On the Generalization of a Theorem of Bor

Tuba Arı ${ }^{\text {a }}$
${ }^{a}$ P. O. Box 23, TR-38002 Kayseri, Turkey

Abstract

In [6], Bor proved a theorem dealing with absolute Riesz summability factors of infinite series. In this paper, we generalize that result for the absolute matrix summability factors of infinite series. Some new results are also obtained.

1. Introduction

A positive sequence $\left(b_{n}\right)$ is said to be an almost increasing sequence if there exists a positive increasing sequence (c_{n}) and two positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$ (see [1]). A sequence $\left(\lambda_{n}\right)$ is said to be of bounded variation, denoted by $\left(\lambda_{n}\right) \in \mathcal{B V}$, if $\sum_{n}\left|\Delta \lambda_{n}\right|=\sum_{n}\left|\lambda_{n}-\lambda_{n+1}\right|<\infty$. A positive sequence $X=\left(X_{n}\right)$ is said to be a quasi-f-power increasing sequence if there exists a constant $K=K(X, f) \geq 1$ such that $K f_{n} X_{n} \geq f_{m} X_{m}$ for all $n \geq m \geq 1$, where $f=\left(f_{n}\right)=\left\{n^{\delta}(\log n)^{\sigma}, \sigma \geq 0,0<\delta<1\right\}$ (see [12]). If we take $\sigma=0$, then we get a quasi- δ-power increasing sequence (see [10]). Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. We denote by $\left(u_{n}\right)$ and $\left(t_{n}\right)$ the nth $(C, 1)$ means of the sequence $\left(s_{n}\right)$ and $\left(n a_{n}\right)$, respectively. The series $\sum a_{n}$ is said to be summable $|C, 1|_{k}, k \geq 1$, if (see [7], [9])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}-u_{n-1}\right|^{k}=\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}\right|^{k}<\infty \tag{1}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty,\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{2}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
v_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{3}
\end{equation*}
$$

[^0]defines the sequence $\left(v_{n}\right)$ of the Riesz mean or simply the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [8]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [2])
\[

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{k-1}\left|v_{n}-v_{n-1}\right|^{k}<\infty \tag{4}
\end{equation*}
$$

\]

In the special case $p_{n}=1$ for all values of $\mathrm{n}\left|\bar{N}, p_{n}\right|_{k}$ summability is the same as $|C, 1|_{k}$ summability. Given a normal matrix $A=\left(a_{n v}\right)$, we associate two lower semi-matrices $\bar{A}=\left(\bar{a}_{n v}\right)$ and $\widehat{A}=\left(\widehat{a}_{n v}\right)$ as follows:

$$
\begin{equation*}
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, n, v=0,1, \ldots \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{a}_{00}=\bar{a}_{00}=a_{00}, \widehat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, n=1,2, \ldots \tag{6}
\end{equation*}
$$

It may be noted that \bar{A} and \widehat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}, n=0,1, \ldots \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{n}(s)-A_{n-1}(s)=\sum_{v=0}^{n} \widehat{a}_{n v} a_{v} . \tag{8}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $\left|A, p_{n}\right|_{k}, k \geq 1$, if (see [11])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty \tag{9}
\end{equation*}
$$

where

$$
\bar{\Delta} A_{n}(s)=A_{n}(s)-A_{n-1}(s)
$$

In the special case, for $a_{n v}=p_{v} / P_{n},\left|A, p_{n}\right|_{k}$ summability is the same as $\left|\bar{N}, p_{n}\right|_{k}$ summability.

2. The Known Result

Quite recently, Bor has proved the following theorem dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series.
Theorem 2.1 ([6]). Let $\left(\lambda_{n}\right) \in \mathcal{B V}$ and let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence for some $\delta(0<\delta<1)$ and $\sigma \geq 0$. Suppose that there exists sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{align*}
& \left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{10}\\
& \beta_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{11}\\
& \sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty \tag{12}\\
& \left|\lambda_{n}\right| X_{n}=O(1) . \tag{13}
\end{align*}
$$

If

$$
\begin{equation*}
\sum_{v=1}^{n} \frac{\left|t_{v}\right|^{k}}{v}=O\left(X_{n}\right) \text { as } n \rightarrow \infty, \tag{14}
\end{equation*}
$$

and $\left(p_{n}\right)$ is a sequence such that

$$
\begin{align*}
& P_{n}=O\left(n p_{n}\right), \tag{15}\\
& P_{n} \Delta p_{n}=O\left(p_{n} p_{n+1}\right), \tag{16}
\end{align*}
$$

are satisfied, then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
It should be noted that if we take $\sigma=0$, then we get a result which was proved in [4].

3. The Main Result

The aim of this paper is to generalize Theorem 2.1 by using absolute matrix summability factors. Now, we shall prove the following theorem.
Theorem 3.1. Let $A=\left(a_{n v}\right)$ be a positive normal matrix such that

$$
\begin{align*}
& \bar{a}_{n 0}=1, n=0,1,2, \ldots, \tag{17}\\
& a_{n-1, v} \geq a_{n v}, \text { for } n \geq v+1 \tag{18}\\
& a_{n n}=O\left(\frac{p_{n}}{P_{n}}\right) \tag{19}\\
& n a_{n n}=O(1) \tag{20}\\
& \hat{a}_{n, v+1}=O\left(v \mid \Delta_{v} \hat{a}_{n v}\right) . \tag{21}
\end{align*}
$$

Let $\left(\lambda_{n}\right) \in \mathcal{B V}$ and let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence for some $\delta(0<\delta<1)$ and $\sigma \geq 0$. If the conditions (10)-(16) are satisfied, then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|A, p_{n}\right|_{k}, k \geq 1$.
It should be noted that if we take $a_{n v}=\frac{p_{0}}{P_{n}}$, then we get Theorem 2.1.
We require the following lemmas for the proof of our theorem.
Lemma 3.2 ([3]). If the conditions (15) and (16) are satisfied, then $\Delta\left(\frac{p_{n}}{n^{2} p_{n}}\right)=O\left(\frac{1}{n^{2}}\right)$.
Lemma 3.3 ([5]). Except for the condition $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}$ under the conditions on $\left(X_{n}\right)$, $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ as expressed in the statement of the theorem, we have the following;

$$
\begin{align*}
& n X_{n} \beta_{n}=O(1) \tag{22}\\
& \sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty \tag{23}
\end{align*}
$$

Proof of Theorem 3.1. Let $\left(T_{n}\right)$ be the A-transform of the series $\sum_{n=1}^{\infty} \frac{q_{n} P_{n} \lambda_{n}}{n p_{n}}$. Then, we have

$$
T_{n}-T_{n-1}=\sum_{v=1}^{n} \hat{a}_{n v} \frac{a_{v} P_{v} v \lambda_{v}}{v^{2} p_{v}} .
$$

Using Abel's transformation, we get that

$$
\begin{aligned}
T_{n}-T_{n-1} & =\sum_{v=1}^{n-1} \Delta_{v}\left(\hat{a}_{n v} \frac{P_{v} \lambda_{v}}{v^{2} p_{v}}\right) \sum_{r=1}^{v} r a_{r}+\frac{\hat{a}_{n n} P_{n} \lambda_{n}}{n^{2} p_{n}} \sum_{v=1}^{n} v a_{v} \\
& =\sum_{v=1}^{n-1} \Delta_{v}\left(\hat{a}_{n v} \frac{P_{v}}{p_{v}}(v+1) \frac{\lambda_{v}}{v^{2}} t_{v}+\sum_{v=1}^{n-1} \hat{n}_{n, v+1}(v+1) \frac{t_{v}}{v^{2}} \frac{P_{v}}{p_{v}} \Delta \lambda_{v}\right. \\
& +\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \lambda_{v+1}(v+1) t_{v} \Delta\left(\frac{P_{v}}{v^{2} p_{v}}\right)+\frac{a_{n n} P_{n} \lambda_{n}}{n^{2} p_{n}}(n+1) t_{n} \\
& =T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}
\end{aligned}
$$

To complete the proof of the theorem, by Minkowski's inequality, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4 \tag{24}
\end{equation*}
$$

When $k>1$, we can apply Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$ and so we get that

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 1}\right|^{k} & =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left\{\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|\left|t_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\left.\sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v} \| \lambda_{v}\right|^{k}| | t_{v}\right|^{k}\right)\left(\sum_{v=1}^{n-1} \mid \Delta_{v} \hat{a}_{n v}\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(a_{n n}\right)^{k-1} \sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v}\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left|\Delta_{v} \hat{a}_{n v}\right| \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} a_{v v}=O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \frac{p_{v}}{P_{v}} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{r=1}^{v} \frac{p_{r}}{P_{r}}\left|t_{r}\right|^{k}+O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m} \frac{p_{v}}{P_{v}}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1)\left|\lambda_{m}\right| X_{m}=O(1)
\end{aligned}
$$

as $m \rightarrow \infty$, by virtue of the hypotheses of Theorem 3.1 and Lemma 3.3.
Now, by using (15), we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 2}\right|^{k} & =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\left\|\Delta \lambda_{v}\right\| t_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left\{\sum_{v=1}^{n-1} v\left|\Delta_{v} \hat{a}_{n v}\right|\left|\Delta \lambda_{v} \| t_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left(v\left|\Delta_{v} \hat{a}_{n v}\right|\right)^{k}\left(\beta_{v}\right)^{k}\left|t_{v}\right|^{k}\right)\left(\sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v}\right|\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(v \beta_{v}\right)\left(v \beta_{v}\right)^{k-1}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(a_{n n}\right)^{k-1}\left|\Delta_{v} \hat{a}_{n v}\right| \\
& =O(1) \sum_{v=1}^{m} v \beta_{v}\left|t_{v}\right|^{k} a_{v v}\left(v \beta_{v}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} v^{k-1} v \beta_{v} \frac{1}{v^{k}}\left|t_{v}\right|^{k}=O(1) \sum_{v=1}^{m} v \beta_{v} \frac{\left|t_{v}\right|^{k}}{v}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v} \frac{\left|t_{r}\right|^{k}}{r}+O(1) m \beta_{m} \sum_{v=1}^{m} \frac{\left|t_{v}\right|^{k}}{v} \\
& =O(1) \sum_{v=1}^{m-1}\left|(v+1) \Delta \beta_{v}-\beta_{v}\right| X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1) m \beta_{m} X_{m}=O(1), \text { as } m \rightarrow \infty,
\end{aligned}
$$

by virtue of hypotheses of Theorem 3.1 and Lemma 3.3.
Now, since $\Delta\left(\frac{P_{v}}{v^{2} p_{v}}\right)=O\left(\frac{1}{v^{2}}\right)$, by Lemma 3.2, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 3}\right|^{k} & =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1} \|\left|t_{v}\right| \frac{1}{v}\right\}^{k}\right. \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v}\right|\left|\lambda_{v+1}\right|^{k}| |_{v}^{k} \mid\right)\left(\sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v}\right|\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(a_{n n}\right)^{k-1} \sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v}\right|\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left|\Delta_{v} \hat{a}_{n v}\right| \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k} a_{v v} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v+1}\right| \sum_{r=1}^{v} \frac{\left|t_{r}\right|^{k}}{r}+O(1)\left|\lambda_{m+1}\right| \sum_{v=1}^{m} \frac{\left|t_{v}\right|^{k}}{v} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right|^{k}+O(1)\left|\lambda_{m+1}\right| X_{m} \\
& =O(1) \sum_{v=1}^{m} \beta_{v} X_{v}+O(1)\left|\lambda_{m+1}\right| X_{m+1}=O(1)
\end{aligned}
$$

as $m \rightarrow \infty$ by (10), (13), (14), (15), (20) and (21).
Finally, as in $T_{n, 3}$, we have

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 4}\right|^{k} & =O(1) \sum_{n=1}^{m} n^{k-1} \frac{1}{n^{k}}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n} \| t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n}=O(1), \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

This completes the proof of Theorem 3.1. If we take $a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of n , then we obtain a new result concerning the $|C, 1|_{k}$ summability factors of infinite series.

References

[1] N.K. Bari and S. B. Stečkin, Best approximation and differential properties of two conjugate functions, Trudy. Moskov. Mat.Obšč. 5 (1956) 483-522 (in Russian)
[2] H. Bor, On two summability methods, Math. Proc. Camb. Philos Soc. 97 (1985) 147-149.
[3] H. Bor, Absolute summability factors forinfinite series, Indian J. Pure Appl. Math. 19 (1988) 664-671.
[4] H. Bor, A theorem on the absolute summability factors, Math. Notes 86 (2009) 463-468.
[5] H. Bor, A new application of generalized power increasing sequences, Filomat 26 (2012) 631-635.
[6] H. Bor, A new theorem on the absolute Riesz summability factors, Filomat 28 (2014) 1537-1541.
[7] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957) 113-141.
[8] G. H. Hardy, Divergent Series, Oxford Univ. Press. Oxford (1949).
[9] E. Kogbetliantz, Sur lés series absolument sommables par la méthode des moyennes arithmétiques, Bull. Sci. Math. 49 (1925) 234-256.
[10] L. Leindler, A new application of quasi power increasing sequences, Publ. Math. Debrecen 58 (2001) 791-796.
[11] W. T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series. IV, Indian J. Pure Appl. Math. 34 (2003) 1547-1557.
[12] W. T. Sulaiman, Extension on absolute summability factors of infinite series, J. Math. Anal. Appl. 322 (2006) 1224-1230.

[^0]: 2010 Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G99, 46A45
 Keywords. Sequence space, Riesz mean, absolute matrix summability, power increasing sequences, infinite series, Hölder inequality, Minkowski inequality

 Received: 06 March 2015; Accepted: 02 May 2015
 Communicated by Dragan S. Djordjević
 Email address: tubari38@gmail.com (Tuba Arı)

