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Vertices of Paths of Minimal Lengths on Suborbital Graphs
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Abstract. The Modular group Γ acts on the set of extended rational numbers Q̂ transitively. Here, our main
purpose is to examine some properties of hyperbolic paths of minimal lengths in the suborbital graphs for
Γ. We characterize all vertices of these hyperbolic paths in the suborbital graphs which are trees.

1. Introduction

Jones, Singerman and Wicks [2] used the idea of suborbital graphs for finite permutation groups,
described by Sims [3], for the congruence subgroup Γ0(N) of the modular group Γ. They studied the action
of Γ on the rational projective line Q̂ := Q∪ {∞} by using suborbital graphs. These are Γ−invariant directed
graphs with vertex set Q̂ and their edge-sets being the orbits of Γ on the cartesian square Q̂2. For each
integer N ≥ 1 and for each of the φ(N) units u mod(N), there is one suborbital graph Gu,N with edge-set
which is the orbit containing the pair (∞,u/N).

In [2], some properties of the Gu,N graphs were given and the authors conjectured that Gu,N is a forest if
and only if it contains no triangles, that is, iff u2

±u+1 . 0 (mod N). This conjecture was proved in [4]. Then,
a few papers on the suborbital graphs for related groups were published [5,6]. Generally, authors examined
all circuits in the suborbital graphs in these papers. Clearly, whether the graph contain a circuit or not
depends on the choice of u and N. Some subgraph family has just the hyperbolic paths. These subgraphs
are also worthwhile to investigate, because it is well-known that some number theoretical results arise
from the action of some Fuchsian groups. With this motivation, examining the suborbital graphs of Γ,
we obtained some results about the connection between continued fractions and hyperbolic paths of the
suborbital graphs [1]. In this paper, we extended our results with standard recurrence relations used in the
theory of continued fractions.

Let us summarize the terminology used in [2] briefly.

1.1. The action of Γ on Q̂

PSL(2,Z) is the set of all Möbius transformations of the form T : z −→ az+b
cz+d where a, b, c, d ∈ Z and

ad − bc = 1, that is group of automorphisms of upper half plane H := {z ∈ C : Im(z) > 0}. So the modular
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group Γ is the quotient of the unimodular group SL(2,Z) by its center {±I}. Thus the elements of Γ are of
the form as shown with pairs of matrices, that is:

±

(
a b
c d

)
, a, b, c, d ∈ Z and ad − bc = 1.

Here we will omit the symbol ± and identify each matrix with its negative. Γ acts transitively on Q̂ by the
transformation(

a b
c d

)
:

x
y
−→

ax + by
cx + dy

,

where x/y ∈ Q̂ is a reduced fraction, that is (x, y) = 1. Here, ax+by
cx+dy is also a reduced fraction. The group

Γ0(N) is the congruence subgroup of Γ with N|c.
In [2], authors defined a non-trivial equivalence relation on Q̂, as follows: if v = r/s and w = x/y

are elements of Q̂, then v ≈ w if and only if there exists u with (u,N) = 1 such that x ≡ ur (mod N) and
y ≡ us (mod N). This is Γ−invariant equivalence relation and so that Γ acts imprimitively on Q̂. Therefore
this relation divides Q̂ into blocks. The stabilizer of the block containing 1/0 is Γ0(N) and the number of
blocks is |Γ : Γ0(N)| = Ψ(N) = N

∏
p|N

(
1 + 1

p

)
, where p is a prime divisor of N.

1.2. Suborbital graphs for Γ on Q̂
Let (G,Ω) be a transitive permutation group. Then G acts on Ω ×Ω by

1 : (α, β) −→ (1(α), 1(β)),

where 1 ∈ G and α, β ∈ Ω. The orbits of this action are called suborbitals of G, that containing (α, β) being
denoted by O(α, β). From O(α, β) we can form a suborbital graph G(α, β) : its vertices are the elements of
Ω, and there is a directed edge from γ to δ if (γ, δ) ∈ O(α, β), denoted by γ → δ. The orbit O(β, α) is also a
suborbital, and it is either equal to or disjoint from O(α, β). In the latter case, G(β, α) is just G(α, β) with
the arrows reversed and we call, in this case, G(α, β) and G(β, α) paired suborbital graphs. In the former case,
G(α, β) = G(β, α) and the graph consists of pairs of oppositely directed edges; it is convenient to replace
each such pair by a single undirected edge, so that we have an undirected graph which we call self-paired.

O(α, α) := {(γ, γ)|γ ∈ Ω} is the diagonal of Ω×Ω. The corresponding suborbital graph G(α, α), called the
trivial suborbital graph, is self-paired: it consists of a loop based at each vertex γ ∈ Ω. We shall be mainly
interested in the remaining non-trivial suborbital graphs.

We now investigate the suborbital graphs for the action of Γ on Q̂. Since Γ acts transitively on Q̂, each
suborbital contains a pair (∞, u

N ) for some u
N ∈ Q. We denote this suborbital by Ou,N and the corresponding

suborbital graph by Gu,N for short. Let us give some results which are proved in [2] as following lemmas.

Lemma 1.1. Gu,N = Gu′,N′ iff N = N′ and u ≡ u′ (mod N).

Lemma 1.2. Gu,N is self-paired iff u2
≡ −1 (mod N).

Lemma 1.3. The suborbital graph paired with Gu,N is G−ū,N where ū satisfies uū ≡ 1 (mod N).

Lemma 1.4. r
s →

x
y ∈ Gu,N if and only if x ≡ ∓ur (mod N), y ≡ ∓us (mod N), ry − sx = ∓N.

Since Γ acts on Q̂ transitively, it permutes these blocks transitively. Hence the subgraphs corresponding
to the graph whose vertices in the blocks are all isomorphic. We let Fu,N be the subgraph of Gu,N whose
vertices form the block [∞] = {x/y ∈ Q̂ | y ≡ 0 (mod N)} containing∞, so that Gu,N consists of Ψ(N) disjoint
copies of Fu,N.

Lemma 1.5. r
s →

x
y ∈ Fu,N if and only if x ≡ ∓ur (mod N), ry − sx = ∓N.
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The main definitions used in our paper:
(a) Let v0, v1, . . . , vm be a sequence of different vertices of the graph Fu,N. If m ≥ 2 then the configuration

v0 → v1 → . . .→ vm → v0 is called a directed circuit (closed path). If at least one arrow (not all) is reversed in
this configuration, it is called an undirected (anti-directed) circuit. If m = 2 then the circuit, directed or not, is
called a triangle. If m = 1 then we will call the configuration v0 → v1 → v0 a self paired edge.

(b) For visual convenience and because the elements of Γ sends the hyperbolic lines to hyperbolic lines,
we have represented the edges of graphs as hyperbolic geodesics in the upper half plane

H := {z ∈ C | Im(z) > 0}

that is, as euclidean semi-circles or half-lines perpendicular to R as in [9].
(c) The configurations v0 → v1 → . . . → vm and v0 → v1 → . . . are called a path and an infinite path in

Fu,N, respectively.
(d) If r

s
<
−→

x
y ∈ Fu,N

(
or x

y
<
←−

r
s ∈ Fu,N

)
, the farthest vertex means that there is no vertex which has greater

(or smaller) value than x
y joined with the vertex r

s in the suborbital graph Fu,N by the conditions from Lemma
1.5.

(e) The path v0 → v1 → . . . → vm is called of minimal length if and only if vi = v j, where i < j − 1,
i ∈ {0, 1, 2, 3, ...,m− 2}, j ∈ {2, 3, ...,m} and vi+1 must be the farthest vertex which can be joined with the vertex
vi in Fu,N.

(f) If Fu,N does not contain any circuits it is called a forest. If Fu,N is a connected non-empty graph without
circuits it is called a tree.

2. Main Calculations

By [1], we know that the transformation ϕ =
(
−u (u2 + ku + 1)/N
−N u + k

)
is in Γ0(N) and that ϕ(∞) = v0, ϕ(v0) = v1

and so on. For right direction, it gives the vertices of the paths

1
0
−→

u
N
−→

u + 1
k

N
−→

u + 1
k− 1

k

N
−→

u + 1
k− 1

k− 1
k

N
−→ · · ·

of the minimal lengths in Fu,N, where u2 + ku + 1 ≡ 0 (mod N). Hence,

Corollary 2.1. If
u+ x

y

N is the vertex on the path of minimal length in Fu,N, then the farthest vertex which can be joined

with it is ϕ
(

u+ x
y

N

)
=

u+
y

ky−x

N and vq = ϕq(v0) for positive integers q and v0 = u/N. This means that there are infinitely

vertices which can be joined with
u+ x

y

N , but
u+

y
ky−x

N is the farthest.

Theorem 2.2. Assume that u2 + ku + 1 ≡ 0 (mod N) and u2
− lu + 1 ≡ 0 (mod N) with 1 < k, l ≤ N. If Fu,N is

self-paired, then k = l = N and otherwise l = N − k.

Proof. From the equations u2 + ku + 1 ≡ 0 (mod N) and u2
− lu + 1 ≡ 0 (mod N) with 1 < k, l ≤ N, we have

ku + lu ≡ 0 (mod N). Since (u,N) = 1, then k ≡ −l (mod N). So, there exists an integer y such that k = Ny − l.
From the inequality 2 < k + l ≤ 2N, we obtain that 2 < Ny ≤ 2N giving that 2/N < y ≤ 2 by N > 1.
Hence, y is equal to 1 or 2. On the other hand if Fu,N is self-paired, from Lemma 1.2 as u2 + 1 ≡ 0 (mod N)
then, ku ≡ 0 (mod N) and −lu ≡ 0 (mod N). As (u,N) = 1, then k ≡ 0 (mod N) and −l ≡ 0 (mod N) giving that
k − l ≡ 0 (mod N). So, there is an integer t such that k − l = Nt. If k = l = N obviously t = 0. Hence if
1 < k, l < N then 1−N < k− l < N− 1 giving that 1−N < Nt < N− 1. As N > 1 then |t| < 1− 1

N and from this
t must be zero. So, k = l. If graph is self-paired, since 1 < k ≤ N and ku ≡ 0 (mod N) then k must be equal to
N. So, k = l = N. Consequently, if Fu,N is self-paired y = 2 and y = 1 for other cases.
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Theorem 2.3. In Fu,N, let u2
− lu + 1 ≡ 0 (mod N) and 1 < l ≤ N. Then we have

(i) The farthest vertex which can be joined with u
N is u− 1

l
N and there is no such a nearest vertex.

(ii) The farthest vertex which can be joined with u− 1
l

N is
u− 1

l− 1
l

N and there is no such a nearest vertex.

Proof. In here we will prove (ii). (i) can be proved similarly.

Since u2
− lu + 1 ≡ 0 (mod N), lu−1

lN is a vertex in Fu,N. Let

u − 1
l

N
=

lu − 1
lN

>
−→

u − p
q

N
=

qu − p
qN

.

From Lemma 1.5, we have qu − p ≡ u(lu − 1) (mod N) and (lu − 1)qN − lN(qu − p) = N, that is q = pl − 1,
then u(pl − 1) − p ≡ u(lu − 1) (mod N), giving p(lu − 1) − lu2

≡ 0 (mod N). As lu − 1 ≡ u2 (mod N), we have
pu2
− lu2

≡ 0 (mod N), implying p ≡ l (mod N). Hence p := l + Nx for some x ∈N∪ {0}. Thus p
q = l+Nx

l(l+Nx)−1 . We
shall define the function f as following

f :N ∪ {0} −→ R and f (x) :=
u − l+Nx

l(l+Nx)−1

N
.

Then f is strictly increasing function. Actually, looking the derivation, we see that

f ′(x) =
1

[l(l + Nx) − 1]2 > 0.

Hence the smallest value of the function f is the value at the point x = 0, that is
u− l

l2−1
N . So we have

lu − 1
lN

−→
u − l

l2−1

N
=

(l2 − 1)u − l
(l2 − 1)N

.

Now, our aim is to show that ((l2 − 1)u− l, (l2 − 1)N) = 1. First, suppose ((l2 − 1)u− l, l2 − 1) = m. If m|(l2 − 1),
then m|u(l2 − 1). Since m|(l2 − 1)u − l, we have m| − l. As m|l2 − 1, we obtain that m| − 1 and so m = ±1.
Suppose ((l2 − 1)u − l,N) = N0. Clearly, we have

(l2 − 1)u − l = l(lu − 1) − u ≡ 0 (mod N0).

Since lu − 1 ≡ u2 (mod N), then lu2
− u ≡ 0 (mod N0), giving lu − 1 ≡ 0 (mod N0), a contradiction. Because we

have N0|u2 by u2
≡ 0 (mod N0). Since (u,N) = 1, then N0 = 1. Hence, with

((l2 − 1)u − l, (l2 − 1)N) = 1,

u− l
l2−1

N is a vertex in Fu,N and is also the farthest vertex which can be joined with lu−1
lN . Since limx→∞ f (x) =

limx→∞
u− l+Nx

l(l+Nx)−1

N =
u− 1

l
N , there is no such a nearest vertex. Because there are infinitely many vertex bigger

than such a nearest vertex.
Now we can give the transformationω =

(
−u (u2

− lu + 1)/N
−N u − l

)
is in Γ0(N) and thatω(∞) = v0, ω(v0) = v1 and

so on. For left direction, it gives vertices of paths of minimal length in Fu,N. Hence,

Corollary 2.4. If
u− x

y

N is the vertex on the path of the minimal length in Fu,N, then the farthest vertex which can be

joined with it is ω
(

u− x
y

N

)
=

u− y
ly−x

N and vq = ωq(v0) for positive integers q and v0 = u/N.
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Some result below have immediate analogues in the case of right direction, so we state them without
proof.

Corollary 2.5. If u2
− u + 1 ≡ 0 (mod N), then Fu,N has a triangle of the form 1

0 ←−
u−1
N ←−

u
N ←−

1
0 .

Corollary 2.6. If u2
− lu + 1 ≡ 0 (mod N) and 1 < l ≤ N, then there is an infinite path of the minimal length

· · · ←−

u − 1
l− 1

l− 1
l

N
←−

u − 1
l− 1

l

N
←−

u − 1
l

N
←−

u
N
←−

1
0

whose vertices are in the set

M :=
∞⋃

m=0

{
u − Tm(0)

N
: Tm = t0t1t2 . . . tm, t0(z) = z, tm(z) := t(z) =

−1
−l + z

}
∪ {∞}

in Fu,N.

2.1. Continued fractions with recurrence relations for the vertices of suborbital graphs
It is well known that a continued fraction may be regarded as a sequence of Möbius maps. We saw

that the set M of vertices were obtained by a sequence of Möbius maps. So, there is naturally a connection
between the two in here. The purpose of this section is to provide some formulas which give the vertices
of the subgraph more practically by this connection. We know any continued fraction can be expressed
as the symbol b0 + K∞m=1 (am/bm) by [7]. Using the terminology in [7], the nth numerator An and the nth

denominator Bn of a continued fraction b0 + K (am/bm) are defined by the recurrence relations (second order
linear difference equations)[

An

Bn

]
:= bn

[
An−1

Bn−1

]
+ an

[
An−2

Bn−2

]
, (1)

where n = 1, 2, 3, . . . with initial conditions A−1 := 1,B−1 := 0,A0 := b0,B0 := 1. The modified approximant
Tn(zn) can then be written as Tn(zn) = An+An−1zn

Bn+Bn−1zn
, where n = 0, 1, 2, 3, . . . and hence for the nth approximant fn

we have fn = Tn(0) = An
Bn
, fn−1 = Tn(∞) = An−1

Bn−1
.

For the left direction, since an := −1 , 0 and bn := −l, for all n ≥ 1, then from recurrence relations we get
Bn = −An+1 and then since from set M, a vertex on the path of minimal length of the graph Fu,N is u−Tn(0)

N ,
then this vertex can be given with

An+1u + An

An+1N
(2)

as nth vertex, where Tn = − An
An+1

.

Similarly for the right direction, from recurrence relations (1), nth vertex u+Tn(0)
N on the path of minimal

length of the graph Fu,N can be given with

An+1u − An

An+1N
(3)

where an and bn defined as −1 and −k respectively for all n ≥ 1.

Corollary 2.7. If l ≥ 2, then from the linear equations (1), we have recurrence relation as lAn+1 + An+2 + An = 0.

Also from using the vertices of the suborbital graph Fu,N, since nth vertex on the path of the minimal

length of the graph Fu,N is given with
u− An

Bn
N =

u+ An
An+1
N , then from ω

(
u− x

y

N

)
=

u− y
ly−x

N , where x = An and

y = Bn = −An+1, the farthest vertex which can be joined with it is can be given as (n + 1)th vertex by

ω

u + An
An+1

N

 =
u − An+1

lAn+1+An

N
=

ulAn+1 + uAn − An+1

NlAn+1 + NAn
.
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On the other hand, from (2) this vertex can be given with An+2u+An+1
An+2N . Hence, from both expressions above,

since An+1 , 0 for all n ≥ 0, then

ulAn+1 + uAn − An+1

NlAn+1 + NAn
=

An+2u + An+1

An+2N

and so by this equation Corollary 2.7 holds.

Corollary 2.8. For right direction, whereas, for k ≥ 2, then we have recurrence relation as kAn+1 + An+2 + An = 0.

Theorem 2.9. If k = 2, then An = (−1)nn and if k > 2, then

An = (−1)n21−n
n∑

t=1

(k +
√

k2 − 4)n−t(k −
√

k2 − 4)t−1. (4)

Proof. From Corollary 2.8 we get the recurrence relation as

An = −kAn−1 − An−2. (5)

If k = 2, then we must solve the recurrence relation An + 2An−1 + An−2 = 0, where initial conditions are from
(1). The characteristic equation for this relation is s2 + 2s + 1 = 0, which gives only one real root as s = −1.
Then any solution of (5) has the form

An = α(−1)n + βn(−1)n. (6)

Therefore,

A0 = α = 0
A1 = −α − β = −1.

Solving this system, we get α = 0 and β = 1. So, from (6), An = (−1)nn is obtained.
On the other hand, for the second case, if k > 2, then we must solve the recurrence relation An +

kAn−1 + An−2 = 0, where initial conditions are from also (1). The characteristic equation for this relation is
s2 + ks + 1 = 0, which gives two distinct real roots as s = −k+

√

k2−4
2 and s = −k−

√

k2−4
2 . Then any solution of (5)

has the form

An = α

−k +
√

k2 − 4
2

n

+ β

−k −
√

k2 − 4
2

n

. (7)

Therefore,

A0 = α + β = 0

A1 = α
(
−k +

√

k2 − 4
)

+ β
(
−k −

√

k2 − 4
)

= −2.

Solving this system, we get α = − 1
√

k2−4
and β = 1

√

k2−4
. So, from (7),

An =
(
−

1
2

)n 1
√

k2 − 4

[
(k +

√

k2 − 4)n
− (k −

√

k2 − 4)n
]

(8)

is obtained. From (k +
√

k2 − 4)n
− (k −

√

k2 − 4)n we get

(2
√

k2 − 4)
n∑

t=1

(k +
√

k2 − 4)n−t(k −
√

k2 − 4)t−1. (9)
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So, from (8) and (9),

An = (−1)n21−n
n∑

t=1

(k +
√

k2 − 4)n−t(k −
√

k2 − 4)t−1

is obtained.
From Corollary 2.6 and by using Corollary 2.7, the following result can be obtained similarly

Corollary 2.10. If l = 2, then An = (−1)nn and if l > 2, then

An = (−1)n21−n
n∑

t=1

(l +
√

l2 − 4)n−t(l −
√

l2 − 4)t−1. (10)

Lemma 2.11. For the suborbital graphs Fu+bN,(b+1)N, where N = u + 1 and b = 0, 1, 2, 3, · · · , the infinite paths of the
minimal lengths for right direction can be given as

1
0
−→

u + bN
N(b + 1)

−→
u + N(2b + 1)

2N(b + 1)
−→

u + N(3b + 2)
3N(b + 1)

−→
u + N(4b + 3)

4N(b + 1)
−→ · · ·

Proof. If N = u + 1, then the suborbital graphs Fu+bN,(b+1)N can be given as Fα,α+1, where b = 0, 1, 2, 3, · · · and
α = u(1+b)+b. So, from the congruence α2 +kα+1 ≡ 0 (mod (α+1)), k must be 2 as minimal positive integer.
Hence, the infinite paths of the minimal lengths of the suborbital graphs Fu+bN,(b+1)N for right direction are

1
0
−→

u + bN
(b + 1)N

−→
u + bN + 1

2

(b + 1)N
−→

u + bN + 1
2− 1

2

(b + 1)N
−→

u + bN + 1
2− 1

2− 1
2

(b + 1)N
−→ · · ·

From this we get same paths as

1
0
−→

u + bN
N(b + 1)

−→
2u + 2bN + 1

2N(b + 1)
−→

3u + 3bN + 2
3N(b + 1)

−→
4u + 4bN + 3

4N(b + 1)
−→ · · ·

If one u fixed in the numerator of all fractions as vertices of these paths and other every u replaced with
u = N − 1, then the infinite paths of the minimal lengths obtained as desired hyperbolic paths.

Corollary 2.12. If l = 2 or k = 2 then the nth vertex on the path of the minimal length starting with the vertex u
N is

(n+1)u−n
(n+1)N and (n+1)u+n

(n+1)N , respectively.

Proof. For all n ≥ 0, since bn = −l = −2 and an = −1, from the Corollary 2.10,

An = (−1)nn. (11)

So, by (2), the nth vertex on the path of the minimal length of Fu,N for the left direction is

(−1)n+1(n + 1)u + (−1)nn
(−1)n+1(n + 1)N

and this clearly gives demanded vertex as (n+1)u−n
(n+1)N . For right direction assumption can be proved similarly.

Corollary 2.13. If l = 3 or k = 3 then the nth vertex on the path of the minimal length starting with the vertex u
N is

F2n+2u−F2n
F2n+2N and F2n+F2n+2u

F2n+2N , respectively, where, for each m ∈N ∪ {0},

Fm =


0, i f m=0;
1, i f m=1;
Fm−1 + Fm−2, i f m>1

is the mth Fibonacci number.
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Proof. For all n ≥ 0, since bn = −l = −3 and an = −1, from the Corollary 2.10,

An = (−1)nF2n. (12)

So, by (2), the nth vertex on the path of the minimal length of Fu,N for the left direction is

(−1)n+1F2n+2u + (−1)nF2n

(−1)n+1F2n+2N

and this clearly gives demanded vertex as F2n−F2n+2u
F2n+2N . For right direction assumption can be proved similarly.

For right direction, from the matrix relation for recurrence relations we can give(
An−1 An
−An −An+1

)
=

(
0 −1
1 −k

)n

(13)

As nth vertex of the suborbital graph Fu,N which is on the path of minimal length is An+1u−An
An+1N , we also find

this vertex from the matrix equation (13).
Similarly, we can find the nth vertex for left direction by An+1u+An

An+1N , using the matrix relation(
An−1 An
−An −An+1

)
=

(
0 −1
1 −l

)n

.

3. Scale and Complexity of Subgraph

The Farey graph-F , which is referred to as F1,1, is a connected, undirected graph with triangular circuits.
From [2], by means of connectedness, the Farey distance d(v1, v2) between any two vertices v1, v2 ∈ Q̂ to be
the minimum number of edges in any path from v1 to v2 in F ; thus d is a metric on Q̂. Also, from [2], a
shortest path in the F from∞ to any vertex v can be found by expressing v as a continued fraction

v = c1 −
1

c2 −
1

c3−. . .
−

1
cm

(14)

(ci ∈ Z), the distance d(∞, v) being equal to m. Hence, d(∞, v) can be regard as a measure of the complexity
of v. Accordingly, the complexity of integers are 1, while the rationals p + q−1 (p, q ∈ Z, |q| ≥ 2) have the
complexity 2 in F .

In [8], the authors defined a new kind of continued fraction namely F1,2-continued fraction, which is
related to the suborbital graph F1,2. A finite continued fraction of the form

1
0+

2
b+

ε1

a1+

ε2

a2+
· · ·
εn

an
(n ≥ 0) (15)

or an infinite continued fraction of the form

1
0+

2
b+

ε1

a1+

ε2

a2+
· · ·

εn

an+
· · · , (16)

where b is an odd integer, a1, a2, . . . are even positive integers, and ε1, ε2, . . . ∈ {±1}, is called anF1,2-continued
fraction. There is a connection between this continued fraction and the suborbital graph F1,2 as, each finite
F1,2-continued fraction is shown to correspond naturally to a path in F1,2 from ∞ to its value. Also, there
is a connection between F1,2-continued fractions and vertices of the suborbital graph F1,2, which are on the
paths of minimal lengths.
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From Corollary 2.8. [8], if vertex set of F1,2 is

X =

{
p
2q

: p, q ∈ Z, q > 0, (p, 2q) = 1
}
∪ {∞},

then there is a unique path (of edges in F1,2) from∞ to every point in X.

Theorem 3.1 (See [8], Theorem 3.1.).
(A) The path in the suborbital graph F1,2 (which is subgraph of the Farey graph F ) from ∞ to x ∈ X defines a finite
F1,2-continued fraction of x.
(B) The value of every finite F1,2-continued fraction belongs to X and the continued fraction defines a path in F1,2
from∞ to its value with the convergents as the vertices.

Theorem 3.2 (See [8], Theorem 4.1.).
Given any x ∈ X, the F1,2-continued fraction expansion

x =
1

0+

2
b+

ε1

a1+

ε2

a2+
· · ·
εn

an
,

is obtained as follows: b = 2bxc + 1 and for (1 ≤ i ≤ n), setting y1 = 2x − b,

(1) ai = 2
⌊

1
2

(
1 + 1

|yi |

)⌋
,

(2) εi = si1n(yi),
(3) yi+1 = 1

|yi |
− ai.

In fact, n is the smallest non-negative integer for which yn+1 = 0.

Example 3.3. Let x = 17
18 ∈ X. From Theorem 3.2 we get the F1,2-continued fraction of x as,

x =
17
18

=
1

0+

2
1+

1
2+

−1
2+

−1
2+

−1
2+

−1
2+

−1
2+

−1
2+

−1
2
.

This gives the unique shortest path from∞ to x in the suborbital graph F1,2 as,

∞ =
1
0
→

1
0 + 2

1

→
1

0 + 2
1+ 1

2

→
1

0 + 2
1+ 1

2− 1
2

→ · · · →
1

0 + 2
1+ 1

2− 1
2− 1

2− 1
2− 1

2− 1
2− 1

2− 1
2

,

that is a path of minimal length to right direction in the suborbital graph F1,2 from∞ to v8 = 17
18 (which is 8th vertex

from Corollary 2.12) as follows,

∞ =
1
0
→

1
2
→

3
4
→

5
6
→

7
8
→

9
10
→

11
12
→

13
14
→

15
16
→

17
18
.
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Figure 1: Self-paired subgraph

In our case, infinite paths of minimal lengths for left and right direction are of the form

∞

↓

. . .←− ω2(v0)←− ω(v0)←− v0 −→ ϕ(v0) −→ ϕ2(v0) −→ . . .

where v0 = u
N . Clearly, a path of the minimal length is a tree of valency 2 by joining each term to its

immediate predecessor and successor. The union of these trees with both of direction is the subgraph Fu,N.
Naturally, Fu,N is connected and the vertices of the paths of the minimal length in Fu,N are the set K1∪K2 ⊂ Q̂

where K1 :=
{

u + Tn(0)
N

: n ∈N
}

and K2 :=
{

u − Tn(0)
N

: n ∈N
}

. So, we can easily see that d∗ : K1×K1 7→N

(or d∗ : K2 × K2 7→ N), d∗(vi, v j) =

{
| j − i| for i , j
j + 1 for vi = ∞

which is the number of edges between vi and v j is

also a metric for the vertices vi, v j ∈ K1(orK2), i, j = 0, 1, 2, . . .. In here, the complexity of any vertex is equal
to the number d∗(∞, vi) = i + 1.

If Fu,N is self-paired, the figure of subgraph with left-direction will be symmetric to that of right-direction
as in Figure 1 by Theorem 2.2. Since figures are identical, the subgraph can be regarded as scale-free.
Case F2,9. We know that the path∞ → 2/9→ 5/18→ . . . never becomes a circuit in F2,9 [4]. We can easily
verify that this is also a path of minimal length in fact. From u2 + ku + 1 ≡ 0 (mod N) for u = 2,N = 9, we
have k = 2. This value gives us the path of the minimal length to right direction as

∞→
2
9
→

2 + 1
2

9
=

5
18
→

2 + 1
2− 1

2

9
=

8
27
→ . . .

Symmetrically,
. . .← 4/27← 3/18← 2/9←∞

is not a path to left direction by Lemma 1.5. By Theorem 2.2, for l = 7 we have path of the minimal length
to left direction as follows

∞

↓

. . .←− 89
432 =

2− 1
7− 1

7
9 ←−

13
63 =

2− 1
7

9 ←−
2
9 −→

5
18 =

2+ 1
2

9 −→
8
27 =

2+ 1
2− 1

2
9 −→ . . .

Case F1,2. Since u2
≡ −1 (mod N), suborbital graph F1,2 is a self-paired. From u2 + ku + 1 ≡ 0 (mod N) for

u = 1,N = 2, we have k ≡ 0 (mod 2). By Theorem 2.2, for k = l = 2 we have paths of the minimal lengths for
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both direction as follows

∞

↓

. . .←− 1
6 =

1− 1
2− 1

2
2 ←−

1
4 =

1− 1
2

2 ←−
1
2 −→

3
4 =

1+ 1
2

2 −→
5
6 =

1+ 1
2− 1

2
2 −→ . . .
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