} s_{v}>0$, hence $N^{-r_{v} / s_{v}} \geq N^{-M(r) / m(s)}$ for all v and each $N>1$. So we obtain

$$
\sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{p}^{r_{v}} \leq N^{M(r) / m(s)} \sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{p}^{r_{v}} N^{-r_{v} / s_{v}}
$$

whence

$$
\begin{equation*}
M((s), q) \subset\left[\ell(r), \ell_{p}\right]^{<k(v)>} \tag{23}
\end{equation*}
$$

Now it follows from [14, Theorem 7.2.2 (i)], (22) and (23) that

$$
\left[\ell(r), \ell_{p}\right]^{<k(v)>} \subset\left(\left[\ell(r), \ell_{p}\right]^{<k(v)>}\right)^{\beta \beta} \subset M((s), q) \subset\left[\ell(r), \ell_{p}\right]^{<k(v)>}
$$

that is,

$$
\left(\left[\ell(r), \ell_{p}\right]^{<k(v)>}\right)^{\beta \beta}=\left[\ell(r), \ell_{p}\right]^{<k(v)>}
$$

Conversely, if $\left[\ell(r), \ell_{p}\right]^{<k(v)>}$ is perfect, then it is a linear space, being the β-dual of a set, and so we have $r \in \ell_{\infty}$ by Remark 2.7.

Finally we obtain the β-duals of the sets considered in Examples 2.8 and 2.9 as an immediate consequence of Theorem 3.7 (a) and (b).

Example 3.9. (a) Let $r_{v}=r>0$ for all v and $1 \leq p \leq \infty$. Then we obviously have by Theorem 3.7 (a)

$$
\left(\left[c_{0}, \ell_{p}\right]^{<k(v)>}\right)^{\beta \beta}=\ell(\infty, p)=\left[c_{0}^{\beta \beta}, \ell_{p}^{\beta \beta}\right]^{<k(v)>} .
$$

Also Theorem 3.7 (b) yields for $1<r<\infty$ and $s=r /(r-1)$

$$
(\ell(r, p))^{\beta \beta}=\left\{a \in \omega: \sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{p}^{r}<\infty\right\}=\ell(r, p),
$$

and for $r \leq 1$,

$$
(\ell(r, p))^{\beta \beta}=\left\{a \in \omega: \sum_{v=0}^{\infty}\left\|a^{<v>}\right\|_{p}<\infty\right\}=\ell(1, p),
$$

Thus we conclude

$$
(\ell(r, p))^{\beta \beta}=\left[\ell_{r}^{\beta \beta}, \ell_{p}^{\beta \beta}\right]^{<k(v)>} \text { in both cases. }
$$

Consequently $\ell(r, p)$ is β perfect, if and only if $r \geq 1$.
(b) If $k=2^{v}, r_{v}=1$ for all $v, 1 \leq p<\infty, q=\infty$ for $p=1, q=p /(p-1)$ for $1<p<\infty$ and u is the sequence with $u_{k}=2^{-v / p}\left(k \in K^{<k(v)>} ; v=0,1, \ldots\right)$, then we obtain by Part (a)

$$
\begin{aligned}
\left(w_{0}^{p}\right)^{\beta \beta} & =\left(u^{-1} *\left[c_{0}, \ell_{p}\right]^{<k(v)>}\right)^{\beta \beta}=u^{-1} *\left(\left[c_{0}, \ell_{p}\right]^{<k(v)>}\right)^{\beta \beta} \\
& =u^{-1} * \ell(\infty, p)=\left\{a \in \omega: \sup _{v} \frac{1}{2^{v}} \sum_{k=2^{v}}^{2^{v+1}-1}\left|a_{k}\right|^{p}<\infty\right\}([11, \text { Theorem 5.8] }) .
\end{aligned}
$$

Example 3.10. Let $r=\left(r_{v}\right)_{v=0}^{\infty}$ be any sequence of positive reals, $1 \leq p \leq \infty$ and $k(v)=v+1$ for all v. Then we obtain from Theorem 3.7 (a) and (b)

$$
\left(c_{0}(r)\right)^{\beta \beta}=M_{0}^{(2)}(r)=\bigcap_{N>1}\left\{a \in \omega: \sup _{k}\left|a_{k}\right| N^{1 / r_{k}}<\infty\right\}([7, \text { Theorem 2]) }
$$

and

$$
(\ell(r))^{\beta \beta}=M^{(2)}(r)= \begin{cases}\bigcup_{N>1}\left\{a \in \omega: \sum_{k=1}^{\infty}\left|a_{k}\right|^{r} N^{-r_{k} / s_{k}}<\infty\right\} & \text { if } r_{k}>1 \text { for all } k \\ \bigcap_{N>1}\left\{a \in \omega: \sum_{k=1}^{\infty}\left|a_{k}\right| N^{1 / r_{k}}<\infty\right\} & \text { if } r_{k} \leq 1 \text { for all } k ;\end{cases}
$$

also $\ell(r)$ for $r_{k}>1$ is β perfect if and only if $r \in \ell_{\infty}([7$, Theorem 4 (i)]).

References

[1] K.-G. Grosse-Erdmann, The structure of the sequence spaces of Maddox, Can. J. Math. 44 (2) (1992), 298-307.
[2] K.-G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal.Appl. 180, No. 2 (1993), 223-238.
[3] K.-G. Grosse-Erdmann, The Blocking Technique, Weighted Mean Operators and Hardy's Inequality, Lecture Notes in Mathematics 1679, Springer Verlag (1998)
[4] J. H. Hedlund, Multipliers of H^{p} spaces, J. Math. Mech. 18 (1968/69), 1067-1074
[5] A. A. Jagers, A note on Cesáro spaces, Nieuw Arch. Wisk. 22 (1974), 113-1074
[6] C. N. Kellog, An extension of the Hausdorff-Young theorem, Michigan Math. J. 18 (1971), 121-127
[7] C. G. Lascarides, A study of certain sequence spaces of Maddox and a generalization of a theorem of Iyer, Pacific J. Math 38 No. 2 (1971), 487-500
[8] I. J. Maddox, On Kuttner' theorem, London J. Math. Soc. 43 (1968), 285-290
[9] I.J. Maddox, Continuous and Köthe-Toeplitz duals of certain sequence spaces, Proc. Cambridge Phil. Soc. 65 (1969), 431-435.
[10] E. Malkowsky, V. Rakočević, An Introduction into the Theory of Sequence Spaces and Measures of Noncompactness, Zbornik radova 9(17) Matematički institut SANU, Belgrade (2000) 143-234
[11] E. Malkowsky, V. Veličković, Topologies of some new sequence spaces, their duals, and the graphical representation of neighborhoods, Topology and its Applications 158 (2011), 1369-1380
[12] S. Simons, The sequence spaces $\ell\left(p_{v}\right)$ and $m\left(p_{v}\right)$, Proc. London Math. Soc. 15 (3) (1965), 422-436
[13] A. Wilansky, Functional Analysis, Balisdell Publishing Co., New York, Toronto, London (1964)
[14] A. Wilansky, Summability Through Functional Analysis, North-Holland Mathematics Studies 85, Amsterdam (1984)

[^0]: 2010 Mathematics Subject Classification. Primary 46B45; Secondary 47B37
 Keywords. Infinite matrices, mixed panorm sequence spaces, dual spaces and visualization
 Received: 10 January 2016; Accepted: 18 March 2016
 Communicated by Bahattin Yıldız (Guest Editor)
 Research of the authors supported by the research project \#114F104 of Tubitak and of the first author also by the research project \#174025, respectively, of the Serbian Ministry of Science, Technology and Environmental Development.

 Email addresses: Eberhard.Malkowsky@math.uni-giessen.de (Eberhard Malkowsky), farukozger@gmail.com (Faruk Özger), vvesna@Bankerinter.net (Vesna Veličković)

