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Abstract. In this paper we extend the concepts of statistical inner and outer limits (as introduced by Talo,
Sever and Başar) to I−inner and I−outer limits and give some I−analogue of properties of statistical inner
and outer limits for sequences of closed sets in metric spaces, whereI is an ideal of subsets of the setNof pos-
itive integers. We extend the concept of Kuratowski statistical convergence to Kuratowski I−convergence
for a sequence of closed sets and get some properties for Kuratowski I−convergent sequences. Also, we
examine the relationship between Kuratowski I−convergence and Hausdorff I−convergence.

1. Introduction

The concept of convergence of a sequence of real numbers has been extended to statistical convergence
independently by Fast [9] and Schoenberg [23]. The idea of I−convergence was introduced by Kostyrko
et al. [11] as a generalization of statistical convergence which is based on the structure of the ideal I of
subsets of the set of positive integers. Nuray and Ruckle [18] independently introduced the same with
another name generalized statistical convergence. Kostyrko et al. [12] gave some of basic properties of
I−convergence and dealt with extremal I−limit points.

For the last few years, study of I−convergence of sequences has become one of the most active areas of
research in classical analysis. Balcerzak et al. [2] studied on statistical convergence and ideal convergence
for sequences of functions. Komisarski [10] discussed the pointwise I−convergence and I−convergence in
measure of sequences of functions. Mursaleen et al. [16] defined and studied the concept ofI−convergence
in probabilistic normed space. Nabiev et al. [17] gave Cauchy condition for I−convergence. Şahiner et al.
[26] introduced and investigated I−convergence in 2-normed spaces and examined some new sequence
spaces. Kumar and Kumar [13] studied the concepts of I−convergence and I∗−convergence for sequences
of fuzzy numbers.

In set valued and variational analysis, limits of sequences of sets have the leading role. See [1, 8, 20]. The
concepts of inner and outer limits for a sequence of sets are due to Painlevé, who introduced them in 1902 in
his lectures on analysis at the University of Paris; set convergence was defined as the equality of these two
limits. This convergence has been popularized by Kuratowski in his famous book Topologie [14] and thus,
often called Kuratowski convergence of sequences of sets. For some properties of inner and outer limits we
refer to [4, 5, 15, 20, 22, 24, 25, 28, 29]. Other convergence notions for sets are not equivalent to Kuratowski
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convergence but have significance for certain applications. One of them is Hausdorff convergence. We
mention some references related to Hausdorff convergence: [3, 4, 14, 22, 25]. Nuray and Rhoades [19] first
defined the statistical convergence for sequences of sets and studied Hausdorff and Wijsman statistical
convergence.

In this paper our aim is to discuss two kinds of I−convergence for sequences of closed sets which are
called Kuratowski I−convergence and Hausdorff I−convergence. For our purpose we give the definitions
of I−outer and I−inner limits for a sequence of closed sets and investigate some properties of them.

2. Definitions and Notation

Let K be a subset of positive integers N and K(n) = |{k ≤ n : k ∈ K}|, where |A| denotes the number of
elements in A. The natural density of K is given by δ(K) = limn→∞

1
n K(n) if this limit exists.

A sequence x = (xk) is said to be statistically convergent to the number L if the set {k ∈ N : |xk − L| ≥ ε}
has natural density zero for every ε > 0. In this case we write st− limk∈N xk = L.

Let X , ∅. A class I of subsets of X is said to be an ideal in X provided:

(i) ∅ ∈ I,
(ii) A,B ∈ I implies A ∪ B ∈ I,

(iii) A ∈ I, B ⊂ A implies B ∈ I.

I is called a nontrivial ideal if X < I. A nontrivial ideal I in X is called admissible if {x} ∈ I for each x ∈ X.
Let X , ∅. A non empty class F of subsets of X is said to be a filter in X provided:

(i) ∅ < F ,
(ii) A,B ∈ F implies A ∩ B ∈ F ,

(iii) A ∈ F , A ⊂ B implies B ∈ F .

Lemma 2.1. [11] If I is a nontrivial ideal in X, X , ∅, then the class

F (I) = {M ⊂ X : X\M ∈ I}

is a filter on X, called the filter associated with I.

Lemma 2.2. [21, Lemma 2.5] K ∈ F(I) and M ⊆N. If M < I then M ∩ K < I.

In what follows (X, d) is a fixed metric space and I denotes a non-trivial ideal of subsets ofN.
A sequence {xn}n∈N of elements of X is said to be I−convergent to ξ ∈ X if for each ε > 0 the set

A(ε) = {n ∈ N : d(xn, ξ) ≥ ε} belongs to I. The element ξ is called the I−limit of the sequence x = {xn}n∈N.
In this case we write I − limn→∞ xn = ξ.

A sequence {xn}n∈N of elements of X is said to be I∗−convergent to ξ ∈ X if there exists a set M ∈ F (I),
M = {m1 < m2 < · · · < mk < · · · } ⊂N such that limk→∞ d(xmk , ξ) = 0. In this case we write I∗ − limn→∞ xn = ξ.

We say that an admissible ideal I ⊂ 2N satisfies the property (AP), if for every countable family of
mutually disjoint sets {A1,A2, . . .} belonging to I, there exists a countable family of sets {B1,B2, . . .} of sets
such that each symmetric difference A j∆B j is a finite set for j ∈ N and B =

⋃
∞

j=1 B j ∈ I. (Hence B j ∈ I for
each j ∈N).

Lemma 2.3. [11, Proposition 3.2] Let I be an admissible ideal. If I∗ − limn→∞ xn = ξ, then I − limn→∞ xn = ξ.

Lemma 2.4. [11, Theorem 3.2] Let I ⊂ 2N be an admissible ideal. If the ideal I has property (AP) and (X, d) is
an arbitrary metric space, then for arbitrary sequence {xn}n∈N of elements of X we have I − limn→∞ xn = ξ implies
I
∗
− limn→∞ xn = ξ.
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An element ξ ∈ X is said to be an I−limit point of a sequence x = (xk) if there is a set M = {m1 < m2 < · · · <
mk < · · · } ⊂ N such that M < I and limk→∞ xmk = ξ. The set of all I−limit points of a sequence x will be
denoted by I(Λx).

An element ξ ∈ X is said to be an I−cluster point of a sequence x = (xk) if for each ε > 0, we have
{k ∈N : d(xk, ξ) < ε} < I. The set of all I−cluster points of x will be denoted by I(Γx).

Let Lx denote the set of all limit points ξ (accumulation points) of the sequence x; i.e., ξ ∈ Lx if there
exists an infinite set K = {k1 < k2 < k3 < · · · } such that xkn → ξ as n→∞.

Obviously, for an admissible ideal Iwe have I(Λx) ⊆ I(Γx) ⊆ Lx.

Lemma 2.5. [6, Lemma 3.1] K be a compact subset of X. Then we have K ∩ I(Γx) , ∅ for every x = (xn) with
{n ∈N : xn ∈ K} < I.

The concepts of I−limit superior and inferior were introduced by Demirci [7] as follows: Let I be an
admissible ideal and x = (xk) be a real number sequence.

I − lim sup
k→∞

xk :=
{

sup Bx, Bx , ∅,
−∞, Bx = ∅,

I − lim inf
k→∞

xk :=
{

inf Ax, Ax , ∅,
∞, Ax = ∅,

where Ax := {a ∈ R : {k ∈N : xk < a} < I} and Bx := {b ∈ R : {k ∈N : xk > b} < I}.

Lemma 2.6. [7, Theorem 1] If β = I − lim supk→∞ xk is finite, then for every ε > 0,

{k ∈N : xk > β − ε} < I and {k ∈N : xk > β + ε} ∈ I. (1)

Conversely, if (1) holds for every ε > 0 then β = I − lim supk→∞ xk.

The dual statement for I − lim inf is as follows:

Lemma 2.7. [7, Theorem 2] If α = I − lim infk→∞ xk is finite, then for every ε > 0,

{k ∈N : xk < α + ε} < I and {k ∈N : xk < α − ε} ∈ I. (2)

Conversely, if (2) holds for every ε > 0 then α = I − lim infk→∞ xk.

Let (X, d) be a metric space. The distance between a subset A of X and x ∈ X is given by d(x,A) =
inf{d(x, y) : y ∈ A}, where it is understood that the infimum of d(x, .) is∞ if A = ∅. For each closed subset A
of X, the function x→ d(.,A) is Lipschitz continuous, i.e. for each x, y ∈ X∣∣∣d(x,A) − d(y,A)

∣∣∣ ≤ d(x, y).

The open ball with center x and radius ε > 0 in X is denoted by B(x, ε) = {y ∈ X | d(x, y) < ε}. Also, for any
set A and ε > 0, we write B(A, ε) = {x ∈ X | d(x,A) < ε}.

Now we recall some basic properties of Kuratowski convergence. We use the following notation:

N := {N ⊆N :N\N finite}
:= {subsequences ofN containing all n beyond some n0}

N
# := {N ⊆N : N infinite} = {all subsequences ofN}.

We write limn→∞ when n → ∞ as usual in N, but limn∈N in the case of convergence of a subsequence
designated by an index set N inN#.
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Definition 2.8. For a sequence (An) of closed subsets of X; the outer limit is the set

lim sup
n→∞

An :=
{
x | ∀ε > 0, ∃N ∈ N#, ∀n ∈ N : An ∩ B(x, ε) , ∅

}
:=

{
x | ∃N ∈ N#, ∀n ∈ N, ∃xn ∈ An : lim

n∈N
xn = x

}
,

while the inner limit is the set

lim inf
n→∞

An :=
{
x | ∀ε > 0, ∃N ∈ N , ∀n ∈ N : An ∩ B(x, ε) , ∅

}
:=

{
x | ∃N ∈ N , ∀n ∈ N, ∃xn ∈ An : lim

n∈N
xn = x

}
.

The limit of a sequence (An) of closed subsets of X exists if the outer and inner limit sets are equal, that is,
limn→∞ An = lim infn→∞ An = lim supn→∞ An.

Talo et al. [27] introduced Kuratowski statistical convergence of sequences of closed sets. The statistical
outer limit and statistical inner limit of a sequence (An) of closed subsets of X are defined by

st − lim sup
n→∞

An :=
{
x | ∀ε > 0, ∃N ∈ S#, ∀n ∈ N : An ∩ B(x, ε) , ∅

}
,

st − lim inf
n→∞

An :=
{
x | ∀ε > 0, ∃N ∈ S, ∀n ∈ N : An ∩ B(x, ε) , ∅

}
,

where

S := {N ⊆N : δ(N) = 1} and S
# := {N ⊆N : δ(N) , 0}.

The statistical limit of a sequence (An) exists if its statistical outer and statistical inner limits coincide;
i.e., st − limn→∞ An = st − lim supn→∞ An = st − lim infn→∞ An.

3. Kuratowski I−Convergence

In this section, we introduce Kuratowski I−convergence of sequences of closed sets. We use the
analogous idea employed by Kuratowski [14] and Talo et al. [27] for convergence and statistical convergence
of sequences closed sets. Let us consider

NI := {N ⊆N :N\N ∈ I} = F (I) and N
#
I

:= {N ⊆N : N < I}.

Firstly, we define the I analogues for outer and inner limits of a sequence of closed sets.

Definition 3.1. The I−outer limit and I−inner limit of a sequence (An) of closed subsets of X are defined as follows:

I − lim sup
n→∞

An :=
{
x | ∀ε > 0, ∃N ∈ N#

I
, ∀n ∈ N : An ∩ B(x, ε) , ∅

}
,

and

I − lim inf
n→∞

An :=
{
x | ∀ε > 0, ∃N ∈ NI, ∀n ∈ N : An ∩ B(x, ε) , ∅

}
.

The I−limit of a sequence (An) exists if its I−outer and I−inner limits coincide. In this situation we say that the
sequence of sets is Kuratowski I−convergent and we write

I − lim inf
n→∞

An = I − lim sup
n→∞

An = I − lim
n→∞

An.
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Moreover, it’s clear from the inclusionNI ⊂ N#
I

that

I − lim inf
n→∞

An ⊆ I − lim sup
n→∞

An

so that in fact, I − limn→∞ An = A if and only if

I − lim sup
n→∞

An ⊆ A ⊆ I − lim inf
n→∞

An.

Remark 3.2. I − limn→∞ An = A if and only if the following conditions are satisfied:

(i) for every x ∈ A and for every ε > 0 we have {k ∈N : B(x, ε) ∩ Ak , ∅} ∈ F (I);

(ii) for every x ∈ X \ A there exists ε > 0 such that {k ∈N : B(x, ε) ∩ Ak = ∅} ∈ F (I).

We give some examples of ideals and corresponding I−convergence.

(I) Put I0 = {∅}. I0 is the minimal ideal inN. Then for a sequence (An) of closed sets we have

I0 − lim inf
n→∞

An =

∞⋂
n=1

An and I0 − lim sup
n→∞

An = cl
∞⋃

n=1

An,

where cl(A) denotes the closure of the set A in the metric space (X, d). A sequence (An) is Kuratowski
I0−convergent if and only if it is constant set.

(II) Let M ⊆ N, M , N. Put IM = 2M. Then IM is a nontrivial ideal in N. Then for a sequence (An) of
closed sets we have

IM − lim inf
n→∞

An =
⋂

n∈N\M

An and IM − lim sup
n→∞

An = cl
⋃

n∈N\M

An.

A sequence (An) is Kuratowski IM−convergent if and only if it is constant set onN \M, i.e. there is a
closed set A such that An = A for each n ∈N \M.

(III) Take for I the class I f of all finite subsets of N. Then I f is a non-trivial admissible ideal and
Kuratowski I f−convergence coincides with the usual Kuratowski convergence.

(IV) Denote by Iδ the class of all A ⊂ N with δ(A) = 0. Then Iδ is non-trivial admissible ideal and
Kuratowski Iδ−convergence coincides with the Kuratowski statistical convergence.

Note that if I is an admissible, then I f ⊆ I. It is clear that

lim inf
n→∞

An ⊆ I − lim inf
n→∞

An ⊆ I − lim sup
n→∞

An ⊆ lim sup
n→∞

An.

Hence every Kuratowski convergent sequence is Kuratowski I−convergent, i.e.,

lim
n→∞

An = A implies I − lim
n→∞

An = A.

But, the converse of this claim does not hold in general.

Example 3.3. Let X = R2 (with the usual Euclidean metric). We decompose the setN into countably many disjoint
sets

N j = {2 j−1(2s − 1) : s ∈N}, ( j = 1, 2, 3, ...).

It is obvious thatN =
⋃
∞

j=1 N j and Ni ∩N j = ∅ for i , j. Denote by I the class of all A ⊆N such that A intersects
only a finite number of N j. It is easy to see that I is an admissible ideal. Define (An) as follows: for n ∈ N j we put

An =

{
(x, y) ∈ R2 :

1
( j + 1)2 ≤ x2 + y2

≤
1
j2

}
( j = 1, 2, 3, ...).
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Let ε > 0. Choose p ∈N such that 1
p < ε. Then{

n ∈N : An ∩ B(0, ε) = ∅
}
⊆ N1 ∪N2 ∪ · · · ∪Np.

Thus
{
n ∈N : An ∩ B(0, ε) = ∅

}
∈ I i.e.,

{
n ∈N : An ∩ B(0, ε) , ∅

}
∈ F (I). So I − limn→∞ An = {0}. However

lim inf
n→∞

An = ∅ and lim sup
n→∞

An =
{
(x, y) ∈ R2 : x2 + y2

≤ 1
}
.

Therefore (An) is not Kuratowski convergent.

In what follows I denotes a non-trivial admissible ideal of subsets ofN.

Proposition 3.4. Let (An) be a sequence of closed subsets of X. Then

I − lim inf
n→∞

An =
⋂

N∈N#
I

cl
⋃
n∈N

An and I − lim sup
n→∞

An =
⋂

N∈NI

cl
⋃
n∈N

An.

Proof. We prove only the first equality because the proof of the second one is similar to the first one. Let
x ∈ I − lim infn→∞ An be arbitrary and N ∈ N#

I
be arbitrary. For every ε > 0 there exists N1 ∈ NI such that

for every n ∈ N1

An ∩ B(x, ε) , ∅.

From Lemma 2.2 we have N ∩N1 < I. So there exists n0 ∈ N ∩N1 such that An0 ∩ B(x, ε) , ∅. Therefore,⋃
n∈N

An

 ∩ B(x, ε) , ∅.

This means that x ∈ cl
⋃

n∈N An. This holds for any N ∈ N#
I

. Consequently,

x ∈
⋂

N∈N#
I

cl
⋃
n∈N

An.

For the reverse inclusion, suppose that x < I − lim infn→∞ An. Then, there exists ε > 0 such that

N =
{
n ∈N : An ∩ B(x, ε) = ∅

}
< I,

i.e., N ∈ N#
I

. Thus⋃
n∈N

An

 ∩ B(x, ε) = ∅.

This means that x < cl
⋃

n∈N An. This completes the proof.

As a consequence of Proposition 3.4, for any given sequence (An) the sets I − lim infn→∞ An and I −
lim supn→∞ An are closed.

Proposition 3.5. Let (An) be a sequence of closed subsets of X. Then

I − lim inf
n→∞

An =
{
x | I − lim

n→∞
d(x,An) = 0

}
,

I − lim sup
n→∞

An =
{
x | I − lim inf

n→∞
d(x,An) = 0

}
.
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Proof. For any closed set A we have

d(x,A) ≥ ε⇔ A ∩ B(x, ε) = ∅. (3)

Suppose that I − limn→∞ d(x,An) = 0. Then for every ε > 0{
n ∈N : d(x,An) ≥ ε

}
∈ I.

By (3), for every ε > 0 we obtain{
n ∈N : An ∩ B(x, ε) = ∅

}
∈ I.

This means that{
n ∈N : An ∩ B(x, ε) , ∅

}
∈ F (I).

That is, x ∈ I − lim infn→∞ An.
Now, we show the reverse inclusion. Let x ∈ I− lim infn→∞ An. Then for every ε > 0 there exists N ∈ NI

such that An ∩ B(x, ε) , ∅ for every n ∈ N. Since{
n ∈N : An ∩ B(x, ε) = ∅

}
⊆N \N

we have{
n ∈N : An ∩ B(x, ε) = ∅

}
∈ I.

By (3){
n ∈N : d(x,An) ≥ ε

}
∈ I.

That is, I − limn→∞ d(x,An) = 0.
Similarly, for any closed set A we have

d(x,A) < ε ⇔ A ∩ B(x, ε) , ∅. (4)

Suppose that I − lim infn→∞ d(x,An) = 0. Then for every ε > 0{
n ∈N : d(x,An) < ε

}
< I.

By (4), for every ε > 0 we obtain{
n ∈N : An ∩ B(x, ε) , ∅

}
< I.

This means that x ∈ I − lim supn→∞ An.
Now, we show the reverse inclusion. Let x ∈ I − lim supn→∞ An. Then for every ε > 0{

n ∈N : An ∩ B(x, ε) , ∅
}
< I.

By (4) and Lemma 2.7, we have I − lim infn→∞ d(x,An) = 0.

Proposition 3.6. Let (An) be a sequence of closed subsets of X. Then

I − lim inf
n→∞

An =
{
x | ∀n ∈N, ∃yn ∈ An : I − lim

n→∞
yn = x

}
. (5)
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Proof. Let x ∈ I − lim infn→∞ An be arbitrary. By Proposition 3.5,

I − lim
n→∞

d(x,An) = 0.

For every ε > 0{
n ∈N : d(x,An) ≥

ε
2

}
∈ I.

Since An is closed, for n ∈N, there exists yn ∈ An such that d(x, yn) ≤ 2d(x,An). Now, we define the sequence
{yn | yn ∈ An, n ∈N}. Then I − limn→∞ yn = x.

On the contrary, assume that x belongs to the right-hand side set of the equality (5). Then, there exist
{yn | yn ∈ An,n ∈N} such that I − limn→∞ yn = x. Then for every ε > 0{

n ∈N : d(x, yn) ≥ ε
}
∈ I.

The inequality d(x, yn) ≥ d(x,An) yields the inclusion

{n ∈N : d(x,An) ≥ ε
}
⊆ {n ∈N : d(x, yn) ≥ ε

}
.

So,

{n ∈N : d(x,An) ≥ ε
}
∈ I.

This means that I − limn→∞ d(x,An) = 0. By Proposition 3.5 we have x ∈ I − lim infn→∞ An.

The following result is well known in the theory of Kuratowski convergence. x ∈ lim infn→∞ An if and
only if there exist N ∈ N = NI f and xn ∈ An for all n ∈ N such that limn∈N xn = x. For Kuratowski
I−convergence, if I has property (AP), then this fact holds.

Corollary 3.7. Let I be an admissible ideal. If the ideal I has property (AP) then

I − lim inf
n→∞

An =
{
x | ∃N ∈ NI,∀n ∈ N, ∃yn ∈ An : lim

n∈N
yn = x

}
. (6)

Proof. Suppose that I satisfies condition (AP). Let x ∈ I − lim infn→∞ An. Then I − limn→∞ d(x,An) = 0. By
condition (AP) we have I∗ − limn→∞ d(x,An) = 0. Then there is a set M ∈ F (I) such that

lim
m∈M

d(x,Am) = 0.

Since An is closed, for m ∈ M, there exists ym ∈ Am such that d(x, ym) ≤ 2d(x,Am). Now, we define the
sequence {ym | ym ∈ Am, m ∈M}. Then limm∈M ym = x.

On the contrary, assume that x belongs to the right-hand side set of the equality (6). Let us define

zn =

{
yn, if n ∈ N,

arbitrary element of An, if n < N.

Then I∗ − limn→∞ zn = x. So I − limn→∞ zn = x. By Proposition 3.6, we have x ∈ I − lim infn→∞ An.

Remark 3.8. In Corollary 3.7 the property (AP) can not be dropped. Let X = R (with the usual Euclidean metric)
and I be the ideal introduced in Example 3.3. Define (An) as follows: for n ∈ N j we put An = { 1j } ( j = 1, 2, 3, ...).
Then the sequence {yn | yn ∈ An,n ∈N} can be defined as follows: for n ∈ N j we put yn = 1

j ( j = 1, 2, 3, ...). Clearly,
I − limn→∞ yn = 0. So I − lim infn→∞ An = {0}.

Suppose in contrary that 0 belongs to the right-hand side set of the equality (6). Then there is a set M ∈ F (I)
such that for m ∈M, there exists ym ∈ Am and

lim
m∈M

ym = 0. (7)
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By the definition of F (I) we have M =N \H, where H ∈ I. By the definition of I there is a p ∈N such that

H ⊆ N1 ∪N2 ∪ ... ∪Np.

But then M contains the set Np+1 and so ym = 1
p+1 for infinitely many m’s from M. This contradicts (7).

Corollary 3.9. Let X be a normed linear space and (An) be a sequence of subsets of X. If the ideal I has property
(AP) and there is a set K ∈ F (I) such that An is convex for each n ∈ K, then I − lim infn→∞ An is convex and so,
when it exists, is I − limn→∞ An.

Proof. Let I − lim infn→∞ An = A. If x1 and x2 belong to A, by Corollary 3.7, we can find for all n ∈ N in
some set N ∈ F (I) points y1

n and y2
n in An such that

lim
n∈N

y1
n = x1 and lim

n∈N
y2

n = x2.

Since K ∈ F (I), we have M ∈ F (I) with M = N ∩ K. Then for arbitrary λ ∈ [0, 1] and n ∈M, let us define

yλn := (1 − λ)y1
n + λy2

n and xλ := (1 − λ)x1 + λx2.

Then

lim
n∈M

yλn = xλ.

By Corollary 3.7, we obtain xλ ∈ A. This means that A is convex.

Proposition 3.10. Let (An) be a sequence of closed subsets of X. Then

I − lim sup
n→∞

An =
{
x | ∃N ∈ N#

I
, ∀n ∈ N, ∃yn ∈ An : x ∈ I(Γy)

}
. (8)

Proof. Let x ∈ I − lim supn→∞ An be arbitrary. By Proposition 3.5,

I − lim inf
n→∞

d(x,An) = 0.

By Lemma 2.7, for every ε > 0 we have{
n ∈N : d(x,An) <

ε
2

}
< I.

Since An is closed, for n ∈N, there exists yn ∈ An such that d(x, yn) ≤ 2d(x,An). Now, we define the sequence
{yn | yn ∈ An, n ∈N}. Then{

n ∈N : d(x, yn) < ε
}
< I.

Therefore x ∈ I(Γy).
On the contrary, assume that x belongs to the right-hand side set of the equality (8). Then there exist

N ∈ N#
I

a the sequence {yn | yn ∈ An,n ∈ N} such that x ∈ I(Γy). That is, for every ε > 0{
n ∈N : d(x, yn) < ε

}
< I.

The inequality d(x, yn) ≥ d(x,An) yields the inclusion

{n ∈N : d(x, yn) < ε
}
⊆ {n ∈N : d(x,An) < ε

}
.

So, the set

N
′

= {n ∈N : d(x,An) < ε
}
< I.

That is, N′

∈ N
#
I

. By (4), for every n ∈ N′

we obtain An ∩ B(x, ε) , ∅. This means that x ∈ I −
lim supn→∞ An.
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Remark 3.11. In Proposition 3.10 the set of I−cluster points can not be replaced by the set of I−limit points. Let
(An) and (yn) be the sequences introduced in Remark 3.8. Let us takeI = Iδ. It can be easily shown that δ(N j) = 1\2 j.
From Example 2.1 of [6] we have 0 ∈ Iδ(Γy) but 0 < Iδ(Λy). So, 0 ∈ Iδ − lim supn→∞ An. However

0 <
{
x | ∃N ∈ N#

I
, ∀n ∈ N, ∃yn ∈ An : lim

n∈N
yn = x

}
.

By Proposition 3.6 and Proposition 3.10, note that I − lim infn→∞ An is the set of I−limits of sequence
(yn)n∈N with yn ∈ An and I− lim supn→∞ An is the set of I−cluster points of sequence (yn)n∈N with yn ∈ An.

Lemma 3.12. Let (An) and (Bn) be two sequences of closed subsets of X. If there is a set K ∈ NI such that An ⊆ Bn
for each n ∈ K, then the inclusions

I − lim inf
n→∞

An ⊆ I − lim inf
n→∞

Bn and I − lim sup
n→∞

An ⊆ I − lim sup
n→∞

Bn

hold.

Proof. To prove the first inclusion suppose that there exists K ∈ NI such that for each n ∈ K the inclusion
An ⊆ Bn holds. In this case for each x ∈ I − lim infn→∞ An, we obtain

d(x,Bn) ≤ d(x,An). (9)

By Proposition 3.5, we have

I − lim
n→∞

d(x,An) = 0. (10)

Consequently, combining (9) and (10), we have I − limn→∞ d(x,Bn) = 0. Namely x ∈ I − lim infn→∞ Bn.
The proof of second inclusion is analogous to that of the first one and so we omit the details.

Corollary 3.13. Let (An) and (Bn) be two sequences of closed subsets of X. Then, the following statements hold:

1. I − lim supn→∞(An ∩ Bn) ⊆ I − lim supn→∞ An ∩ I − lim supn→∞ Bn.
2. I − lim infn→∞(An ∩ Bn) ⊆ I − lim infn→∞ An ∩ I − lim infn→∞ Bn.
3. I − lim supn→∞(An ∪ Bn) = I − lim supn→∞ An ∪ I − lim supn→∞ Bn.
4. I − lim infn→∞(An ∪ Bn) ⊇ I − lim infn→∞ An ∪ I − lim infn→∞ Bn.

Proof. For each n ∈N, the inclusions An ∩Bn ⊆ An, An ∩Bn ⊆ Bn, An ⊆ An ∪Bn and Bn ⊆ An ∪Bn hold. Now,
the proof is immediate by Lemma 3.12.

Definition 3.14. A sequence (Ak) is said to be I−monotonic increasing, if there exists a subset K = {k1 < k2 < k3 <
· · · } ∈ F(I) such that Akn ⊆ Akn+1 for every n ∈N. Similarly, sequence (Ak) is said to be I−monotonic decreasing, if
there exists a subset K = {k1 < k2 < k3 < · · · } ∈ F(I) such that Akn ⊇ Akn+1 for every n ∈N.

Theorem 3.15. Suppose that (Ak) is I−monotonic increasing sequence of closed subsets of X. Then I − limk→∞ Ak
exists and

I − lim
k→∞

Ak = cl
⋃
n∈N

Akn .

Proof. Let (Ak) is a I−monotonic increasing sequence of closed subsets of X and A = cl
⋃

n∈N Akn . Then,
Akn ⊆ A for every n ∈ N. If A = ∅, then Akn = ∅ for every n ∈ N. So, I − lim Ak = ∅. Let A , ∅ and
x ∈ cl

⋃
n∈N Akn . In this case, for every ε > 0

B(x, ε) ∩
⋃
n∈N

Akn , ∅.
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Then there exists n0 ∈N such that B(x, ε) ∩ Akn0
, ∅. Since (Akn ) is an increasing sequence, Akn0

⊆ Akn for all
n ≥ n0. Define the set M

M = {m | m = kn, n ≥ n0, n ∈N}.

Then M ∈ F(I) and B(x, ε) ∩ Am , ∅ for all m ∈M. Consequently, we obtain x ∈ I − lim infk→∞ Ak.
Now we show that I − lim supk→∞ Ak ⊆ A. Let x ∈ I − lim supk→∞ Ak be arbitrary. Then for every ε > 0

there exists N ∈ N#
I

such that for every k ∈ N we have Ak ∩ B(x, ε) , ∅. By Lemma 2.2, since K ∈ F(I) and
N < I, we have K ∩N < I. So, there exists kn0 ∈ K ∩N such that

B(x, ε) ∩ Akn0
, ∅.

Therefore we obtain

B(x, ε) ∩
⋃
n∈N

Akn , ∅.

This means that x ∈ cl
⋃

n∈N Akn . This step concludes the proof.

Theorem 3.16. Suppose that (Ak) is anI−monotonic decreasing sequence of closed subsets of X. ThenI−limk→∞ Ak
exists and

I − lim
k→∞

Ak =
⋂
n∈N

Akn .

Proof. Let A =
⋂

n∈N Akn . Clearly if x ∈ A, then x ∈ Akn for every n ∈ N. Define M = {m | m = kn,n ∈N}.
Then M ∈ F(I). Also for all ε > 0 and m ∈M we have B(x, ε)∩Am , ∅ . This means that x ∈ I− lim infk→∞ Ak.

Now we show that I− lim supk→∞ Ak ⊆ A. Let x ∈ I− lim supk→∞ Ak be arbitrary. Then, for every ε > 0
there exists N < I such that for every m ∈ N, Am ∩ B(x, ε) , ∅. Since I is an admissible, N is infinite. So
for every n ∈ N there exists m ∈ N such that kn ≤ m. Since the sequence (Ak) is decreasing, the inclusion
Akn ⊇ Am holds and consequently B(x, ε) ∩ Akn , ∅. This means that x ∈ clAkn . Since Akn is closed, x ∈ Akn .
Therefore x ∈

⋂
n∈N Akn . This step concludes the proof.

In the next section we introduce Hausdorff I−convergence of closed sets. Then, we compare Hausdorff
I−convergence and Kuratowski I−convergence of the sequence of closed sets.

4. Hausdorff I−Convergence

The Hausdorff distance h(E,F) between the subsets E and F of X is defined as follows:

h(E,F) = max {D(E,F),D(F,E)} ,

where

D(E,F) = sup
x∈E

d(x,F) = inf{ε > 0 : E ⊆ B(F, ε)}

unless both E and F are empty in which case h(E,F) = 0. Note that if only one of the two sets is empty then
h(E,F) = ∞.

It is known, for a long time (see [3, 14]), that

h(E,F) = sup
x∈X
|d(x,E) − d(x,F)|.

Definition 4.1. Let (An) be a sequence of closed subsets of X. We say that the sequence (An) is Hausdorff
I−convergent to a closed subset A of X if

I − lim
n→∞

h(An,A) = 0. (11)

In this case, we write A = HI − limn→∞ An.
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Lemma 4.2. Suppose that {A; An,n ∈N} is a family of closed subsets of X. Then A = HI − limn→∞ An if and only
if either there exists M ∈ F(I) such that A and An are empty for all n ∈M or for any ε > 0 the sets{

n ∈N : A * B(An, ε)
}

and
{
n ∈N : An * B(A, ε)

}
(12)

belong to I.

Proof. If A = ∅, then for every ε > 0{
n ∈N : h(An,A) ≥ ε

}
=

{
n ∈N : An , ∅

}
.

Thus
{
n ∈N : An , ∅

}
∈ I. Namely,

{
n ∈N : An = ∅

}
∈ F(I).

Conversely, there exists M ∈ F(I) such that An is empty for all n ∈M. Then, for every ε > 0{
n ∈N : h(An, ∅) ≥ ε

}
∈ I.

So A = ∅.
On the other hand if A , ∅, then (11) holds if and only if for every ε > 0{

n ∈N : h(An,A) ≥ ε
}
∈ I

or equivalently,{
n ∈N : h(An,A) < ε

}
∈ F(I).

By the definition of Hausdorff metric,{
n ∈N : A ⊆ B(An, ε) and An ⊆ B(A, ε)

}
∈ F(I).

Consequently,{
n ∈N : A * B(An, ε)

}
∪

{
n ∈N : An * B(A, ε)

}
∈ I.

This completes the proof.

The next theorem answers a natural question about relationships between Hausdorff I−convergence
and Kuratowski I−convergence.

Theorem 4.3. Suppose that {A; An,n ∈ N} is a family of closed subsets of X with A , ∅. Then Hausdorff
I−convergence implies Kuratowski I−convergence, i.e.,

HI − lim
n→∞

An = A implies I − lim
n→∞

An = A.

Proof. Take x ∈ A. By (12), for any ε > 0

M =
{
n ∈N : A ⊆ B(An, ε)

}
∈ F(I).

Then, for n ∈M we have B(x, ε) ∩ An , ∅. So condition (i) in Remark 3.2 is provided.
Conversely, x < A. Then, there exists ε > 0 such that x < B(A, ε), i.e., d(x,A) > ε. By (12)

K =
{
n ∈N : An ⊆ B(A, ε)

}
∈ F(I).

Take δ = d(x,A) − ε. Then, for n ∈ K we obtain B(x, δ) ∩ An = ∅. So condition (ii) in Remark 3.2 is provided.
From conditions (i) and (ii) in Remark 3.2 we have I − limn→∞ An = A.

Definition 4.4. The sequence (An) is said to be I−bounded if there exists a compact set K such that{
n ∈N : An * K

}
∈ I.



Ö. Talo, Y. Sever / Filomat 31:4 (2017), 899–912 911

Now, our aim is to show that, for a I−bounded closed set, Kuratowski I−convergence is equivalent to
Hausdorff I−convergence.

Theorem 4.5. Let (An) be a I−bounded sequence of closed subsets of X. If I − limn→∞ An = A with A , ∅, then
HI − limn→∞ An = A.

Proof. Let (An) be a I−bounded sequence of closed subsets of X. Then there is a compact subset K of X
such that

M =
{
n ∈N : An ⊆ K

}
∈ F(I).

By Lemma 3.12, I − limn→∞ An = A ⊆ K. So, the closed set A is compact. Then given ε > 0, A has a finite
cover with open balls of radius ε; i.e., there exists {x1, x2, x3, . . . , xn}with xi ∈ A such that

A ⊆
n⋃

i=1

B
(
xi,
ε
2

)
.

Since I − limn→∞ An = A and xi ∈ A for i ∈ {1, 2, . . . ,n}, we obtain I − limn→∞ d(xi,An) = 0. Therefore, for
each i

{n ∈N : d(xi,An) < ε/2} ∈ F(I).

Let us define

N =

n⋂
i=1

{n ∈N : d(xi,An) < ε/2} .

Then N ∈ F(I). Thus, we obtain

d(y,An) ≤ d(y, xi) + d(xi,An) < ε

for any y ∈ A and n ∈ N. So, A ⊆ B(An, ε) for every n ∈ N. This means that
{
n ∈N : A * B(An, ε)

}
∈ I.

Now, suppose that C =
{
n ∈ N : An * B(A, ε)

}
< I for some ε > 0. Then, there exists a sequence

{yk | yk ∈ Ak\B(A, ε), k ∈ C}. By Lemma 2.2, M∩C < I. Hence, {k | yk ∈ K} < I. By Lemma 2.5, the sequence
(yn) has at least I−cluster point that belongs to I − lim supn→∞ An = A but does not belong to B(A, ε) ⊇ A,
which leads to a contradiction. So we have shown that

{
n ∈ N : An * B(A, ε)

}
∈ I. This completes the

proof.

5. Conclusion

In this paper we give the definitions and some properties of I−outer and I−inner limits for a se-
quence of closed sets. We have also introduced two kinds of I−convergence for sequences of closed sets
which are called Kuratowski I−convergence and Hausdorff I−convergence. We prove that Hausdorff
I−convergence implies Kuratowski I−convergence. Additionally, for a I−bounded sequence of closed
sets, we show that these convergences are equivalent.

Continuity properties of a set-valued mapping can be defined on the basis of Kuratowski convergence
or Hausdorff convergence (see Chapter 1 in [1], Chapter 3 in [8] and Chapter 5 in [20]). In the light of the
main results of our paper, one can define I−continuity for a set-valued mapping and get I analogues of
continuity properties.
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[26] A. Şahiner, M. Gürdal, S. Saltan, H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese Journal of Mathematics 11(5)

(2007) 1477–1484.
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