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Abstract. In this work, we investigate quasi-product production functions taking the form:

L(x1, . . . , xn) = F
( n∏

i=1

fi(xi)
)
.

We get a simple geometric classification of quasi-product production functions via studying geometric
properties of their associated graphs in Euclidean spaces. Moreover precisely, if their corresponding
graphs are flat spaces, a complete classification of quasi-product production functions with an arbitrary
number of inputs is obtained.

1. Introduction

In economics, a production function can relate physical output of a production process to physical
inputs or factors of production. Economists always using a production function in economic analysis
are abstracting from the engineering and managerial problems inherently associated with a particular
production process.

Hence, the production function is one of the key concepts of mainstream neoclassical theories, used to
define marginal product and to distinguish allocative efficiency, the defining focus of economics.

In economics, a production function is always defined as a non-constant positive function with non-vanishing
first derivative.

In 1928, C. W. Cobb and P. H. Douglas [14] first introduced a famous two inputs production function,
nowadays called Cobb-Douglas production function, which has the form

Y = bLkC1−k,

where L denotes the labor input, C is the capital input, b is the total factor productivity and Y is the total
production.
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The generalized form of the Cobb-Douglas production function with an arbitrary number of inputs can
be expressed as

L(x1, . . . , xn) = Axα1
1 · · · x

αn
n , (1.1)

where xi > 0 (i = 1, . . . ,n), A is a positive constant and α1, . . . , αn are nonzero constants.
In 1961, K. J. Arrow et al. [1] introduced another famous two inputs production function, nowadays

called ACMS production function, written as

Q = b(aKr + (1 − a)Lr)
1
r ,

where Q is the output, b the factor productivity, a the share parameter, K and L the primary production
factors, r = (s−1)/s, and s = 1/(1−r) is the elasticity of substitution. Hence it is also called constant elasticity
of substitution (CES) production function [15, 16]. Also, the generalized form of CES production function
with an arbitrary number of inputs is defined by

L(x1, . . . , xn) = A
( n∑

i=1

aρi xρi
) γ
ρ
,

where ai, γ,A, ρ are nonzero constants, A, ai > 0 and ρ < 1.
A production function Q = L(x1, . . . , xn) is said to be γ-homogeneous or homogeneous of degree γ, if

given any positive constant t,

L(tx1, . . . , txn) = tγL(x1, . . . , xn).

for some nonzero constant γ. If γ > 1, the function exhibits increasing return to scale, and it exhibits decreasing
return to scale if γ < 1. If it is homogeneous of degree 1, it exhibits constant return to scale.

Clearly, both of the generalized form of the Cobb-Douglas production function and CES production
function are homogeneous production functions.

A production function is called quasi-sum (see [5, 8] for details), if the function takes the following form

L(x1, . . . , xn) = F
( n∑

i=1

fi(xi)
)
,

where F is a continuous strict monotone positive function and fi are continuous strict monotone positive
functions.

Similarly, a production function is called quasi-product, if the function takes the following form

L(x1, . . . , xn) = F
( n∏

i=1

fi(xi)
)
,

where F is a continuous strict monotone positive function and fi are continuous strict monotone positive
functions.

Note that quasi-sum production functions and quasi-product production functions include all of the
generalized Cobb-Douglas production functions and CES production functions.

Recently, Vı̂lcu et al. showed in [17, 18] that the generalized Cobb-Douglas production functions
and generalized CES production functions have constant return to scale if and only if the corresponding
hypersurfaces have vanishing Gauss-Kronecker curvature. These results establish an interesting link be-
tween some fundamental notions in the theory of production functions and the differential geometry of
hypersurfaces in Euclidean spaces.

We note that, in the theory of differential geometry, the study of hypersurfaces with certain curvature
properties is of fundamental importance and receives extensive attention by geometers [11].

Therefore, a natural question in economic analysis is to study some production functions via geometric
properties of their associated graph hypersurfaces in Euclidean spaces.
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Concerning this topic, some important contributions have been made recently by some authors, see
[2-10, 13, 19-21] and references therein.

Interestingly, it is proved in [12] that a homogeneous production function with an arbitrary number of
inputs defines a flat hypersurface if and only if either it has constant return to scale or it is a multinomial
production function.

Also, Chen proved the following results in [5]:
Theorem 1.1 ([5]) A twice differentiable quasi-sum production function with more that two factors is quasi-linear if
and only if its production hypersurfaces is a flat space.
Theorem 1.2 ([5]) Let f (x, y) be a twice differentiable quasi-sum production function. Then the production surface
of f is flat if and only if, up to translations, f is one of the following functions:

1. a quasi-linear production function;
2. a Cobb-Douglas production function, i.e. f = axc

1x1−c
2 for some nonzero constants a, r with r , 1;

3. an ACMS functions given by f = (ax
1
c
1 + bx

1
c
2 )c;

4. f = a ln(berx + cesy) for some nonzero constants a, b, c, r, s.

Motivated by Chen’s work mentioned above, in this paper we study the geometric conditions of quasi-
product productions as graphs in Euclidean space. We give a classification of quasi-product productions,
provided its corresponding graph hypersurfaces are flat space.

2. Basic Theory of Hypersurfaces in Differential Geometry

It is well known that each production function L(x1, . . . , xn) can be identified with a graph of a non-
parametric hypersurface of an Euclidean (n + 1)-space En+1 given by

f (x1, . . . , xn) = (x1, . . . , xn,L(x1, . . . , xn)). (2.1)

This hypersurface is called as a production hypersurface.
Let Mn be a orientable hypersurface in an (n + 1)-dimension Euclidean space. Since Mn is orientable, the

Gauss map v can be defined globally by

v : Mn
→ Sn

⊂ En+1,

which maps Mn to the unit hypersphere Sn of En+1. The Gauss map is a continuous map such that v(p) is a
unit normal vector ξ(p) of Mn at point p.

The differential dv of the Gauss map v can be used to define an extrinsic curvature. It is well known that
the shape operator Sp and dv can be related by:

1(Spu,w) = 1(dv(u),w),

where u,w ∈ TpM and 1 is the metric tensor on Mn.
Moreover, the second fundamental form h is related with the shape operator Sp by

1(Spu,w) = 1(h(u,w), ξ(p))

for u,w ∈ TpM.
Denote the partial derivatives ∂L

∂xi
, ∂2L
∂xi∂x j

, . . ., etc. by Li,Li j, . . ., etc. Put

W =

√√
1 +

n∑
i=1

F2
i . (2.2)

Let us recall some well-known results for a graph of hypersurface (2.1) in En+1 from [11, 4].
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Proposition 2.1. For a production hypersurface of En+1 defined by

f (x1, . . . , xn) = (x1, . . . , xn,L(x1, . . . , xn)),

the following statements hold:

1. The unit normal ξ is given by:

ξ =
1
W

(−L1, . . . ,−Ln, 1).

2. The coefficient 1i j = 1( ∂
∂xi
, ∂
∂x j

) of the metric tensor is given by:

1i j = δi j + LiL j,

where δi j = 1 if i = j, otherwise 0.
3. The Gauss-Kronecker curvature G is

G =
dethi j

det1i j
=

detLi j

Wn+2 . (2.3)

4. The sectional curvature Ki j with respect to the plane section spanned by { ∂∂xi
, ∂
∂x j
} is given by

Ki j =
LiiL j j − L2

i j

W2(1 + L2
i + L2

j )
. (2.4)

In particular, when n = 2, the sectional curvature K12 is the Gauss-Kronecker curvature G or also known as the
Gauss curvature.

5. The Riemann curvature tensor R and the metric tensor satisfy

1
(
R(

∂
∂xi

,
∂
∂x j

)
∂
∂xk

,
∂
∂xl

)
=

LilL jk − LikL jl

W4 . (2.5)

3. Quasi-Product Production Hypersurfaces

In the following, we study quasi-product production hypersurfaces. Under the assumption that hyper-
surfaces is flat, we obtain a complete classification.

We first deal with the case of quasi-product productions with the corresponding production surfaces
being flat in E3.

Theorem 3.1. Let L(x1, x2) = F( f1(x1) f2(x2)) be a quasi-product production function. If the graph of L in E3 is flat,
then, up to translations, L is given by one of the following functions:

1. L = F
(

exp(c1x1 + c2x2)
)
, c1, c2 ∈ R/0;

2. a Cobb-Douglas production function, i.e. L = axc
1x1−c

2 , a ∈ R+ and c ∈ R/{0, 1};
3. L = c1x1 + c2 ln( f2(x2)), c1, c2 ∈ R/0, where f2 satisfies f2 f ′′2 , f ′22 ;

4. L = a
(

ln f1(x1) + ln f2(x2)
)b

, a ∈ R+, b ∈ R/{0, 1}, where f1 and f2 satisfy differential equations
(b−1) f ′21

f1 f ′′1 − f ′21
+

ln f1 = c and (b−1) f ′22

f2 f ′′2 − f ′22
+ ln f2 = −c for some constant c, respectively;

5. L = c ln
(
− ln f1(x1)− ln f2(x2)

)
, c ∈ R+, where

f ′21

f1 f ′′1 − f ′21
− ln f1 = c and f ′22

f2 f ′′2 − f ′22
− ln f2 = −c for some constant

c, respectively.

Remark 3.2. Note that, if c = 0, the production function in Case (4) becomes

L =
(
c1x

1
b
1 + c2x

1
b
2 )

)b
, c1, c2 ∈ R, b ∈ R/{0, 1},

which is the ACMS (CES) production function.
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Proof. Suppose that L is a quasi-product production function taking the form

L(x1, x2) = F( f1(x1) f2(x2)). (3.1)

Denote by u = f1(x1) f2(x2). We assume that F′, f ′1 , f ′2 , 0, where ”′” denotes the derivative with respect to
the variable u.

Hence, we can define a quasi-product production surface M in E3 by a graph

f (x1, x2) = (x1, x2,L(x1, x2)). (3.2)

It follows from (3.1) that

L1 = f ′1 f2F′, L2 = f1 f ′2F′,

L11 = f ′′1 f2F′ + f ′21 f 2
2 F′′, (3.3)

L12 = f ′1 f ′2F′ + f1 f ′1 f2 f ′2F′′, (3.4)

L22 = f1 f ′′2 F′ + f 2
1 f ′22 F′′. (3.5)

Hence, (3.3-3.5) imply that

L11L22 − L2
12 = ( f1 f ′′1 f2 f ′′2 − f ′21 f ′22 )F′2 + f1 f2( f1 f ′′1 f ′22 + f ′21 f2 f ′′2 − 2 f ′21 f ′22 )F′F′′. (3.6)

Since the production surface (3.1) is flat, it follows from (2.4) and (3.6) that

( f1 f ′′1 f2 f ′′2 − f ′21 f ′22 )F′ + ( f1 f ′′1 f ′22 + f ′21 f2 f ′′2 − 2 f ′21 f ′22 )uF′′ = 0. (3.7)

We now distinguish the following two cases:
Case A. F′′ = 0. We have that F(u) = au + b for some real number a, b with a , 0. Since F′ , 0, (3.7) reduces
to

f1 f ′′1 f2 f ′′2 = f ′21 f ′22 ,

namely

f1 f ′′1
f ′21

·
f2 f ′′2
f ′22

= 1.

Hence, there exists a nonzero constant c such that

f1 f ′′1
f ′21

= c,
f2 f ′′2
f ′22

=
1
c
. (3.8)

Case A.1. c = 1. By solving (3.8), we get

f1(x1) = c3ec1x1 , f2(x2) = c4ec2x2 (3.9)

for some nonzero real numbers ci (i = 1, 2, 3, 4). This gives a special case of Case (1) in Theorem 1.
Case A.2. c , 1. The solutions of equations in (3.8) are given by

f1(x1) = (c1x1 + c2)
1

1−c , f2(x2) = (c3x2 + c4)
−c
1−c (3.10)

for some real numbers ci (i = 1, 2, 3, 4) with c1, c3 , 0. After suitable translations, we obtain Case (2).
Case B. F′′ , 0. In this case, we have either

f1 f ′′1 f2 f ′′2 − f ′21 f ′22 = 0,

f1 f ′′1 f ′22 + f ′21 f2 f ′′2 − 2 f ′21 f ′22 = 0,

or

f1 f ′′1 f2 f ′′2 − f ′21 f ′22 , 0, (3.11)

f1 f ′′1 f ′22 + f ′21 f2 f ′′2 − 2 f ′21 f ′22 , 0. (3.12)
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The former case implies that

f1 f ′′1
f ′21

=
f2 f ′′2
f ′22

= 1. (3.13)

Hence, by solving (3.13) we get Case (1) in Theorem 1. In the following, we consider the latter case.
Let us introduce two functions p and q as follows:

p(x1) =
f1 f ′′1
f ′21

, q(x2) =
f2 f ′′2
f ′22

. (3.14)

Then (3.11), (3.12) and (3.7) become

pq − 1 , 0,
p + q − 2 , 0,
(pq − 1)F′ + (p + q − 2)uF′′ = 0. (3.15)

Case B.1. p = 1, q , 1 or p , 1, q = 1. Without loss of generality, we assume p = 1, q , 1. Then, we have
f1(x1) = c2ec1x1 for some nonzero constants c1 and c2. Also, (3.7) yields

F′ + uF′′ = 0, (3.16)

which has the solution F(u) = a ln u + b for some constant a, b with a , 0. Hence, we obtain Case (3) in
Theorem 1.
Case B.2. p , 1, q , 1. We could rewrite (3.15) as

−
F′

uF′′ + F′
=

1
p − 1

+
1

q − 1
. (3.17)

Differential both hand-sides of equation (3.17) with respect to x1 and then x2, we obtain( F′

uF′′ + F′
)′

+ u
( F′

uF′′ + F′
)′′

= 0. (3.18)

By integration on (3.18), we have

F′

uF′′ + F′
= a ln u + b (3.19)

for some constants a and b. Note that a2 + b2 , 0 in (3.19).
Moreover, if a , −1, 0, by solving (3.19), we get

F(u) = c
(
a ln u + b

) 1+a
a

+ d, (3.20)

where a, c ∈ R/0 and b, d ∈ R. Taking into account (3.17) and up to suitable translation, we have Case (4) in
Theorem 1.

Similarly, if a = −1, after integration we obtain Case (5) in Theorem 1.
In the case a = 0, the solution of (3.19) gives F = c1u

1
b + c2 for some constants c1, b, c2 and c1, b , 0. In this

case, (3.17) means that p, q are nonzero constants. Hence, by integration on (3.14) and applying (3.17) we
obtain Case (2) as well , which finishes the proof of Theorem 1.

In the following, we deal with the general case of quasi-product production function with n-inputs for
n > 2.

Theorem 3.3. Let L(x1, . . . , xn) = F
(∏n

i=1 fi(xi)
)

be a quasi-product production function. If the graph of L is flat,
then, up to translations, L is given by one of the following functions:

1. L = F
(

exp
(∑n

i=1 cixi

))
, ci ∈ R/0;

2. L = c1 ln( f1(x1)) + c2x2 + · · · + cnxn, ci ∈ R/0, where f1 satisfies f1 f ′′1 , f ′21 ;
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3. L = a
√

x1 · · · xn, a ∈ R+.

Proof. Let L be a n-inputs quasi-product production function. Then L corresponds a graph in Euclidean
space En+1,

f (x1, . . . , xn) = (x1, . . . , xn,L(x1, . . . , xn)). (3.21)

Now suppose that L has the following form

L(x1, . . . , xn) = F
( n∏

i=1

fi(xi)
)
. (3.22)

Denote by u =
∏n

i=1 fi(xi). Note that F′, f ′i , 0 (i = 1, . . . ,n), where ”′” denotes the derivative with respect to
the variable u.

A direct computation shows that

Li =
f ′i
fi

uF′, i = 2, . . . ,n,

Lii =
f ′′i
fi

uF′ +
( f ′i

fi

)2
u2F′′, i = 2, . . . ,n, (3.23)

Li j =
f ′i f ′j
fi f j

u(F′ + uF′′), i, j = 2, . . . ,n, and i , j. (3.24)

According to the assumption that the sectional curvature Ki j is vanishing, we have

LiiL j j = L2
i j, i , j. (3.25)

Substituting (3.23) and (3.24) into (3.25), we get

( f ′′i f ′′j
fi f j
−

f ′2i f ′2j

f 2
i f 2

j

)
u2F′2 +

( f ′′i f ′2j

fi f 2
j

+
f ′2i f ′′j
f 2
i f j
− 2

f ′2i f ′2j

f 2
i f 2

j

)
u3F′F′′ = 0,

Since F′ , 0, the above equation reduces to

( f ′′i f ′′j
fi f j
−

f ′2i f ′2j

f 2
i f 2

j

)
+

( f ′′i f ′2j

fi f 2
j

+
f ′2i f ′′j
f 2
i f j
− 2

f ′2i f ′2j

f 2
i f 2

j

)
u

F′′

F′
= 0. (3.26)

If one has

f ′′i f ′2j

fi f 2
j

+
f ′2i f ′′j
f 2
i f j
− 2

f ′2i f ′2j

f 2
i f 2

j

= 0, (3.27)

then (3.26) gives

f ′′i f ′′j
fi f j
−

f ′2i f ′2j

f 2
i f 2

j

= 0. (3.28)

Combining (3.28) with (3.27) gives

fi f ′′i
f ′2i

= 1, i = 1, . . . ,n. (3.29)

Solving (3.29) gives Case (1) in Theorem 2.
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Hence, we assume that

f ′′i f ′2j

fi f 2
j

+
f ′2i f ′′j
f 2
i f j
− 2

f ′2i f ′2j

f 2
i f 2

j

, 0. (3.30)

Differentiating (3.26) with respect to x1, l , i, j, we have(
u

F′′

F′
)′

u
f ′l
fl

= 0,

that is

u
F′′

F′
= c (3.31)

for some constant c. If c , −1, then F is given by

F = auc+1 + b, a ∈ R/0, b ∈ R, (3.32)

and if c = −1, then

F = a ln u + b, a ∈ R/0, b ∈ R. (3.33)

Taking into account (3.31), (3.26) becomes( fi f ′′i
f ′2i

f j f ′′j
f 2
j

− 1
)

+
( fi f ′′i

f ′2i

+
f j f ′′j
f 2
j

− 2
)
c = 0. (3.34)

Equation (3.34) can also rewritten as( fi f ′′i
f ′2i

+ c
)( f j f ′′j

f 2
j

+ c
)

= (c + 1)2. (3.35)

When c = −1, without loss of generality, we assume
f1 f ′′1
f ′21
, 1. Then, (3.35) implies that

fi f ′′i
f ′2i

= 1, i = 2, . . . ,n. (3.36)

By solving (3.36), we obtain Case (2). This is a quasi-linear production function.
When c , −1, (3.35) means that

fi f ′′i
f ′2i

= −2c − 1, i = 1, . . . ,n. (3.37)

Solving (3.37) gives

fi = (cixi + di)
1

2c+2 , ci ∈ R/0, di ∈ R, i = 1, . . . ,n. (3.38)

Combining this with (3.32), after suitable translations we get Case (3) in Theorem 2. This is a generalized
Cobb-Douglas production function.

A Riemannian space is called Ricci-flat if its Ricci tensor vanishes (cf. [11]). Also, 3-dimensional Ricci-flat
manifolds are always flat spaces. As an application of Theorem 2, we have

Corollary 3.4. Let L(x1, x2, x3) = F
(

f1(x1) f2(x2) f3(x3)
)

be a quasi-product production function. If the graph of L is
Ricci-flat, then, up to translations, L is given by one of the following three functions:

1. L = F
(

exp
(
c1x1 + c2x2 + c3x3

))
, ci ∈ R/0;

2. L = c1 ln( f1(x1)) + c2x2 + c3x3, ci ∈ R/0, where f1 satisfies f1 f ′′1 , f ′21 ;
3. L = a

√
x1x2x3, a ∈ R+.
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