Some Families of q-Sums and q-Products

Taekyun Kim ${ }^{\text {a }}$, Dae San Kim ${ }^{\text {b }}$, Won Sang Chung ${ }^{\text {c }}$, Hyuck In Kwon ${ }^{\text {d }}$
${ }^{a}$ Department of Mathematics, Kwangwon University, Seoul 139-701, Republic of Korea
${ }^{b}$ Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
${ }^{c}$ Department of Physics, Gyeongsang National University, Jinju 660,701, Republic of Korea
${ }^{d}$ Department of Mathematics, Kwangwon University, Seoul 139-701, Republic of Korea

Abstract

In this paper, we introduce two new binary operations, the one called q-sum and defined on the set of all real numbers and the other called q-product and defined on a subset of real numbers, which have potential importance in the study of q-numbers. The set of q-numbers of all real numbers, for example, is a field when these operations are restricted to it. Also, we introduce new q-exponential and q-logarithm and show some relations for them. Finally, we give some remarks on the well-known q-gamma, q-exponential, and q-beta functions.

1. Introduction and Preliminaries

Throughout this paper, let q denote a fixed real number with $0<q<1$. We define a binary operation \oplus, called q-sum, on the set of real numbers \mathbb{R} as follows: for real numbers x and y,

$$
\begin{equation*}
x \oplus y=x+y+(q-1) x y \tag{1.1}
\end{equation*}
$$

Then \mathbb{R} equipped with the operation \oplus is a commutative monoid with 0 the identity. Note here that the operation is associative, since

$$
(x \oplus y) \oplus z=x \oplus(y \oplus z)=x+y+z+(q-1)(x y+x z+y z)+(q-1)^{2} x y z .
$$

It is easy to see by induction that, for $x_{1}, \cdots, x_{n} \in \mathbb{R}$, we have

$$
\begin{equation*}
x_{1} \oplus \cdots \oplus x_{n}=\sum_{k=1}^{n}(q-1)^{k-1} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} x_{i_{1}} \cdots x_{i_{k}} \tag{1.2}
\end{equation*}
$$

In particular, $\underbrace{x \oplus \cdots \oplus x}_{n \text {-times }}=\oplus_{i=1}^{n} x=\sum_{k=1}^{n}\binom{n}{k}(q-1)^{k-1} x^{k}=\frac{(1+(q-1) x)^{n}-1}{q-1}$.
Let

$$
\begin{equation*}
\Sigma_{q}=\left\{x \in \mathbb{R} \left\lvert\, x<\frac{1}{1-q}\right.\right\} . \tag{1.3}
\end{equation*}
$$

[^0]We define another binary operation \otimes, called q-product, on \sum_{q} as follows: for $x, y \in \sum_{q}$,

$$
\begin{equation*}
x \otimes y=\frac{1}{q-1}\left(q^{\{x, y\}_{q}}-1\right) \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\{x, y\}_{q}=\frac{\log (1+(q-1) x) \log (1+(q-1) y)}{(\log q)^{2}} \tag{1.5}
\end{equation*}
$$

Then \mathbb{R} equipped with the operation \otimes is a commutative monoid with 1 the identity. Note here that $\{x, y\}_{q}$ is defined for $x, y \in \sum_{q}, x \otimes y \in \sum_{q}$ if $x, y \in \sum_{q}$, and that the operation is associative, since

$$
\begin{equation*}
\{x \otimes y, z\}_{q}=\{x, y \otimes z\}_{q}=\frac{\log (1+(q-1) x) \log (1+(q-1) y) \log (1+(q-1) z)}{(\log q)^{3}} \tag{1.6}
\end{equation*}
$$

which we denote by $\{x, y, z\}_{q}$.
In general, for $x_{1}, x_{2}, \cdots, x_{n} \in \sum_{q}$, by $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}_{q}$ we denote

$$
\begin{equation*}
\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}_{q}=\frac{\prod_{i=1}^{n} \log \left(1+(q-1) x_{i}\right)}{(\log q)^{n}} \tag{1.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n}=\frac{1}{q-1}\left(q^{\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}_{q}}-1\right) \tag{1.8}
\end{equation*}
$$

So, in particular, $\underbrace{x \otimes \cdots \otimes x}_{n \text {-times }}=x^{\otimes n}=\frac{1}{q-1}\left(q^{\{x, x, \cdots, x\}_{q}}-1\right)$, with

$$
\begin{equation*}
\{x, \cdots, x\}_{q}=\Pi_{i=1}^{n}\left(\frac{\log (1+(q-1) x)}{\log q}\right)^{n} \tag{1.9}
\end{equation*}
$$

We now restrict the q-sum and q-product to sets of q-numbers. The q-number $[x]_{q}$ of the real number x is as usual defined as

$$
\begin{equation*}
[x]_{q}=\frac{q^{x}-1}{q-1} . \tag{1.10}
\end{equation*}
$$

Then we see that $\lim _{q \rightarrow 1-}[x]_{q}=x$. For any subset X of \mathbb{R}, let $[X]_{q}$ be the subset of \mathbb{R} given by

$$
\begin{equation*}
[X]_{q}=\left\{[x]_{q} \mid x \in \mathbb{R}\right\} \tag{1.11}
\end{equation*}
$$

which may be called the q-numbers of X.
Now, it is easy to see that, for real numbers x and y,

$$
\begin{align*}
& {[x]_{q} \oplus[y]_{q}=[x+y]_{q},} \tag{1.12}\\
& {[x]_{q} \otimes[y]_{q}=[x y]_{q} .} \tag{1.13}
\end{align*}
$$

Note here that $[x]_{q} \in \sum_{q}$, for any real number x.
Thus we obtain the following proposition.
Proposition 1.1. Let A, R, F be respectively a subgroup of the additive group of \mathbb{R}, a subring of \mathbb{R}, and a subfield of \mathbb{R}. Then $\left([A]_{q}, \oplus, 0\right)$ is a group, $\left([R]_{q}, \oplus, \otimes, 0,1\right)$ is an integral domain and $\left([F]_{q}, \oplus, \otimes, 0,1\right)$ is a field, In particular, $\left([\mathbb{Z}]_{q}, \oplus, 0\right)$ is a cyclic group generated by 1 , and $\left([\mathbb{R}]_{q}, \oplus, \otimes, 0,1\right)$ is a field.

In this paper, we introduce two new binary operations, the one called q-sum and defined on the set of all real numbers and the other called q-product and defined on a subset of real numbers, which have potential importance in the study of q-numbers. The set of q-numbers of all real numbers, for example, is a field when these operations are restricted to it. Also, we introduce q-exponential and q-logarithm and show some relations for them. Finally, we give some remarks on the well-known q-gamma, q-exponential, and q-beta functions.

As the related works, one is referred to $[2,5,6,7]$ in connection with q-analysis(especially q-series and q-polynomials) and to $[8,9]$ in connection with summation-integral operators.

2. Main Results

Theorem 2.1. Let $f(x)$ be a real-valued function defined on $[\mathbb{N}]_{q}$ with $f\left([1]_{q}\right)=f(1)=1$. Then we have

$$
\oplus_{r=1}^{n} f\left([r]_{q}\right)=1+q \sum_{k=2}^{n}(q-1)^{k-2} \sum_{1=i_{1}<i_{2}<\cdots<i_{k} \leq n} \Pi_{j=1}^{k} f\left(\left[i_{j}\right]_{q}\right) .
$$

Proof. We proceed the proof by induction on n. For $n=1$, the claim is equivalent to $f\left([1]_{q}\right)=1$ which holds. Assume that the claim holds for n and let us prove it for $n+1$.

$$
\begin{align*}
& \oplus_{r=1}^{n+1} f\left([r]_{q}\right)=\left(\oplus_{r=1}^{n} f\left([r]_{q}\right)\right) \oplus f\left([n+1]_{q}\right) \tag{2.1}\\
&=\left(1+q \sum_{k=2}^{n}(q-1)^{k-2} \sum_{1=i_{1}<i_{2}<\cdots<i_{k} \leq n} \Pi_{j=1}^{k} f\left(\left[i_{j}\right]_{q}\right)\right) \oplus f\left([n+1]_{q}\right) \\
&=\left(1+q \sum_{k=2}^{n}(q-1)^{k-2} \sum_{1=i_{1}<i_{2}<\cdots<i_{k} \leq n} \Pi_{j=1}^{k} f\left(\left[i_{j}\right]_{q}\right)\right)+f\left([n+1]_{q}\right) \\
&+(q-1)\left(1+q \sum_{k=2}^{n}(q-1)^{k-2} \sum_{1=i_{1}<i_{2}<\cdots<i_{k} \leq n} \Pi_{j=1}^{k} f\left(\left[i_{j}\right]_{q}\right)\right) f\left([n+1]_{q}\right) \\
&=\left(1+q \sum_{k=2}^{n}(q-1)^{k-2} \sum_{1=i_{1}<i_{2}<\cdots<i_{k} \leq n} \Pi_{j=1}^{k} f\left(\left[i_{j}\right]_{q}\right)\right)+q f\left([n+1]_{q}\right) \\
&+q \sum_{k=2}^{n}(q-1)^{k-1} \sum_{1=i_{1}<i_{2}<\cdots<i_{k}<i_{k+1}=n+1} \Pi_{j=1}^{k+1} f\left(\left[i_{j}\right]_{q}\right) \\
&= 1+q \sum_{k=2}^{n+1}(q-1)^{k-2} \sum_{1=i_{1}<i_{2}<\cdots<i_{k}<n+1} \Pi_{j=1}^{k} f\left(\left[i_{j}\right]_{q}\right) \\
&+q \sum_{k=3}^{n+1}(q-1)^{k-2} \sum_{1=i_{1}<i_{2}<\cdots<i_{k}=n+1} \Pi_{j=1}^{k} f\left(\left[i_{j}\right]_{q}\right)+q f\left([n+1]_{q}\right) \\
&= 1+q \sum_{k=2}^{n+1}(q-1)^{k-2} \sum_{1=i_{1}<i_{2}<\cdots<i_{k}<n+1} \Pi_{j=1}^{k} f\left(\left[i_{j}\right]_{q}\right) \\
&+q \sum_{k=2}^{n+1}(q-1)^{k-2} \sum_{1=i_{1}<i_{2}<\cdots<i_{k}=n+1} \Pi_{j=1}^{k} f\left(\left[i_{j}\right]_{q}\right) \\
&=1+q \sum_{k=2}^{n+1}(q-1)^{k-2} \sum_{1=i_{1}<\cdots<i_{k} \leq n+1} \Pi_{j=1}^{k} f\left(\left[i_{j}\right]_{q}\right) .
\end{align*}
$$

Let us take $f(x)=x$. Then we obtain the following corollary.
Corollary 2.2. For $n \in \mathbb{N}$, we have

$$
\left[\binom{n+1}{2}\right]_{q}=\oplus_{r=1}^{n}[r]_{q}=1+q \sum_{k=2}^{n}(q-1)^{k-2} \sum_{1=i_{1}<i_{2}<\cdots<i_{k} \leq n} \Pi_{j=1}^{k}\left[i_{j}\right]_{q} .
$$

In the special case, $f(x)=x^{2}$, we obtain the following corollary.
Corollary 2.3. For $n \in \mathbb{N}$, we have

$$
\oplus_{r=1}^{n}[r]_{q}^{2}=1+q \sum_{k=2}^{n}(q-1)^{k-2} \sum_{1=i_{1}<i_{2}<\cdots<i_{k} \leq n} \Pi_{j=1}^{k}\left[i_{j}\right]_{q}^{2} .
$$

From (1.7) and (1.8), we have, for $x_{1}, \cdots, x_{n} \in \sum_{q}(c f .(1.3))$,

$$
\begin{equation*}
\otimes_{i=1}^{n} x_{i}=\frac{1}{q-1}\left(q^{\frac{n_{i=1}^{n} \log \left(1+(q-1) x_{i}\right)}{(\log q)^{n}}}-1\right) \tag{2.2}
\end{equation*}
$$

and, for any $x_{1}, \cdots, x_{n} \in \mathbb{R}$,

$$
\begin{equation*}
\otimes_{i=1}^{n}\left[x_{i}\right]_{q}=\left[x_{1} x_{2} \cdots x_{n}\right]_{q}=\left[\prod_{i=1}^{n} x_{i}\right]_{q} . \tag{2.3}
\end{equation*}
$$

Thus, from (2.2) and (2.3), we have, for $x \in \sum_{q}$,

$$
\begin{equation*}
x^{\otimes n}=\underbrace{x \otimes \cdots \otimes x}_{n \text {-times }}=\frac{1}{q-1}\left(q^{\left(\frac{\log (1+(q-1) x)}{\log q}\right)^{n}}-1\right), \tag{2.4}
\end{equation*}
$$

and, for any $x \in \mathbb{R}$,

$$
\begin{equation*}
[x]_{q}^{\otimes n}=\underbrace{[x]_{q} \otimes \cdots \otimes[x]_{q}}_{n \text {-times }}=\left[x^{n}\right]_{q} \tag{2.5}
\end{equation*}
$$

Provided that $x+y \in \sum_{q}$, from (2.4) and (2.5) we have

$$
\begin{equation*}
(x+y)^{\otimes n}=\frac{1}{q-1}\left(q^{\left(\frac{\log (1+(q-1)(x+y))}{\log g}\right)^{n}}-1\right) \tag{2.6}
\end{equation*}
$$

and, for any $x, y \in \mathbb{R}$,

$$
\begin{equation*}
\left([x]_{q} \oplus[y]_{q}\right)^{\otimes n}=\left[(x+y)^{n}\right]_{q} . \tag{2.7}
\end{equation*}
$$

Let us define a q-analogue of exponential function on \mathbb{R} as follows:

$$
\begin{equation*}
e_{q}(x)=\lim _{n \rightarrow \infty}\left(1 \oplus\left[\frac{x}{n}\right]_{q}\right)^{\otimes n} . \tag{2.8}
\end{equation*}
$$

Then, by (2.7) and (2.8), we get

$$
\begin{equation*}
e_{q}(x)=\lim _{n \rightarrow \infty}\left[\left(1+\frac{x}{n}\right)^{n}\right]_{q}=\left[e^{x}\right]_{q} . \tag{2.9}
\end{equation*}
$$

From (1.13) and (2.9), we have

$$
\begin{align*}
e_{q}(x) \otimes e_{q}(y) & =\left[e^{x}\right]_{q} \otimes\left[e^{y}\right]_{q} \tag{2.10}\\
& =\left[e^{x+y}\right]_{q}=e_{q}(x+y),
\end{align*}
$$

and

$$
\begin{align*}
e_{q}(x \oplus y) & =e_{q}(x+y+(q-1) x y)=\left[e^{x+y+(q-1) x y}\right]_{q} \\
& =\left[e^{x+y} e^{(q-1) x y}\right]_{q}=\left[e^{x+y}\right]_{q} \otimes\left[e^{(q-1) x y}\right]_{q} \tag{2.11}\\
& =\left[e^{x}\right]_{q} \otimes\left[e^{y}\right]_{q} \otimes\left[e^{(q-1) x y}\right]_{q} \\
& =e_{q}(x) \otimes e_{q}(y) \otimes e_{q}((q-1) x y) .
\end{align*}
$$

Therefore, by (2.10) and (2.11), we obtain the following proposition.
Proposition 2.4. For $x, y \in \mathbb{R}$, we have

$$
e_{q}(x \oplus y)=e_{q}(x) \otimes e_{q}(y) \otimes e_{q}((q-1) x)
$$

and

$$
e_{q}(x) \otimes e_{q}(y)=e_{q}(x+y)
$$

Let us define a q-logarithm on $\sum_{q}^{+}=\sum_{q} \cap \mathbb{R}^{+}=\left\{x \in \mathbb{R} \left\lvert\, 0<x<\frac{1}{1-q}\right.\right\}$ as follows:

$$
\begin{equation*}
\log _{q} x=\log \left(\frac{\log (1+(q-1) x)}{\log q}\right) \tag{2.12}
\end{equation*}
$$

Then, by (2.12), we get

$$
\begin{equation*}
\log _{q}[x]_{q}=\log x(x>0), \log _{q}\left(e_{q}(x)\right)=x(x \in \mathbb{R}) \tag{2.13}
\end{equation*}
$$

It is easy to show that, for $x, y \in \sum_{q}^{+}$,

$$
\begin{equation*}
\log _{q}(x \otimes y)=\log _{q} x+\log _{q} y \tag{2.14}
\end{equation*}
$$

Note here that $x \otimes y \in \sum_{q}^{+}$, if $x, y \in \sum_{q}^{+}$. Therefore, by (2.13) and (2.14), we obtain the following proposition.

Proposition 2.5. We have the following identities:

$$
\log _{q}\left(e_{q}(x)\right)=x(x \in \mathbb{R}), \log _{q}(x \otimes y)=\log _{q} x+\log _{q} y \quad\left(x, y \in \Sigma_{q}^{+}\right)
$$

3. Further Remarks

In this section, we use the following notations:

$$
\begin{align*}
& (a+b)_{q}^{n}=\Pi_{j=0}^{n}\left(a+q^{j} b\right), \text { if } n \in \mathbb{Z}_{+} \tag{3.1}\\
& (1+a)_{q}^{t}=\frac{(1+a)_{q}^{\infty}}{\left(1+q^{t} a\right)_{q}^{\infty}}, \text { if } t \in \mathbb{C},(\operatorname{see}[1,4]), \tag{3.2}
\end{align*}
$$

where q is a fixed real number with $0<q<1$.
The q-integral is defined as

$$
\begin{equation*}
\int_{0}^{x} f(t) d_{q} t=(1-q) x \sum_{k=0}^{\infty} f\left(q^{k} x\right) q^{k},(\operatorname{see}[3,4]) . \tag{3.3}
\end{equation*}
$$

The q-gamma function is defined as

$$
\begin{equation*}
\Gamma_{q}(t)=\int_{0}^{\frac{1}{1-q}} x^{t-1} E_{q}(-q x) d_{q} x,(t>0) \tag{3.4}
\end{equation*}
$$

where $E_{q}(x)$ is one of the q-analogues of exponential fucntion which is defined by

$$
\begin{equation*}
E_{q}(x)=(1+(1-q) x)_{q}^{\infty}=\sum_{k=0}^{\infty} \frac{q^{\binom{k}{2}}}{[k]_{q}!} x^{k}, \tag{3.5}
\end{equation*}
$$

where $[k]_{q}!=[k]_{q}[k-1]_{q} \cdots[2]_{q}[1]_{q}$.
As is well known, another q-exponential function is defined by

$$
\begin{equation*}
e_{q}(x)=\frac{1}{(1-(1-q) x)_{q}^{\infty}}=\sum_{n=0}^{\infty} \frac{x^{n}}{[n]_{q}!},(\operatorname{see}[1,4]) . \tag{3.6}
\end{equation*}
$$

Thomae and Jackson have shown the q-beta function as follows:

$$
\begin{equation*}
B_{q}(t, s)=\frac{\Gamma_{q}(t) \Gamma_{q}(s)}{\Gamma_{q}(t+s)},(t, s>0) \tag{3.7}
\end{equation*}
$$

The q-integral representation, which is a q-analogue of Euler's formula, is given by

$$
\begin{equation*}
B_{q}(t, s)=\int_{0}^{1} x^{t-1}(1-q x)_{q}^{s-1} d_{q} x \tag{3.8}
\end{equation*}
$$

From (3.4), we note that

$$
\begin{equation*}
\Gamma_{q}(t)=\frac{(1-q)_{q}^{t-1}}{(1-q)^{t-1}},[t]_{q} \Gamma(t)=\Gamma_{q}(t+1),(\operatorname{see}[3,4]) \tag{3.9}
\end{equation*}
$$

From (3.4), we have

$$
\begin{align*}
\Gamma_{q}\left(\frac{1}{2}\right) & =\int_{0}^{\frac{1}{1-q}} x^{-\frac{1}{2}} E_{q}(-q x) d_{q} x \\
& =\sum_{n=0}^{\infty} q^{n}\left(\frac{q^{n}}{1-q}\right)^{-\frac{1}{2}} E_{q}\left(-\frac{q^{n+1}}{1-q}\right) \\
& =\sqrt{1-q} \sum_{n=0}^{\infty} q^{\frac{n}{2}}\left(1-q^{n+1}\right)_{q}^{\infty} \tag{3.10}\\
& =\sqrt{1-q}(1-q)_{q}^{\infty} \sum_{n=0}^{\infty} \frac{q^{\frac{n}{2}}}{(1-q)_{q}^{n}} \\
& =\sqrt{1-q}(1-q)_{q}^{\infty} \sum_{n=0}^{\infty} \frac{q^{\frac{n}{2}}}{[n]_{q}!}\left(\frac{1}{1-q}\right)^{n} \\
& =\sqrt{1-q} E_{q}\left(\frac{q}{q-1}\right) e_{q}\left(\frac{q^{\frac{1}{2}}}{1-q}\right)
\end{align*}
$$

Therefore, by (3.10), we obtain the following proposition.
Proposition 3.1. For $0<q<1$, we have

$$
\Gamma_{q}\left(\frac{1}{2}\right)=\sqrt{1-q} E_{q}\left(\frac{q}{q-1}\right) e_{q}\left(\frac{q^{\frac{1}{2}}}{1-q}\right)
$$

Note that

$$
\lim _{q \rightarrow 1-} \sqrt{1-q} E_{q}\left(\frac{q}{q-1}\right) e_{q}\left(\frac{q^{\frac{1}{2}}}{1-q}\right)=\sqrt{\pi}
$$

We note that

$$
(1-x)_{q}^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{3.11}\\
k
\end{array}\right]_{q}(-1)^{k} q^{\binom{k}{2} x^{k},}
$$

and

$$
\frac{1}{(1-x)_{q}^{n}}=\sum_{k=0}^{n}\left[\begin{array}{c}
k+n-1 \tag{3.12}\\
k
\end{array}\right]_{q} x^{k}
$$

where $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}(\operatorname{see}[1,3,4])$.
From (3.12), we have

$$
\begin{align*}
\frac{1}{(1-x)_{q}^{\frac{1}{2}}} & =\sum_{k=0}^{\infty}\left[\begin{array}{c}
\frac{1}{2}+k-1 \\
k
\end{array}\right]_{q} x^{k}=\sum_{k=0}^{\infty}\left[\begin{array}{c}
k-\frac{1}{2} \\
k
\end{array}\right]_{q} x^{k} \\
& =\sum_{k=0}^{\infty} \frac{\left[k-\frac{1}{2}\right]_{q}\left[k-\frac{3}{2}\right]_{q} \cdots\left[\frac{1}{2}\right]_{q}}{[k]_{q}!} x^{k} \\
& =\sum_{k=0}^{\infty} \frac{\left[k-\frac{1}{2}\right]_{q}\left[k-\frac{3}{2}\right]_{q} \cdots\left[\frac{1}{2}\right]_{q} \Gamma_{q}\left[\frac{1}{2}\right]}{[k]_{q}!\Gamma_{q}\left(\frac{1}{2}\right)} x^{k} \tag{3.13}\\
& =\sum_{k=0}^{\infty} \frac{\Gamma_{q}\left(1+k-\frac{1}{2}\right)}{[k]_{q}!\Gamma_{q}\left(\frac{1}{2}\right)} x^{k}=\sum_{k=0}^{\infty} \frac{\Gamma_{q}\left(k+\frac{1}{2}\right)}{\Gamma_{q}(k+1) \Gamma_{q}\left(\frac{1}{2}\right)} x^{k} \\
& =\sum_{k=0}^{\infty} \frac{1}{[k]_{q}} \frac{1}{B_{q}\left(k, \frac{1}{2}\right)} .
\end{align*}
$$

It is not difficult to show that

$$
\begin{align*}
& \frac{\left[k-\frac{1}{2}\right]_{q}\left[k-\frac{3}{2}\right]_{q} \cdots\left[\frac{1}{2}\right]_{q}}{[k]_{q}!}=\frac{[2 k]_{q^{\frac{1}{2}}}!}{\left([k]_{q}!\right)^{2}\left([2]_{q^{\frac{1}{2}}}\right)^{2 k}} \tag{3.14}\\
& =\frac{\Gamma_{q^{\frac{1}{2}}}(2 k+1)}{\left(\Gamma_{q}(k+1)\right)^{2}\left([2]_{q^{\frac{1}{2}}}\right)^{2 k}} .
\end{align*}
$$

Thus, by (3.12) and (3.14), we get

$$
\begin{equation*}
\frac{1}{(1-x)_{q}^{\frac{1}{2}}}=\sum_{k=0}^{\infty} \frac{\Gamma_{q^{\frac{1}{2}}}(2 k+1)}{\left(\Gamma_{q}(k+1)\right)^{2}\left([2]_{q^{\frac{1}{2}}}\right)^{2 k}} x^{k} . \tag{3.15}
\end{equation*}
$$

Therefore, by (3.13) and (3.15), we obtain the following proposition.
Proposition 3.2. For $k \geq 0$, we have

$$
[k]_{q} B_{q}\left(k, \frac{1}{2}\right)=\frac{\left(\Gamma_{q}(k+1)\right)^{2}\left([2]_{q^{\frac{1}{2}}}\right)^{2 k}}{\Gamma_{q^{\frac{1}{2}}}(2 k+1)} .
$$

Acknowledgements

The authors would like to express their sincere gratitude to Professor Toufik Mansour for his valuable comments. Our thanks also go to the referee for his valuable suggestions.

References

[1] R. Agarwal and V. Gupta, On q-analogue of complex summation-integral type operators in compact disks, J. Ineq. Appl. (2012), 2012:111,13pp.
[2] W. S. Chung, T. Kim and T. Mansour, The q-deformed gamma function and q-deformed polygamma function, Bull. Korean Math. Soc., 51 (2014), 1155-1161.
[3] N. K. Govil and V. Gupta, q-Beta-Szász-Stancu operators, Adv, Stud. Contemp, Math, 22 (2012), 117-123.
[4] V. Gupta and T. Kim, On the rate of approximation by q-modified beta operators, J.Math. Anal, Appl., 377 (2011), 471-480.
[5] D. S. Kim and T. Kim, q-Bernoulli polynomials and q-umbral calculus, Sci. China Math., 57 (2014), 1867-1874.
[6] H. M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci. 5 (2011), 390-444.
[7] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
[8] H. M. Srivastava, Z. Finta and V. Gupta, Direct results for a certain family of summation-integral type operators, Appl. Math. Comput. 190 (2007), 449-447.
[9] H. M. Srivastava and V. Gupta, A certain family of summation-integral type operators, Math. Comput. Modelling 37 (2003), $1307-1315$.

[^0]: 2010 Mathematics Subject Classification. Primary 5A30
 $K e y w o r d s$. q-sum, q-product, q-exponential, q-logarithm
 Received: 12 April 2015; Accepted: 18 April 2015
 Communicated by Hari M. Srivastava
 Email addresses: tkkim@kw. ac.kr (Taekyun Kim), dskim@sogang.ac.kr (Dae San Kim), mimip4444@hanmail.net (Won Sang Chung), sura@kw.ac.kr (Hyuck In Kwon)

