# Differences of Generalized Weighted Composition Operators from the Bloch Space into Bers-type Spaces 

Xiaosong Liu ${ }^{\text {a }}$, Songxiao Li ${ }^{\text {a }}$<br>${ }^{a}$ Department of Mathematics, Jiaying University, Meizhou 514015, China


#### Abstract

We study the boundedness and compactness of the differences of two generalized weighted composition operators acting from the Bloch space to Bers-type spaces.


## 1. Introduction

Let $\mathbb{D}=\{z:|z|<1\}$ be the unit disk in the complex plane $\mathbb{C}$ and $H(\mathbb{D})$ be the space of all analytic functions on $\mathbb{D}$. For $a \in \mathbb{D}$, let $\sigma_{a}$ be the automorphism of $\mathbb{D}$ exchanging 0 for $a$, namely $\sigma_{a}(z)=\frac{a-z}{1-\bar{z} z}, z \in \mathbb{D}$. It is well known that

$$
\frac{\left|\sigma_{a}^{\prime}(z)\right|}{1-\left|\sigma_{a}(z)\right|^{2}}=\frac{1}{1-|z|^{2}} \quad \text { and } \quad \frac{\left(1-|z|^{2}\right)\left(1-|a|^{2}\right)}{|1-\bar{a} z|^{2}}=1-\left|\sigma_{a}(z)\right|^{2}
$$

For $a, z \in \mathbb{D}$, the pseudo-hyperbolic distance between $z$ and $a$ is given by $\rho(z, a)=\left|\sigma_{a}(z)\right|$. It is easy to check that $\rho(z, a)$ satisfies the following inequality:

$$
\begin{equation*}
\frac{1-\rho(z, a)}{1+\rho(z, a)} \leq \frac{1-|z|^{2}}{1-|a|^{2}} \leq \frac{1+\rho(z, a)}{1-\rho(z, a)}, \quad z, a \in \mathbb{D} \tag{1}
\end{equation*}
$$

An $f \in H(\mathbb{D})$ belongs to the Bloch space $\mathcal{B}$, if

$$
\|f\|_{\mathcal{B}}=|f(0)|+\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty
$$

$\mathcal{B}$ is a Banach space with the above norm.
Let $\alpha \geq 0$. An $f \in H(\mathbb{D})$ belongs to the Bers-type space, denoted by $H_{\alpha}^{\infty}$, if

$$
\|f\|_{H_{\alpha}^{\infty}}=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}|f(z)|<\infty .
$$

Also, $H_{\alpha}^{\infty}$ is a Banach space with the norm $\|\cdot\|_{H_{\alpha}^{\infty}}$. When $\alpha=0, H_{0}^{\infty}$ is just the bounded analytic function space, simply denoted by $H^{\infty}$.

[^0]Throughout the paper, $S(\mathbb{D})$ denotes the set of analytic self-maps of $\mathbb{D}$. A map $\varphi \in S(\mathbb{D})$ induces a linear operator $C_{\varphi}$, where $C_{\varphi} f=f \circ \varphi, f \in H(\mathbb{D}) . C_{\varphi}$ is called the composition operator.

Let $\varphi \in S(\mathbb{D})$ and $u \in H(\mathbb{D})$. The weighted composition operator, denoted by $u C_{\varphi}$, is defined as following:

$$
\left(u C_{\varphi} f\right)(z)=u(z) f(\varphi(z)), \quad z \in \mathbb{D} .
$$

In these five decades, there has been much work on composition operators and weighted composition operators on various Banach spaces of analytic functions. See [2,12,21] for a comprehensive overview of this field.

Let $\varphi \in S(\mathbb{D}), u \in H(\mathbb{D})$ and $n$ be a nonnegative integer. Let $f^{(n)}$ denote the $n$-th derivative of $f$ and $f^{(0)}=f$. A linear operator $D_{\varphi, u}^{n}$ is defined by

$$
D_{\varphi, u}^{n} f=u f^{(n)} \circ \varphi, \quad f \in H(\mathbb{D})
$$

If $n=0$ and $u(z)=1$, then $D_{\varphi, u}^{n}$ is the composition operator $C_{\varphi}$. If $n=0$, then $D_{\varphi, u}^{n}$ is just the weighted composition operator $u C_{\varphi}$. If $n=1$ and $u(z)=\varphi^{\prime}(z)$, then $D_{\varphi, u}^{n}=D C_{\varphi}$. The operator $D_{\varphi, u}^{n}$ is called the generalized weighted composition operator, which includes many known operators and was introduced by Zhu in [22], and studied in [7, 8, 14-16, 18, 20, 22-24] and the references therein.

Recently, there has been an increasing interest in studying the differences of two composition operators acting on various analytic function spaces. In [13], the authors studied the differences of composition operators on the Hardy space $H^{2}$. The motivation for this is to understand the topological structure of the set of composition operators on $H^{2}$. In [9], the authors studied the topological structure of the set of composition operators on $H^{\infty}$ and gave a relationship between such a problem and the boundedness and compactness of the differences of two composition operators acting from the Bloch space to $H^{\infty}$. In [10], Moorhouse studied the differences of composition operators on weighted Bergman spaces. The differences of two composition operators acting on Bers-type spaces was studied in [1, 3, 17]. The differences of two generalized weighted composition operators acting on Bers-type spaces was studied in [20]. The differences of two composition operators acting on the Bloch space was studied in [4, 6, 11, 19]. In [5], the authors studied the differences of two weighted composition operators acting from the Bloch space to $H^{\infty}$.

In [24], Zhu studied the boundedness and compactness of $D_{\varphi, u}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$. Motivated by these, in this paper, we investigate the boundedness and compactness of the differences of two generalized weighted composition operators from the Bloch space into $H_{\alpha}^{\infty}$. The results generalize the corresponding results in [24] on the single generalized weighted composition operator.

Throughout this paper, constants are denoted by $C$, they are positive and may differ from one occurrence to the other. The notation $a \leq b$ means that there is a positive constant $C$ such that $a \leq C b$. Moreover, if both $a \leq b$ and $b \leq a$ hold, then one says that $a \approx b$.

## 2. Main Results and Proofs

In this section we give our main results and proofs. For this purpose, we need the following lemma, which can be proved in a standard way (see, for example, Theorem 3.11 in [2]).
Lemma 1. Let $\alpha>0, \varphi, \psi \in S(\mathbb{D}), u, v \in H(\mathbb{D})$ and $n$ be a positive integer. Then $D_{\varphi, u}^{n}-D_{\psi, v}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$ is compact if and only if $D_{\varphi, u}^{n}-D_{\psi, v}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$ is bounded and for any bounded sequence $\left(f_{k}\right)_{k \in \mathbb{N}}$ in $\mathcal{B}$ which converges to zero uniformly on compact subsets of $\mathbb{D},\left\|\left(D_{\varphi, u}^{n}-D_{\psi, v}^{n}\right) f_{k}\right\|_{H_{\alpha}^{\infty}} \rightarrow 0$ as $k \rightarrow \infty$.
Lemma 2. [21] For every positive integer $n, f \in \mathcal{B}$ if and only if $\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{n}\left|f^{(n)}(z)\right|<\infty$. Moreover, the following asymptotic relationship holds

$$
\|f\|_{\mathcal{B}} \approx \sum_{k=0}^{n-1}\left|f^{(k)}(0)\right|+\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{n}\left|f^{(n)}(z)\right| .
$$

Lemma 3. For every positive integer $n$, if $f \in \mathcal{B}$, then

$$
\left|\left(1-|z|^{2}\right)^{n} f^{(n)}(z)-\left(1-|w|^{2}\right)^{n} f^{(n)}(w)\right| \leq C\|f\|_{\mathcal{B}} \rho(z, w), \quad z, w \in \mathbb{D}
$$

Proof. Let $f \in \mathcal{B}$. By Lemma 2, we see that $f^{(n)} \in H_{n}^{\infty}$, moreover, $\left\|f^{(n)}\right\|_{H_{n}^{\infty}} \leq C\|f\|_{\mathcal{B}}$. By Lemma 3.2 in [3] or Lemma 2.3 in [11], we have

$$
\left|\left(1-|z|^{2}\right)^{n} f^{(n)}(z)-\left(1-|w|^{2}\right)^{n} f^{(n)}(w)\right| \leq C\left\|f^{(n)}\right\|_{H_{n}^{\infty}} \rho(z, w) \leq C\|f\|_{\mathcal{B}} \rho(z, w), \quad z, w \in \mathbb{D} .
$$

This completes the proof of this Lemma.
Remark 1. From the remark 3.3 of [3], for every $f \in \mathcal{B}$, we have

$$
\begin{equation*}
\left|\left(1-|z|^{2}\right)^{n} f^{(n)}(z)-\left(1-|w|^{2}\right)^{n} f^{(n)}(w)\right| \leq C \rho(z, w) \sup _{z \in \mathbb{D}_{r}}\left(1-|z|^{2}\right)^{n}\left|f^{(n)}(z)\right|, \quad z, w \in \mathbb{D}_{r} \tag{2}
\end{equation*}
$$

where $\mathbb{D}_{r}=\{z \in \mathbb{D}:|z| \leq r<1\}$.
For the simplicity of this paper, we denote

$$
\begin{equation*}
M_{u, \varphi}(z)=\frac{\left(1-|z|^{2}\right)^{\alpha} u(z)}{\left(1-|\varphi(z)|^{2}\right)^{n}}, \quad M_{v, \psi}(z)=\frac{\left(1-|z|^{2}\right)^{\alpha} v(z)}{\left(1-|\psi(z)|^{2}\right)^{n}} \tag{3}
\end{equation*}
$$

Theorem 1. Let $\alpha>0, \varphi, \psi \in S(\mathbb{D}), u, v \in H(\mathbb{D})$ and $n$ be a positive integer. Then the following statements are equivalent.
(a) $D_{\varphi, u}^{n}-D_{\psi, v}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$ is bounded;
(b)

$$
\begin{equation*}
\sup _{z \in \mathbb{D}}\left|M_{u, \varphi}(z)\right| \rho(\varphi(z), \psi(z))<\infty \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{z \in \mathbb{D}}\left|M_{u, \varphi}(z)-M_{v, \psi}(z)\right|<\infty ; \tag{5}
\end{equation*}
$$

(c) (5) holds and

$$
\begin{equation*}
\sup _{z \in \mathbb{D}}\left|M_{v, \psi}(z)\right| \rho(\varphi(z), \psi(z))<\infty . \tag{6}
\end{equation*}
$$

Proof. $(b) \Rightarrow(c)$. Assume that (4) and (5) hold. It is clear that

$$
\left|M_{v, \psi}(z)\right| \leq\left|M_{u, \varphi}(z)\right|+\left|M_{u, \varphi}(z)-M_{v, \psi}(z)\right|
$$

Multiplying the last inequality by $\rho(\varphi(z), \psi(z))$ and notice that $\rho(\varphi(z), \psi(z)) \leq 1$, we get

$$
\begin{aligned}
\left|M_{v, \psi}(z)\right| \rho(\varphi(z), \psi(z)) & \leq\left|M_{u, \varphi}(z)\right| \rho(\varphi(z), \psi(z))+\left|M_{v, \psi}(z)-M_{u, \varphi}(z)\right| \rho(\varphi(z), \psi(z)) \\
& \leq\left|M_{u, \varphi}(z)\right| \rho(\varphi(z), \psi(z))+\left|M_{u, \varphi}(z)-M_{v, \psi}(z)\right|
\end{aligned}
$$

which together with the assumptions implies the desired result.
$(c) \Rightarrow$ (a). Suppose that (5) and (6) hold. For any $f \in \mathcal{B}$, by Lemmas 2 and 3, we have

$$
\begin{aligned}
\left\|\left(D_{\varphi, u}^{n}-D_{\psi, v}^{n}\right) f\right\|_{H_{\alpha}^{\infty}}= & \sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}\left|\left(D_{\varphi, u}^{n}-D_{\psi, v}^{n}\right) f(z)\right| \\
= & \sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}\left|f^{(n)}(\varphi(z)) u(z)-f^{(n)}(\psi(z)) v(z)\right| \\
= & \sup _{z \in \mathbb{D}}\left|M_{u, \varphi}(z) f^{(n)}(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{n}-M_{v, \psi}(z) f^{(n)}(\psi(z))\left(1-|\psi(z)|^{2}\right)^{n}\right| \\
\leq & \sup _{z \in \mathbb{D}}\left|M_{u, \varphi}(z)-M_{v, \psi}(z) \| f^{(n)}(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{n}\right| \\
& +\sup _{z \in \mathbb{D}}\left|M_{v, \psi}(z) \| f^{(n)}(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{n}-f^{(n)}(\psi(z))\left(1-|\psi(z)|^{2}\right)^{n}\right| \\
\leq & C\|f\|_{\mathcal{B}} \sup _{z \in \mathbb{D}}\left|M_{u, \varphi}(z)-M_{v, \psi}(z)\right|+C\|f\|_{\mathcal{B}} \sup _{z \in \mathbb{D}}\left|M_{v, \psi}(z)\right| \rho(\varphi(z), \psi(z)) \\
< & \infty . \quad
\end{aligned}
$$

Therefore $D_{\varphi, u}^{n}-D_{\psi, v}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$ is bounded.
$(a) \Rightarrow(b)$. Suppose that $D_{\varphi, u}^{n}-D_{\psi, v}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$ is bounded. For any point $w \in \mathbb{D}$ such that $|\varphi(w)| \geq 1 / 2$, set

$$
\begin{equation*}
g_{w}(z)=\frac{1}{n!\overline{\varphi(w)}^{n}} \cdot \frac{1-|\varphi(w)|^{2}}{1-\overline{\varphi(w) z}} \tag{7}
\end{equation*}
$$

and let $f_{w}$ be an analytic function with $f_{w}(0)=0, f_{w}^{\prime}(0)=0, \cdots, f_{w}^{(n-1)}(0)=0$ and

$$
f_{w}^{(n)}(z)=\frac{1-|\varphi(w)|^{2}}{(1-\overline{\varphi(w)} z)^{1+n}} \sigma_{\varphi(w)}(z)
$$

It is easy to check that $f_{w}, g_{w} \in \mathcal{B}$. Moreover,

$$
\begin{aligned}
& g_{w}^{(n)}(\varphi(w))=\frac{1}{\left(1-|\varphi(w)|^{2}\right)^{n}}, \quad g_{w}^{(n)}(\psi(w))=\frac{1-|\varphi(w)|^{2}}{(1-\overline{\varphi(w)} \psi(w))^{1+n}} \\
& f_{w}^{(n)}(\varphi(w))=0, \quad f_{w}^{(n)}(\psi(w))=\frac{\left(1-|\varphi(w)|^{2}\right) \sigma_{\varphi(w)}(\psi(w))}{(1-\overline{\varphi(w)} \psi(w))^{1+n}}
\end{aligned}
$$

Since $D_{\varphi, u}^{n}-D_{\psi, v}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$ is bounded, we obtain

$$
\begin{align*}
\infty & >\left\|\left(D_{\varphi, u}^{n}-D_{\psi, v}^{n}\right) f_{w}\right\|_{H_{\alpha}^{\infty}}=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}\left|f_{w}^{(n)}(\varphi(z)) u(z)-f_{w}^{(n)}(\psi(z)) v(z)\right| \\
& \geq\left(1-|w|^{2}\right)^{\alpha}\left|f_{w}^{(n)}(\varphi(w)) u(w)-f_{w}^{(n)}(\psi(w)) v(w)\right| \\
& =\left(1-|w|^{2}\right)^{\alpha} \frac{|v(w)|\left(1-|\varphi(w)|^{2}\right) \rho(\varphi(w), \psi(w))}{|1-\overline{\varphi(w)} \psi(w)|^{1+n}} \\
& =\left|M_{v, \psi}(w) \frac{\left(1-|\psi(w)|^{2}\right)^{n}\left(1-|\varphi(w)|^{2}\right) \rho(\varphi(w), \psi(w))}{(1-\overline{\varphi(w)} \psi(w))^{1+n}}\right| \tag{8}
\end{align*}
$$

and

$$
\begin{align*}
\infty & >\left\|\left(D_{\varphi, u}^{n}-D_{\psi, v}^{n}\right) g_{w}\right\|_{H_{\alpha}^{\infty}}=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}\left|g_{w}^{(n)}(\varphi(z)) u(z)-g_{w}^{(n)}(\psi(z)) v(z)\right| \\
& \geq\left(1-|w|^{2}\right)^{\alpha}\left|g_{w}^{(n)}(\varphi(w)) u(w)-g_{w}^{(n)}(\psi(w)) v(w)\right| \\
& =\left|M_{u, \varphi}(w)-M_{v, \psi}(w) \frac{\left(1-|\psi(w)|^{2}\right)^{n}\left(1-|\varphi(w)|^{2}\right)}{(1-\overline{\varphi(w)} \psi(w))^{1+n}}\right| \tag{9}
\end{align*}
$$

Multiplying (9) by $\rho(\varphi(w), \psi(w))$ and from (8) we obtain

$$
\begin{equation*}
\sup _{|\varphi(w)|>\frac{1}{2}}\left|M_{u, \varphi}(w)\right| \rho(\varphi(w), \psi(w))<\infty \tag{10}
\end{equation*}
$$

If $|\varphi(w)| \leq \frac{1}{2}$, taking $h_{w}(z)=\frac{(z-\psi(w))^{n+1}}{(n+1)!} \in \mathcal{B}$ and using the boundedness of $D_{\varphi, u}^{n}-D_{\psi, v}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$, we obtain

$$
\begin{aligned}
\infty>\left\|\left(D_{\varphi, u}^{n}-D_{\psi, v}^{n}\right) h_{w}\right\|_{H_{\alpha}^{\infty}} & \geq\left(1-|w|^{2}\right)^{\alpha}\left|h_{w}^{(n)}(\varphi(w)) u(w)-h_{w}^{(n)}(\psi(w)) v(w)\right| \\
& =\left(1-|w|^{2}\right)^{\alpha}|u(w)(\varphi(w)-\psi(w))| .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\sup _{|\varphi(w)| \leq \frac{1}{2}}\left|M_{u, \varphi}(w)\right| \rho(\varphi(w), \psi(w)) & =\sup _{|\varphi(w)| \leq \frac{1}{2}} \frac{\left(1-|w|^{2}\right)^{\alpha}|u(w)(\varphi(w)-\psi(w))|}{\left(1-|\varphi(w)|^{2}\right)^{n}|1-\overline{\varphi(w)} \psi(w)|} \\
& \leq\left(1-|w|^{2}\right)^{\alpha}|u(w)(\varphi(w)-\psi(w))|<\infty \tag{11}
\end{align*}
$$

From (10) and (11), we get (4).
Exchanging $\varphi$ and $\psi$ in functions $f_{w}(z), g_{w}(z)$ and $h_{w}(z)$, similarly to the above proof we can obtain (6).
Next, we prove that (5) holds. For $|\varphi(w)|>\frac{1}{2}$, by (9), we also have

$$
\begin{align*}
\infty & >\left\|\left(D_{\varphi, u}^{n}-D_{\psi, v}^{n}\right) g_{w}\right\|_{H_{\alpha}^{\infty}} \\
& \geq\left|M_{u, \varphi}(w)-M_{v, \psi}(w) \frac{\left(1-|\psi(w)|^{2}\right)^{n}\left(1-|\varphi(w)|^{2}\right)}{(1-\overline{\varphi(w)} \psi(w))^{1+n}}\right| \\
& =\left|M_{u, \varphi}(w)-M_{v, \psi}(w)+M_{v, \psi}(w)\left(1-\frac{\left(1-|\psi(w)|^{2}\right)^{n}\left(1-|\varphi(w)|^{2}\right)}{(1-\overline{\varphi(w)} \psi(w))^{1+n}}\right)\right| \\
& \geq\left|M_{u, \varphi}(w)-M_{v, \psi}(w)\right|-\left|M_{v, \psi}(w)\right| \cdot\left|g_{w}^{(n)}(\varphi(w))\left(1-|\varphi(w)|^{2}\right)^{n}-g_{w}^{(n)}(\psi(w))\left(1-|\psi(w)|^{2}\right)^{n}\right| . \tag{12}
\end{align*}
$$

From Lemma 3 and (6), we see that

$$
\begin{aligned}
& \left|M_{v, \psi}(w)\right| \cdot\left|g_{w}^{(n)}(\varphi(w))\left(1-|\varphi(w)|^{2}\right)^{n}-g_{w}^{(n)}(\psi(w))\left(1-|\psi(w)|^{2}\right)^{n}\right| \\
\leq & \left\|g_{w}\right\|_{\mathcal{B}}\left|M_{v, \psi}(w)\right| \rho(\varphi(w), \psi(w))<\infty,
\end{aligned}
$$

which with (12) imply that $\left|M_{u, \varphi}(w)-M_{v, \psi}(w)\right|<\infty$ holds for all $w \in \mathbb{D}$ with $|\varphi(w)|>\frac{1}{2}$.
When $|\varphi(w)| \leq \frac{1}{2}$ and $|\psi(w)|>\frac{3}{4}$, then using (1) we get $\rho(\varphi(w), \psi(w))>\frac{5}{27}$. From (4) and (6), we get $\left|M_{u, \varphi}(w)-M_{v, \psi}(w)\right|<\infty$.

When $|\varphi(w)| \leq \frac{1}{2}$ and $|\psi(w)| \leq \frac{3}{4}$, since $\frac{z^{n}}{n!} \in \mathcal{B}$, we get

$$
\begin{align*}
\infty & >\left\|\left(D_{\varphi, u}^{n}-D_{\psi, v}^{n}\right)\left(\frac{z^{n}}{n!}\right)\right\|_{H_{\alpha}^{\infty}}=\left(1-|w|^{2}\right)^{\alpha}|u(w)-v(w)| \\
& =\left|\left(M_{u, \varphi}(w)-M_{v, \psi}(w)\right)\left(1-|\varphi(w)|^{2}\right)^{n}+M_{v, \psi}(w)\left[\left(1-|\varphi(w)|^{2}\right)^{n}-\left(1-|\psi(w)|^{2}\right)^{n}\right]\right| \\
& \geq\left|M_{u, \varphi}(w)-M_{v, \psi}(w)\right|\left(1-|\varphi(w)|^{2}\right)^{n}-\left|M_{v, \psi}(w)\left[\left(1-|\varphi(w)|^{2}\right)^{n}-\left(1-|\psi(w)|^{2}\right)^{n}\right]\right| . \tag{13}
\end{align*}
$$

Since the derivative of the function $g(x)=\left(1-x^{2}\right)^{n}$ is bounded on $[0,1]$, we have

$$
\left|\left(1-|\varphi(w)|^{2}\right)^{n}-\left(1-|\psi(w)|^{2}\right)^{n}\right| \leq C| | \varphi(w)|-|\psi(w)|| \leq \rho(\varphi(w), \psi(w))
$$

and hence

$$
\left|M_{v, \psi}(w)\left[\left(1-|\varphi(w)|^{2}\right)^{n}-\left(1-|\psi(w)|^{2}\right)^{n}\right]\right| \leq\left|M_{v, \psi}(w)\right| \rho(\varphi(w), \psi(w))
$$

which together with (6) and (13) implies $\left|M_{u, \varphi}(w)-M_{v, \psi}(w)\right|<\infty$, when $|\varphi(w)| \leq \frac{1}{2}$ and $|\psi(w)| \leq \frac{3}{4}$. Therefore we conclude that $\sup _{w \in \mathbb{D}}\left|M_{u, \varphi}(w)-M_{v, \psi}(w)\right|<\infty$. The proof is complete.

When $u=v$, we get some characterizations of the boundedness of $D_{\varphi, u}^{n}-D_{\psi, u}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$.
Corollary 1. Let $\alpha>0, \varphi, \psi \in S(\mathbb{D}), u \in H(\mathbb{D})$ and $n$ be a positive integer. Then the following statements are equivalent.
(a) $D_{\varphi, u}^{n}-D_{\psi, u}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$ is bounded;
(b) $\sup _{z \in \mathbb{D}}\left|M_{u, \varphi}(z)\right| \rho(\varphi(z), \psi(z))<\infty, \sup _{z \in \mathbb{D}}\left|M_{u, \psi}(z)\right| \rho(\varphi(z), \psi(z))<\infty$;
(c) $\sup _{z \in \mathbb{D}}\left|M_{u, \varphi}(z)\right| \rho(\varphi(z), \psi(z))<\infty, \sup _{z \in \mathbb{D}}\left|M_{u, \varphi}(z)-M_{u, \psi}(z)\right|<\infty$;
(d) $\sup _{z \in \mathbb{D}}\left|M_{u, \psi}(z)\right| \rho(\varphi(z), \psi(z))<\infty, \sup _{z \in \mathbb{D}}\left|M_{u, \varphi}(z)-M_{u, \psi}(z)\right|<\infty$.

Proof. Set $u=v$ in Theorem 1, we see that (a), (c) and (d) are equivalent. We only need to prove (b) $\Rightarrow$ (c). Now assume that (b) holds. It is easy to see that

$$
\sup _{\rho(\varphi(z), \psi(z))>\frac{1}{2}}\left|M_{u, \varphi}(z)-M_{u, \psi}(z)\right|<\infty .
$$

If $\rho(\varphi(z), \psi(z)) \leq \frac{1}{2}$, then from (1), we have

$$
\begin{aligned}
\left|M_{u, \varphi}(z)-M_{u, \psi}(z)\right| & =\frac{\left(1-|z|^{2}\right)^{\alpha}|u(z)|}{\left(1-|\varphi(z)|^{2}\right)^{n}}\left|1-\left(\frac{1-|\varphi(z)|^{2}}{1-|\psi(z)|^{2}}\right)^{n}\right| \leq \frac{\left(1-|z|^{2}\right)^{\alpha}|u(z)|}{\left(1-|\varphi(z)|^{2}\right)^{n}}\left|1-\left(\frac{1-\rho(\varphi(z), \psi(z))}{1+\rho(\varphi(z), \psi(z))}\right)^{n}\right| \\
& \leq\left|M_{u, \varphi}(z)\right| \rho(\varphi(z), \psi(z))<\infty
\end{aligned}
$$

Therefore, we obtain $\sup _{z \in \mathbb{D}}\left|M_{u, \varphi}(z)-M_{u, \psi}(z)\right|<\infty$. The proof is complete.
Theorem 2. Let $\alpha>0, \varphi, \psi \in S(\mathbb{D}), u, v \in H(\mathbb{D})$ and $n$ be a positive integer. Then $D_{\varphi, u}^{n}-D_{\psi, v}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$ is compact if and only if $D_{\varphi, u}^{n}-D_{\psi, v}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$ is bounded and the following equalities hold.

$$
\begin{equation*}
\lim _{|\varphi(z)| \rightarrow 1}\left|M_{u, \varphi}(z)\right| \rho(\varphi(z), \psi(z))=0 \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{|\psi(z)| \rightarrow 1}\left|M_{v, \psi}(z)\right| \rho(\varphi(z), \psi(z))=0 \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{|\varphi(z)| \rightarrow 1,|\psi(z)| \rightarrow 1}\left|M_{u, \varphi}(z)-M_{v, \psi}(z)\right|=0 \tag{16}
\end{equation*}
$$

Proof. Necessity. Assume that $D_{\varphi, u}^{n}-D_{\psi, v}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$ is compact. Then it is clear that $D_{\varphi, u}^{n}-D_{\psi, v}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$ is bounded. Let $\left\{z_{k}\right\}$ be a sequence of points in $\mathbb{D}$ such that $\left|\varphi\left(z_{k}\right)\right| \rightarrow 1$ as $k \rightarrow \infty$. Define

$$
f_{k}(z)=f_{z_{k}}(z) \text { and } g_{k}(z)=g_{z_{k}}(z)
$$

as in the proof of Theorem 1. From (8) and (9), we see that

$$
\begin{align*}
& \left\|\left(D_{\varphi, u}^{n}-D_{\psi, v}^{n}\right) f_{k}\right\|_{H_{\alpha}^{\infty}} \geq\left|M_{v, \psi}\left(z_{k}\right) \frac{\rho\left(\varphi\left(z_{k}\right), \psi\left(z_{k}\right)\right)\left(1-\left|\psi\left(z_{k}\right)\right|^{2}\right)^{n}\left(1-\left|\varphi\left(z_{k}\right)\right|^{2}\right)}{\left(1-\overline{\varphi\left(z_{k}\right)} \psi\left(z_{k}\right)\right)^{n+1}}\right|,  \tag{17}\\
& \left\|\left(D_{\varphi, u}^{n}-D_{\psi, v}^{n}\right) g_{k}\right\|_{H_{\alpha}^{\infty}} \geq\left|M_{u, \varphi}\left(z_{k}\right)-M_{v, \psi}\left(z_{k}\right) \frac{\left(1-\left|\varphi\left(z_{k}\right)\right|^{2}\right)\left(1-\left|\psi\left(z_{k}\right)\right|^{2}\right)^{n}}{\left(1-\overline{\varphi\left(z_{k}\right)} \psi\left(z_{k}\right)\right)^{n+1}}\right|
\end{align*}
$$

and hence

$$
\begin{align*}
\left\|\left(D_{\varphi, u}^{n}-D_{\psi, v}^{n}\right) g_{k}\right\|_{H_{\alpha}^{\infty}} & \geq \rho\left(\varphi\left(z_{k}\right), \psi\left(z_{k}\right)\right)\left\|\left(D_{\varphi, u}^{n}-D_{\psi, v}^{n}\right) g_{k}\right\|_{H_{\alpha}^{\infty}} \\
& \geq\left|M_{u, \varphi}\left(z_{k}\right) \rho\left(\varphi\left(z_{k}\right), \psi\left(z_{k}\right)\right)-\frac{M_{v, \psi}\left(z_{k}\right) \rho\left(\varphi\left(z_{k}\right), \psi\left(z_{k}\right)\right)\left(1-\left|\psi\left(z_{k}\right)\right|^{2}\right)^{n}}{\left(1-\overline{\varphi\left(z_{k}\right)} \psi\left(z_{k}\right)\right)^{n+1}\left(1-\left|\varphi\left(z_{k}\right)\right|^{2}\right)^{-1}}\right| . \tag{18}
\end{align*}
$$

Since $D_{\varphi, u}^{n}-D_{\psi, v}^{n}$ is compact, by Lemma 1, we have $\left\|\left(D_{\varphi, u}^{n}-D_{\psi, v}^{n}\right) f_{k}\right\|_{H_{\alpha}^{\infty}} \rightarrow 0$ and $\left\|\left(D_{\varphi, u}^{n}-D_{\psi, v}^{n}\right) g_{k}\right\|_{H_{\alpha}^{\infty}} \rightarrow 0$ as $k \rightarrow \infty$. From (17) and (18), we conclude that (14) holds. Exchanging $\varphi$ and $\psi$ in $f_{k}(z)$ and $g_{k}(z)$ and similar to the above proof, we can prove that (15) holds.

Next we prove that (16) holds. From (12), we have

$$
\left\|\left(D_{\varphi, u}^{n}-D_{\psi, v}^{n}\right) g_{k}\right\|_{H_{x}^{\infty}} \geq\left|M_{u, \varphi}\left(z_{k}\right)-M_{v, \psi}\left(z_{k}\right)\right|-\left|M_{v, \psi}\left(z_{k}\right)\left[g_{k}^{(n)}\left(\varphi\left(z_{k}\right)\right)\left(1-\left|\varphi\left(z_{k}\right)\right|^{2}\right)^{n}-g_{k}^{(n)}\left(\psi\left(z_{k}\right)\right)\left(1-\left|\psi\left(z_{k}\right)\right|^{2}\right)^{n}\right]\right| .
$$

From Lemma 3 and (15), we have

$$
\begin{aligned}
& \mid M_{v, \psi}\left(z_{k}\right)\left[g_{k}^{(n)}\left(\varphi\left(z_{k}\right)\right)\left(1-\left|\varphi\left(z_{k}\right)\right|^{2}\right)^{n}-g_{k}^{(n)}\left(\psi\left(z_{k}\right)\right)\left(1-\mid \psi\left(\left.z_{k}\right|^{2}\right)^{n}\right] \mid\right. \\
\leq & \left\|g_{k}\right\| \mathcal{B}\left|M_{v, \psi}\left(z_{k}\right)\right| \rho\left(\varphi\left(z_{k}\right), \psi\left(z_{k}\right)\right) \rightarrow 0
\end{aligned}
$$

as $\left|\psi\left(z_{k}\right)\right| \rightarrow 1$. Since $\left\|\left(D_{\varphi, u}^{n}-D_{\psi, v}^{n}\right) g_{k}\right\|_{H_{a}^{\infty}} \rightarrow 0$ as $\left|\varphi\left(z_{k}\right)\right| \rightarrow 1$, we get $\left|M_{u, \varphi}\left(z_{k}\right)-M_{v, \psi}\left(z_{k}\right)\right| \rightarrow 0$ as $\left|\varphi\left(z_{k}\right)\right| \rightarrow 1$ and $\left|\psi\left(z_{k}\right)\right| \rightarrow 1$. This implies that (16) holds.

Sufficiency. Since assume that $D_{\varphi, u}^{n}-D_{\psi, v}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$ is bounded, we see that (4), (5) and (6) hold. By the assumption that (14), (15) and (16) hold, then for any $\varepsilon>0$, there exists an $r \in(0,1)$ such that

$$
\begin{align*}
& \left|M_{u, \varphi}(z)\right| \rho(\varphi(z), \psi(z))<\varepsilon \text { when }|\varphi(z)|>r ;  \tag{19}\\
& \left|M_{v, \psi}(z)\right| \rho(\varphi(z), \psi(z))<\varepsilon \text { when }|\psi(z)|>r ;  \tag{20}\\
& \left|M_{u, \varphi}(z)-M_{v, \psi}(z)\right|<\varepsilon \text { when }|\varphi(z)|>r \text { and }|\psi(z)|>r . \tag{21}
\end{align*}
$$

Let $\left(l_{k}\right)_{k \in \mathbb{N}}$ be a sequence in $\mathcal{B}$ such that $\left\|l_{k}\right\|_{\mathcal{B}} \leq 1$ and converges to zero uniformly on compact subsets of $\mathbb{D}$. It is easy to see that

$$
\begin{align*}
\left\|\left(D_{\varphi, u}^{n}-D_{\psi, v}^{n}\right) l_{k}\right\|_{H_{a}^{\infty}} & =\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}\left|\left(D_{\varphi, u}^{n}-D_{\psi, v}^{n}\right) l_{k}(z)\right| \\
& =\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}\left|l_{k}^{(n)}(\varphi(z)) u(z)-l_{k}^{(n)}(\psi(z)) v(z)\right| \\
& =\sup _{z \in \mathbb{D}}\left|M_{u, \varphi}(z)_{k}^{(n)}(\varphi(z))\left(1-\mid \varphi(z)^{2}\right)^{n}-M_{v, \psi}(z) l_{k}^{(n)}(\psi(z))\left(1-|\psi(z)|^{2}\right)^{n}\right| \\
& =\sup _{z \in \mathbb{D}}\left|F_{k}(z)+G_{k}(z)\right| \tag{22}
\end{align*}
$$

where

$$
\begin{aligned}
& F_{k}(z)=\left(M_{u, \varphi}(z)-M_{v, \psi}(z)\right) l_{k}^{(n)}(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{n}, \\
& G_{k}(z)=M_{v, \psi}(z)\left[l_{k}^{(n)}(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{n}-l_{k}^{(n)}(\psi(z))\left(1-|\psi(z)|^{2}\right)^{n}\right]
\end{aligned}
$$

In order to prove that $D_{\varphi, u}^{n}-D_{\psi, v}^{n}$ is compact, we only need to prove that $\left\|\left(D_{\varphi, u}^{n}-D_{\psi, v}^{n}\right) l_{k}\right\|_{H_{a}^{\infty}} \rightarrow 0$ as $k \rightarrow \infty$ by Lemma 1 .
(i) When $|\varphi(z)| \leq r$ and $|\psi(z)| \leq r$, by (5), we have

$$
\left|F_{k}(z)\right| \leq \sup _{\mid \varphi(z) \leq r}\left|l_{k}^{(n)}(\varphi(z))\right|=\sup _{w \in \mathbb{D}_{r}}\left|l_{k}^{(n)}(w)\right|,
$$

where $\mathbb{D}_{r}=\{z \in \mathbb{D}:|z| \leq r<1\}$. From Remark 1 and (6), we get

$$
\begin{equation*}
\left|G_{k}(z)\right| \leq C\left|M_{v, \psi}(z)\right| \rho(\varphi(z), \psi(z)) \sup _{z \in \mathbb{D}_{r}}\left(1-|z|^{2}\right)^{n}\left|l_{k}^{(n)}(z)\right| \leq C \sup _{z \in \mathbb{D}_{r}}\left(1-|z|^{2}\right)^{n}\left|l_{k}^{(n)}(z)\right| \leq \sup _{z \in \mathbb{D}_{r}}\left|l_{k}^{(n)}(z)\right| \tag{23}
\end{equation*}
$$

(ii) When $|\varphi(z)| \leq r$ and $|\psi(z)|>r$, similar to the case case (i), we obtain $\left|F_{k}(z)\right| \leq \sup _{|w| \leq r}\left|l_{k}^{(n)}(w)\right|$. Using Lemma 3 and (20), we obtain

$$
\left|G_{k}(z)\right| \leq C\left\|l_{k}\right\|_{\mathcal{B}}\left|M_{v, \psi}(z)\right| \rho(\varphi(z), \psi(z)) \leq \varepsilon .
$$

(iii) When $|\varphi(z)|>r$ and $|\psi(z)|>r$, by Lemma 3 and (21), we have

$$
\left|F_{k}(z)\right| \leq C \mid M_{u, \varphi}(z)-M_{v, \psi}(z)\| \| l_{k} \|_{\mathcal{B}} \leq \varepsilon
$$

Also, similar to the case (ii), we get $\left|G_{k}(z)\right| \leq \varepsilon$.
(iv) When $|\varphi(z)|>r$ and $|\psi(z)| \leq r$, we reset

$$
\begin{equation*}
M_{u, \varphi}(z) l_{k}^{(n)}(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{n}-M_{v, \psi}(z) l_{k}^{(n)}(\psi(z))\left(1-|\psi(z)|^{2}\right)^{n}=H_{k}(z)+Q_{k}(z) \tag{24}
\end{equation*}
$$

where

$$
\begin{aligned}
H_{k}(z) & =-\left(M_{v, \psi}(z)-M_{u, \varphi}(z)\right) l_{k}^{(n)}(\psi(z))\left(1-|\psi(z)|^{2}\right)^{n} \\
Q_{k}(z) & =-M_{u, \varphi}(z)\left[l_{k}^{(n)}(\psi(z))\left(1-|\psi(z)|^{2}\right)^{n}-l_{k}^{(n)}(\varphi(z))\left(1-|\varphi(z)|^{2}\right)^{n}\right]
\end{aligned}
$$

Using (5) again, we have

$$
\left|H_{k}(z)\right| \leq \sup _{|\psi(z)| \leq r}\left|l_{k}^{(n)}(\psi(z))\right|=\sup _{w \in \mathbb{\mathbb { D } _ { r }}}\left|l_{k}^{(n)}(w)\right| .
$$

Applying Lemma 3 and (19), we obtain

$$
\left|Q_{k}(z)\right| \leq C| | l_{k} \|_{\mathcal{B}}\left|M_{u, \varphi}(z)\right| \rho(\varphi(z), \psi(z)) \leq \varepsilon
$$

Therefore, from (22), (24) and the discussion of the above cases, we obtain

$$
\begin{equation*}
\left\|\left(D_{\varphi, u}^{n}-D_{\psi, v}^{n}\right) l_{k}\right\|_{H_{\alpha}^{\infty}} \leq \varepsilon+\sup _{|w| \leq r}\left|l_{k}^{(n)}(w)\right| . \tag{25}
\end{equation*}
$$

In view of the fact that $\{w \in \mathbb{D}:|w| \leq r\}$ is compact, we see that $\left\|\left(D_{\varphi, u}^{n}-D_{\psi, v}^{n}\right) l_{k}\right\|_{H_{\alpha}^{\infty}} \rightarrow 0$ as $k \rightarrow \infty$ from (25). The proof is complete.

Corollary 2. Let $\alpha>0, \varphi, \psi \in S(\mathbb{D}), u \in H(\mathbb{D})$ and $n$ be a positive integer. Then $D_{\varphi, u}^{n}-D_{\psi, u}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$ is compact if and only if $D_{\varphi, u}^{n}-D_{\psi, u}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$ is bounded,

$$
\lim _{|\varphi(z)| \rightarrow 1}\left|M_{u, \varphi}(z)\right| \rho(\varphi(z), \psi(z))=0 \text { and } \lim _{|\psi(z)| \rightarrow 1}\left|M_{u, \psi}(z)\right| \rho(\varphi(z), \psi(z))=0
$$

Proof. Necessity. This implication is obvious from Theorem 2 by taking $u=v$.
Sufficiency. Assume that $D_{\varphi, u}^{n}-D_{\psi, u}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$ is bounded,

$$
\lim _{|\varphi(z)| \rightarrow 1}\left|M_{u, \varphi}(z)\right| \rho(\varphi(z), \psi(z))=0 \text { and } \lim _{|\psi(z)| \rightarrow 1}\left|M_{u, \psi}(z)\right| \rho(\varphi(z), \psi(z))=0
$$

By Theorem 2, to prove that $D_{\varphi, u}^{n}-D_{\psi, u}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$ is compact, we only need to prove that

$$
\begin{equation*}
\lim _{|\varphi(z)| \rightarrow 1,|\psi(z)| \rightarrow 1}\left|M_{u, \varphi}(z)-M_{u, \psi}(z)\right|=0 \tag{26}
\end{equation*}
$$

Suppose (26) does not hold, then there exist $\varepsilon_{0}>0$ and a sequence $\left\{z_{k}\right\}$ in $\mathbb{D}$ such that $\left|\varphi\left(z_{k}\right)\right| \rightarrow 1$ and $\left|\psi\left(z_{k}\right)\right| \rightarrow 1$ as $k \rightarrow \infty$, but

$$
\begin{equation*}
\left|M_{u, \varphi}\left(z_{k}\right)-M_{u, \psi}\left(z_{k}\right)\right| \geq \varepsilon_{0} . \tag{27}
\end{equation*}
$$

First, we claim that $\rho\left(\varphi\left(z_{k}\right), \psi\left(z_{k}\right)\right) \rightarrow 0$ as $k \rightarrow \infty$. In fact, if it is not the case, then there exists a subsequence $\left\{z_{n_{k}}\right\}$ in $\left\{z_{k}\right\}$ such that $\rho\left(\varphi\left(z_{n_{k}}\right), \psi\left(z_{n_{k}}\right)\right) \rightarrow b>0$. On the other hand, we have

$$
\lim _{k \rightarrow \infty}\left|M_{u, \varphi}\left(z_{n_{k}}\right)\right| \rho\left(\varphi\left(z_{n_{k}}\right), \psi\left(z_{n_{k}}\right)\right)=0, \lim _{k \rightarrow \infty}\left|M_{u, \psi}\left(z_{n_{k}}\right)\right| \rho\left(\varphi\left(z_{n_{k}}\right), \psi\left(z_{n_{k}}\right)\right)=0
$$

Hence

$$
\lim _{k \rightarrow \infty}\left|M_{u, \varphi}\left(z_{n_{k}}\right)\right|=0, \lim _{k \rightarrow \infty}\left|M_{u, \psi}\left(z_{n_{k}}\right)\right|=0,
$$

which contradict with (27).
So we assume $\rho\left(\varphi\left(z_{k}\right), \psi\left(z_{k}\right)\right) \leq \frac{1}{2}$ for large enough $k$. Similarly to the proof of Corollary 1 , we have

$$
\left|M_{u, \varphi}\left(z_{k}\right)-M_{u, \psi}\left(z_{k}\right)\right| \leq\left|M_{u, \varphi}\left(z_{k}\right)\right| \rho\left(\varphi\left(z_{k}\right), \psi\left(z_{k}\right)\right) \rightarrow 0
$$

which contradict with (27) again. Therefore, (26) holds. The proof is complete.
From Theorems 1 and 2 with $v(z)=0$, we obtain the characterization of the boundedness and compactness of $D_{\varphi, u}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$ (see [24]).
Corollary 3. Let $\alpha>0, \varphi \in S(\mathbb{D}), u \in H(\mathbb{D})$ and $n$ be a positive integer. Then the following statements hold.
(a) The operator $D_{\varphi, u}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$ is bounded if and only if

$$
\sup _{z \in \mathbb{D}} \frac{\left(1-|z|^{2}\right)^{\alpha}|u(z)|}{\left(1-|\varphi(z)|^{2}\right)^{n}}<\infty .
$$

(b) The operator $D_{\varphi, u}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$ is compact if and only if $D_{\varphi, u}^{n}: \mathcal{B} \rightarrow H_{\alpha}^{\infty}$ is bounded and

$$
\lim _{|\varphi(z)| \rightarrow 1} \frac{\left(1-|z|^{2}\right)^{\alpha}|u(z)|}{\left(1-|\varphi(z)|^{2}\right)^{n}}=0
$$

## References

[1] J. Bonet, M. Lindström and E. Wolf, Differences of composition operators between weighted Banach spaces of holomorphic functions, J. Aust. Math. Soc. 84 (2008), 9-20.
[2] C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Math., CRC Press, Boca Raton, 1995.
[3] J. Dai and C. Ouyang, Differences of weighted composition cperators on $H_{\alpha}^{\infty}\left(B_{N}\right)$, J. Ineq. Appl. Vol.2009, Article ID 127431, (2009), 19 pages.
[4] T. Hosokawa and S. Ohno, Differences of composition operators on the Bloch spaces, J. Operator Theory 57 (2) (2007), $229-242$.
[5] T. Hosokawa and S. Ohno, Differences of weighted composition operators acting from Bloch space to H ${ }^{\infty}$, Tran. Amer. Math. Soc. 363 (10) (2011), 5321-5340.
[6] S. Li, Differences of generalized composition operators on the Bloch space, J. Math. Anal. Appl. 394 (2012), 706-711.
[7] H. Li and X. Fu, A new characterization of generalized weighted composition operators from the Bloch space into the Zygmund space, J. Funct. Spaces Appl. Volume 2013, Article ID 925901, 12 pages.
[8] S. Li and S. Stević, Composition followed by differentiation between Bloch type spaces, J. Comput. Anal. Appl. 9 (2007), $195-205$.
[9] B. MacCluer, S. Ohno and R. Zhao, Topological structure of the space of composition operators on $H^{\infty}$, Integ. Equ. Operator Theory 40 (2001), 481-494.
[10] J. Moorhouse, Compact differences of composition operators, J. Funct. Anal. 219 (1) (2005), 70-92.
[11] P. Nieminen, Compact differences of composition operators on Bloch and Lipschitz spaces, Comput. Methods Funct. Theory 7 (2) (2007), 325-344.
[12] J. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993.
[13] J. Shapiro and C. Sundberg, Isolation amongst the composition operators, Pacific J. Math. 145 (1990), 117-152.
[14] S. Stević, Weighted differntiation composition operators from mixed-norm spaces to weighted-type spaces, Appl. Math. Comput. 211 (2009), 222-233.
[15] S. Stević, Weighted differentiation composition operators from the mixed-norm space to the nth weigthed-type space on the unit disk, Abstr. Appl. Anal. 2010 (2010), Article ID 246287.
[16] S. Stević, Weighted differentiation composition operators from $H^{\infty}$ and Bloch spaces to nth weighted-type spaces on the unit disk, Appl. Math. Comput. 216 (12) (2010), 3634-3641.
[17] E. Wolf, Compact differences of composition operators, Bull. Austral. Math. Soc. 77 (2008), 161-165.
[18] Y. Wu and H. Wulan, Products of differentiation and composition operators on the Bloch space, Collet. Math. 63(2012), 93-107.
[19] K. Yang and Z. Zhou, Essential norm of the difference of composition operators on Bloch space, Czechoslovak Math. J. 60 (2010), 1139-1152.
[20] W. Yang and X. Zhu, Differences of generalized weighted composition operators between growth spaces, Ann. Polon. Math. 112 (2014), 67-83.
[21] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York and Basel, 1990.
[22] X. Zhu, Products of differentiation, composition and multiplication from Bergman type spaces to Bers type space, Integ. Tran. Spec. Funct. 18 (2007), 223-231.
[23] X. Zhu, Generalized weighted composition operators on weighted Bergman spaces, Numer. Funct. Anal. Opt. 30 (2009), $881-893$.
[24] X. Zhu, Generalized weighted composition operators from Bloch spaces into Bers-type spaces, Filomat 26 (2012), 1163-1169.


[^0]:    2010 Mathematics Subject Classification. Primary 47B35; Secondary 30H05
    Keywords. Generalized weighted composition operator, difference, Bloch space, Bers-type space.
    Received: 17 March 2015; Accepted: 06 May 2015
    Communicated by Dragan S. Djordjević
    Corresponding author: Songxiao Li
    Research supported by NSF of China(No.11471143) and NSF of Guangdong, China (No.S2013010011978).
    Email addresses: gdxsliu@163.com (Xiaosong Liu), jyulsx@163.com (Songxiao Li)

