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Abstract. The concept of nonuniform multiresolution analysis on local field of positive characteristic was
considered by Shah and Abdullah for which the translation set is a discrete set which is not a group. We
construct the associated wavelet packets for such an MRA and investigate their properties by means of the
Fourier transform.

1. Introduction

Multiresolution analysis (MRA) is an important mathematical tool since it provides a natural framework
for understanding and constructing discrete wavelet systems. A multiresolution analysis is an increasing
family of closed subspaces

{
V j : j ∈ Z

}
of L2(R) such that

⋂
j∈Z V j = {0} ,

⋃
j∈Z V j is dense in L2(R) and

which satisfies f ∈ V j if and only if f (2·) ∈ V j+1. Furthermore, there exists an element ϕ ∈ V0 such that the
collection of integer translates of function ϕ,

{
ϕ(· − k) : k ∈ Z

}
represents a complete orthonormal system

for V0. The function ϕ is called the scaling function or the father wavelet. The concept of multiresolution
analysis has been extended in various ways in recent years. These concepts are generalized to L2

(
Rd

)
, to

lattices different fromZd, allowing the subspaces of multiresolution analysis to be generated by Riesz basis
instead of orthonormal basis, admitting a finite number of scaling functions, replacing the dilation factor 2
by an integer M ≥ 2 or by an expansive matrix A ∈ GLd(R) as long as A ⊂ AZd. For more about wavelets
and their applications, we refer the monograph [6].

In recent years there has been a considerable interest in the problem of constructing wavelet bases
on various groups, namely, Cantor dyadic groups [10], locally compact Abelian groups [7], p-adic fields
[9] and Vilenkin groups [11]. Recently, R. L. Benedetto and J. J. Benedetto [2] developed a wavelet theory
for local fields and related groups. They did not develop the multiresolution analysis (MRA) approach,
their method is based on the theory of wavelet sets and only allows the construction of wavelet functions
whose Fourier transforms are characteristic functions of some sets. Since local fields are essentially of two
types: zero and positive characteristic (excluding the connected local fields R and C). Examples of local
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fields of characteristic zero include the p-adic field Qp where as local fields of positive characteristic are the
Cantor dyadic group and the Vilenkin p-groups. Even though the structures and metrics of local fields of
zero and positive characteristics are similar, but their wavelet and multiresolution analysis theory are quite
different. The concept of multiresolution analysis on a local field K of positive characteristic was introduced
by Jiang et al.[8]. They pointed out a method for constructing orthogonal wavelets on local field K with a
constant generating sequence. Subsequently, tight wavelet frames on local fields of positive characteristic
were constructed by Shah and Debnath [21] using extension principles. More results in this direction can
also be found in [15–18] and the references therein.

Recently, Shah and Abdullah [16] have generalized the concept of multiresolution analysis on Eu-
clidean spacesRn to nonuniform multiresolution analysis on local fields of positive characteristic, in which
the translation set acting on the scaling function associated with the multiresolution analysis to generate
the subspace V0 is no longer a group, but is the union ofZ and a translate ofZ, whereZ = {u(n) : n ∈N0}

is a complete list of (distinct) coset representation of the unit disc D in the locally compact Abelian group
K+.More precisely, this set is of the form Λ = {0, r/N}+Z, where N ≥ 1 is an integer and r is an odd integer
such that r and N are relatively prime. They call this a nonuniform multiresolution analysis on local fields of
positive characteristic.

It is well known that the classical orthonormal wavelet bases have poor frequency localization. For
example, if the wavelet ψ is band limited, then the measure of the supp of (ψ j,k)∧ is 2 j-times that of supp ψ̂.
To overcome this disadvantage, Coifman et al.[5] introduced the notion of orthogonal univariate wavelet
packets. Well known Daubechies orthogonal wavelets are a special of wavelet packets. Chui and Li [4]
generalized the concept of orthogonal wavelet packets to the case of non-orthogonal wavelet packets so
that they can be employed to the spline wavelets and so on. Shen [22] generalized the notion of univariate
orthogonal wavelet packets to the case of multivariate wavelet packets. The construction of wavelet packets
and wavelet frame packets on local fields of positive characteristic were recently reported by Behera and
Jahan in [1]. They proved lemma on the so-called splitting trick and several theorems concerning the Fourier
transform of the wavelet packets and the construction of wavelet packets to show that their translates form
an orthonormal basis of L2(K). Other notable generalizations are the vector-valued wavelet packets [3],
wavelet packets and framelet packets related to the Walsh polynomials [13,14,19] and M-band framelet
packets [20].

Motivated and inspired by the concept of nonuniform multiresolution analysis on local fields of posi-
tive characteristic, we construct the associated orthogonal wavelet packets for such an MRA. More precisely,
we show that the collection of all dilations and translations of the wavelet packets is an overcomplete system
in L2(K). Finally, we investigate certain properties of the nonuniform wavelet packets on local fields by
virtue of the Fourier transform.

This paper is organized as follows. In Section 2, we discuss some preliminary facts about local fields
of positive characteristic and also some results which are required in the subsequent sections including the
definitions of uniform and non-uniform multiresolution analysis on local fields of positive characteristic.
In Section 3, we introduce the notion of nonuniform wavelet packets on local field K and prove that they
generate an orthonormal basis for L2(K). In Section 4, we examine their properties by means of the Fourier
transform.

2. Preliminaries on Local Fields

Let K be a field and a topological space. Then K is called a local field if both K+ and K∗ are locally compact
Abelian groups, where K+ and K∗ denote the additive and multiplicative groups of K, respectively. If K is
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any field and is endowed with the discrete topology, then K is a local field. Further, if K is connected, then
K is either R or C. If K is not connected, then it is totally disconnected. Hence by a local field, we mean a
field K which is locally compact, non-discrete and totally disconnected. The p-adic fields are examples of
local fields. More details are referred to [12, 23]. In the rest of this paper, we use the symbolsN,N0 and Z
to denote the sets of natural, non-negative integers and integers, respectively.

Let K be a local field. Let dx be the Haar measure on the locally compact Abelian group K+. If
α ∈ K and α , 0, then d(αx) is also a Haar measure. Let d(αx) = |α|dx. We call |α| the absolute value of α.
Moreover, the map x→ |x| has the following properties: (a) |x| = 0 if and only if x = 0; (b) |xy| = |x||y| for all
x, y ∈ K; and (c) |x + y| ≤ max

{
|x|, |y|

}
for all x, y ∈ K. Property (c) is called the ultrametric inequality. The set

D = {x ∈ K : |x| ≤ 1} is called the ring of integers in K.DefineB = {x ∈ K : |x| < 1}. The setB is called the prime
ideal in K. The prime ideal in K is the unique maximal ideal inD and hence as resultB is both principal and
prime. Since the local field K is totally disconnected, so there exist an element of B of maximal absolute
value. Let p be a fixed element of maximum absolute value in B. Such an element is called a prime element
of K. Therefore, for such an ideal B in D, we have B = 〈p〉 = pD. As it was proved in [23], the set D is
compact and open. Hence, B is compact and open. Therefore, the residue space D/B is isomorphic to a
finite field GF(q), where q = pk for some prime p and k ∈N.

Let D∗ = D \ B = {x ∈ K : |x| = 1}. Then, it can be proved that D∗ is a group of units in K∗ and if
x , 0, then we may write x = pkx′, x′ ∈ D∗. For a proof of this fact we refer to [23]. Moreover, each
Bk = pkD =

{
x ∈ K : |x| < q−k

}
is a compact subgroup of K+ and usually known as the fractional ideals of

K+. Let U = {ai}
q−1
i=0 be any fixed full set of coset representatives of B in D, then every element x ∈ K can

be expressed uniquely as x =
∑
∞

`=k c`p` with c` ∈ U. Let χ be a fixed character on K+ that is trivial on D
but is non-trivial on B−1. Therefore, χ is constant on cosets of D so if y ∈ Bk, then χy(x) = χ(yx), x ∈ K.
Suppose that χu is any character on K+, then clearly the restriction χu|D is also a character onD. Therefore,
if {u(n) : n ∈N0} is a complete list of distinct coset representative of D in K+, then, as it was proved in [23],
the set

{
χu(n) : n ∈N0

}
of distinct characters on D is a complete orthonormal system on D.

The Fourier transform f̂ of a function f ∈ L1(K) ∩ L2(K) is defined by

f̂ (ξ) =

∫
K

f (x)χξ(x)dx. (2.1)

It is noted that

f̂ (ξ) =

∫
K

f (x)χξ(x)dx =

∫
K

f (x)χ(−ξx)dx.

Furthermore, the properties of Fourier transform on local field K are much similar to those of on the real
line. In particular Fourier transform is unitary on L2(K).

We now impose a natural order on the sequence {u(n)}∞n=0. We have D/B � GF(q) where GF(q) is a
c-dimensional vector space over the field GF(p). We choose a set {1 = ζ0, ζ1, ζ2, . . . , ζc−1} ⊂ D

∗ such that span{
ζ j

}c−1

j=0
� GF(q). For n ∈N0 satisfying

0 ≤ n < q, n = a0 + a1p + · · · + ac−1pc−1, 0 ≤ ak < p, and k = 0, 1, . . . , c − 1,

we define
u(n) = (a0 + a1ζ1 + · · · + ac−1ζc−1) p−1. (2.2)
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Also, for n = b0 + b1q + b2q2 + · · · + bsqs, n ∈N0, 0 ≤ bk < q, k = 0, 1, 2, . . . , s, we set

u(n) = u(b0) + u(b1)p−1 + · · · + u(bs)p−s. (2.3)

This defines u(n) for all n ∈N0. In general, it is not true that u(m + n) = u(m) + u(n). But, if r, k ∈N0 and 0 ≤
s < qk, then u(rqk + s) = u(r)p−k + u(s). Further, it is also easy to verify that u(n) = 0 if and only if n = 0 and
{u(`) + u(k) : k ∈N0} = {u(k) : k ∈N0} for a fixed ` ∈N0. Hereafter we use the notation χn = χu(n), n ≥ 0.

Let the local field K be of characteristic p > 0 and ζ0, ζ1, ζ2, . . . , ζc−1 be as above. We define a character
χ on K as follows:

χ(ζµp− j) =

{
exp(2πi/p), µ = 0 and j = 1,
1, µ = 1, . . . , c − 1 or j , 1. (2.4)

A generalization of classical theory of multiresolution analysis on local fields of positive characteristic
was considered by Jiang et al.[8]. Analogous to the Euclidean case, following is a definition of uniform
multiresolution analysis on the local field K of positive characteristic.

Definition 2.1. Let K be a local field of positive characteristic p > 0 and p be a prime element of K. A
multiresolution analysis(MRA) of L2(K) is a sequence of closed subspaces {V j : j ∈ Z} of L2(K) satisfying the
following properties:

(a) V j ⊂ V j+1 for all j ∈ Z;

(b)
⋃

j∈Z V j is dense in L2(K);

(c)
⋂

j∈Z V j = {0};

(d) f (·) ∈ V j if and only if f (p−1
·) ∈ V j+1 for all j ∈ Z;

(e) There is a functionϕ ∈ V0, called the scaling function, such that
{
ϕ
(
· −u(k)

)
: k ∈N0

}
forms an orthonormal

basis for V0.

Since
⋃

j∈Z p
− jD = K, we can regard p−1 as the dilation and since {u(n)}n∈N0

is a complete list of distinct
coset representatives of D in K, the set {u(n) : n ∈N0} can be treated as the translation set. Note that unlike
the standard wavelet theory on the real line, the translation set is not a group.

Let Z = {u(n) : n ∈N0}, where {u(n) : n ∈N0} is a complete list of (distinct) coset representation of D
in K+. For an integer N ≥ 1 and an odd integer r with 1 ≤ r ≤ qN − 1 such that r and N are relatively prime,
we define

Λ =
{
0,

r
N

}
+Z. (2.5)

It is easy to verify that Λ is not a group on local field K, but is the union of Z and a translate of Z. In this
set up, Shah and Abdullah [16] formulated the notion of multiresolution analysis on local field of positive
characteristic, which is called nonuniform multiresolution analysis (NUMRA) and is based on the theory of
spectral pairs. We first recall the definition of a NUMRA on local fields of positive characteristic (as defined
in [16]) and associated set of wavelets:

Definition 2.2. For an integer N ≥ 1 and an odd integer r with 1 ≤ r ≤ qN−1 such that r and N are relatively
prime, an associated nonuniform multiresolution analysis on local field K of positive characteristic is a
sequence of closed subspaces

{
V j : j ∈ Z

}
of L2(K) such that the following properties hold:
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(a) V j ⊂ V j+1 for all j ∈ Z;

(b)
⋃

j∈Z V j is dense in L2(K);

(c)
⋂

j∈Z V j = {0};

(d) f (·) ∈ V j if and only if f
(
p−1N·

)
∈ V j+1 for all j ∈ Z;

(e) There exists a function ϕ in V0 such that
{
ϕ(· − λ) : λ ∈ Λ

}
, is a complete orthonormal basis for V0.

It is worth noticing that, when N = 1, one recovers from the definition above the definition of a
multiresolution analysis on local fields of positive characteristic p > 0. When, N > 1, the dilation is induced
by p−1N and |p−1

| = q ensures that qNΛ ⊂ Z ⊂ Λ.

For every j ∈ Z, define W j to be the orthogonal complement of V j in V j+1. Then we have

V j+1 = V j ⊕W j and W` ⊥W`′ if ` , `′. (2.6)

It follows that for j > J,

V j = VJ ⊕

j−J−1⊕
`=0

W j−` , (2.7)

where all these subspaces are orthogonal. By virtue of condition (b) in the Definition 2.2, this implies

L2(K) =
⊕
j∈Z

W j, (2.8)

a decomposition of L2(K) into mutually orthogonal subspaces.

As in the standard case, one expects the existence of qN−1 number of functions so that their translation
by elements of λ and dilations by the integral powers of p−1N form an orthonormal basis for L2(K).

Definition 2.3. A set of functions
{
ψ1, ψ1, . . . , ψqN−1

}
in L2(K) is said to be a set of basic wavelets associated with

the nonuniform multiresolution analysis
{
V j : j ∈ Z

}
if the family of functions

{
ψ`(· − λ) : 1 ≤ ` ≤ qN − 1, λ ∈ Λ

}
forms an orthonormal basis for W0.

We denote ψ0 = ϕ, the scaling function, and consider qN − 1 functions ψ`, 1 ≤ ` ≤ qN − 1, in W0
as possible candidates for wavelets. Since (1/qN)ψ`(p/N·) ∈ V−1 ⊂ V0, it follows from property (d) of

Definition 2.2 that for each `, 0 ≤ ` ≤ qN − 1, there exists a sequence
{
h`λ : λ ∈ Λ

}
with

∑
λ∈Λ

∣∣∣h`λ∣∣∣2 < ∞ such
that

1
qN

ψ`

(
px
N

)
=

∑
λ∈Λ

h`λ ϕ(x − λ). (2.9)

On taking Fourier transform, we obtain

ψ̂`
(
p−1Nξ

)
= m`(ξ) ϕ̂(ξ), (2.10)

where
m`(ξ) =

∑
λ∈Λ

h`λ χ (λ, ξ), (2.11)
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are the integral periodic functions in L2(D) and are called the wavelet symbols. In view of the specific form
of Λ, we observe that

m`(ξ) = m1
`(ξ) + χ

( r
N
, ξ

)
m2
`(ξ), 0 ≤ ` ≤ qN − 1, (2.12)

where m1
` and m2

` are locally L2-periodic functions. Therefore, by the scaling property of the wavelet spaces
W j’s and (2.8), it is clear that the family of functions{

(qN) j/2ψ`
(
(p−1N) j

· −λ
)

: 1 ≤ ` ≤ qN − 1, λ ∈ Λ
}

(2.13)

forms an orthonormal basis for L2(K). In fact, it was shown in [23, Lemma 3.3] that the orthonormality of
the system

{
ψk

(
· −λ

)
: 1 ≤ k ≤ qN − 1, λ ∈ Λ

}
is equivalent to the following two conditions:

qN−1∑
s=0

{
m1

k

(
p

N

(
ξ + pu(s)

))
m1
`

(
p

N

(
ξ + pu(s)

))
+ m2

k

(
p

N

(
ξ + pu(s)

))

× m2
`

(
p

N

(
ξ + pu(s)

))}
= δk,`, (2.14)

qN−1∑
s=0

χ
( r

N
, pu(s)

) {
m1

k

(
p

N

(
ξ + pu(s)

))
m1
`

(
p

N

(
ξ + pu(s)

))

+ m2
k

(
p

N

(
ξ + pu(s)

))
m2
`

(
p

N

(
ξ + pu(s)

))}
= 0, (2.15)

for 0 ≤ k, ` ≤ qN − 1.

As we know that the classic technique involved for the construction of wavelet packets is through
splitting the wavelet spaces W j successively into finite number of orthogonal sub-spaces. This splitting is
carried out by the following lemma, whose proof is similar to that of Lemma 3.3 in [16].

Lemma 2.4. Let ϕ ∈ L2(K) be such that
{
ϕ(· − λ) : λ ∈ Λ

}
is an orthonormal system in L2(K) and let V =

span
{
(qN)1/2ϕ

(
(p−1N) · −λ

)
: λ ∈ Λ

}
. Let ψ` and m`(ξ) be the functions defined by (2.10) and (2.12), respectively.

Then,
{
ψ`(· − λ) : 1 ≤ ` ≤ qN − 1, λ ∈ Λ

}
is an orthonormal system if and only if m1

` and m2
` satisfy (2.14) and (2.15).

Furthermore, this system is an orthonormal basis for V if and only if it is orthonormal.

Corollary 2.5 Let {Eλ : λ ∈ Λ} be an orthonormal basis of a separable Hilbert spaceH , and m`, 0 ≤ ` ≤ qN − 1, be
as in Lemma 2.4 satisfying (2.14) and (2.15). Define

F`σ = (qN)1/2
∑
λ∈Λ

hλ−qNσ Eλ, 0 ≤ ` ≤ qN − 1, σ ∈ Λ.

Then,
{
F`σ : σ ∈ Λ

}
is an orthonormal basis for its closed linear spanH` andH =

⊕qN−1
`=0 H`.
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3. Nonuniform Wavelet Packets on Local Fields

In this Section, we construct nonuniform wavelet packets associated with nonuniform multiresolution
analysis on local fields of positive characteristic.

Let
{
V j : j ∈ Z

}
be an NUMRA with the scaling function ϕ. Then there exists a function m0 such that

ϕ̂(ξ) = m0(pξ/N)ϕ̂(pξ/N), where m0(ξ) = m1
0(ξ) + χ (r/N, ξ) m2

0(ξ). Applying the splitting Lemma 2.4 to the
space V1, we get functions Γ`, ` = 0, 1, . . . , qN − 1, where

Γ̂`(ξ) = m`

(
pξ
N

)
ϕ̂

(
pξ
N

)
, (3.1)

such that
{
Γ`(· − λ) : 1 ≤ ` ≤ qN − 1, λ ∈ Λ

}
forms an orthonormal basis for V1. For ` = 0, we obtain the

scaling function i.e., Γ0 = ϕ and for ` = 1, . . . , qN − 1, we have the basic wavelets Γ` = ψ`.

For n ≥ 0, the basic nonuniform wavelet packets associated with a scaling function ϕ on a local fields of
positive characteristic are defined recursively by

Γn(x) = ΓqNγ+σ(x) = (qN)1/2
∑
λ∈Λ

hσλ Γγ
(
p−1Nx − λ

)
, 0 ≤ σ ≤ qN − 1, (3.2)

where γ ∈ N0 is the unique element such that n = (qN)γ + σ, 0 ≤ σ ≤ qN − 1 holds. By implementing the
Fourier transform for the both sides of (3.2), we have(

ΓqNγ+σ

)∧
(ξ) = mσ

(
pξ
N

)
Γ̂γ

(
pξ
N

)
, 0 ≤ σ ≤ qN − 1. (3.3)

Next, we obtain an expression for the Fourier transform of the nonuniform wavelet packets in terms
of the wavelet masks m` as:

Proposition 3.1. Let {Γn : n ≥ 0} be the basic nonuniform wavelet packets constructed above and

n =

j−1∑
k=0

εk(qN)k, 0 ≤ εk ≤ qN − 1, ε j , 0 (3.4)

be the unique expansion of the integer n in the base qN. Then

Γ̂n(ξ) = mε1

((
p

N

)
ξ
)

mε2

((
p

N

)2
ξ

)
. . .mε j

((
p

N

) j
ξ

)
ϕ̂

((
p

N

) j
ξ

)
. (3.5)

Proof. If an integer n has an expansion of the form (3.4), then we say that it is of length j. We use induction
on the length of n to prove the proposition. Since Γ0 = ϕ is the scaling function and Γσ = ψσ, 1 ≤ σ ≤ qN− 1,
are the basic nonuniform wavelets, it follows from (3.1) that the claim is true for all n of length 1. Assume
that it holds for all integers of length j. Then an integer m of length j + 1 is of the form m = σ+ (qN)n, where
0 ≤ σ ≤ qN − 1, and n has length j. Therefore, we have

m = σ + (qN)n = σ +

j∑
k=1

εk(qN)k.
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Suppose n has the expansion of the form (3.4). Then, from (3.3) and (3.5), we have

Γ̂m(ξ) =
(
Γσ+(qN)n

)∧
(ξ)

= mσ

((
p

N

)
ξ
)
Γ̂n

((
p

N

)
ξ
)

= mσ

((
p

N

)
ξ
)

mε1

((
p

N

)2
ξ

)
. . .mε j

((
p

N

) j+1
ξ

)
ϕ̂

((
p

N

) j+1
ξ

)
.

This completes the proof.

For the construction of the wavelet packets, it is necessary to show that their translates form an
orthonormal basis for L2(K). This is evident from the following theorem.

Theorem 3.2. Let {Γn : n ≥ 0} be the basic nonuniform wavelet packets associated with the nonuniform multiresolu-
tion analysis

{
V j : j ∈ Z

}
. Then,

(i)
{
Γn

(
· −λ

)
: (qN) j

≤ n ≤ (qN) j+1
− 1, λ ∈ Λ

}
is an orthonormal basis of W j, j ≥ 0.

(ii)
{
Γn

(
· −λ

)
: 0 ≤ n ≤ (qN) j

− 1, λ ∈ Λ
}

is an orthonormal basis of V j, j ≥ 0.

(iii)
{
Γn

(
· −λ

)
: n ≥ 0, λ ∈ Λ

}
is an orthonormal basis of L2(K).

Proof. We prove the theorem by induction on j. Since {Γn : 1 ≤ n ≤ qN − 1} is the basic set of wavelets in W0,
so (i) is true for j = 0. Let us assume that it holds for j. We will prove it for j + 1. By our assumption, the
family of functions

{
(qN)1/2Γn

(
(p−1N) · −λ

)
: (qN) j

≤ n ≤ (qN) j+1
− 1, λ ∈ Λ

}
is an orthonormal basis of W j+1.

Set

En = span
{
(qN)1/2Γn

(
(p−1N) · −λ

)
: λ ∈ Λ

}
,

so that

W j+1 =

(qN) j+1
−1⊕

n=(qN) j

En. (3.6)

By applying the splitting Lemma 2.4 to En, we obtain(
1n
`

)∧
(ξ) = m`

((
p

N

)
ξ
)
Γ̂n

((
p

N

)
ξ
)
, 0 ≤ ` ≤ qN − 1, (3.7)

such that
{
1n
` (· − λ) : 0 ≤ ` ≤ qN − 1, λ ∈ Λ

}
is an orthonormal basis of En. Now, if n has the expansion as in

(3.4). Then, with the help of (3.5), we obtain(
1n
` (ξ)

)∧
= m`

((
p

N

)
ξ
)

mε1

((
p

N

)2
ξ

)
. . .mε j

((
p

N

) j+1
ξ

)
ϕ̂

((
p

N

) j+1
ξ

)
. (3.8)

But the expression on the right-hand side of (3.8) is precisely Γ̂m(ξ), where

m = ` + (qN)ε1 + (qN)2ε2 + · · · + (qN) jε j = ` + (qN)n.
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Hence, we get 1n
` = Γ`+(qN)n. Application of this fact together with equation (3.6) shows that{

Γ`+(qN)n(· − λ) : 0 ≤ ` ≤ qN − 1, (qN) j
≤ n ≤ (qN) j+1

− 1, λ ∈ Λ
}

=
{
Γn(· − λ) : (qN) j+1

≤ n ≤ (qN) j+2
− 1, λ ∈ Λ

}
,

is an orthonormal basis of W j+1. Thus we have proved (i) for j + 1 and the induction is complete. Part (ii)
follows from the fact that V j = V0 ⊕W0 ⊕ · · · ⊕W j−1, and (iii) from the decomposition (2.8).

Definition 3.3. Let {Γn : n ≥ 0} be the basic wavelet packets associated with the nonuniform multiresolution
analysis

{
V j : j ∈ Z

}
of L2(K). The family of functions

F =
{
(qN) j/2Γn

((
p−1N

) j
· −λ

)
: n ≥ 0, j ∈ Z, λ ∈ Λ

}
, (3.9)

will be called the general nonuniform wavelet packets corresponding to the nonuniform multiresolution anal-
ysis

{
V j : j ∈ Z

}
of L2(K).

Next, we prove several decompositions of the wavelet subspaces W j by virtue of a series of subspaces
of nonuniform wavelets packets on local fields of positive characteristic. For n ∈N0 and j ∈ Z, we define

Un
j = span

{
(qN) j/2Γn

((
p−1N

) j
· −λ

)
: λ ∈ Λ

}
, (3.10)

Since Γ0 is the scaling function and Γn, 1 ≤ n ≤ qN − 1 are the basic nonuniform wavelets, we observe that

U0
j = V j,

qN−1⊕
`=1

U`
j = W j, j ∈ Z,

so that the orthogonal decomposition V j+1 = V j ⊕W j can be written as

U0
j+1 =

qN−1⊕
`=0

U`
j . (3.11)

The following theorem decomposes Un
j+1, into qN orthogonal subspaces.

Theorem 3.4. For n ∈N0 and j ∈ Z, we have

Un
j+1 =

qN−1⊕
`=0

U`+(qN)n
j . (3.12)

Proof. By definition

Un
j+1 = span

{
(qN)( j+1)/2 Γn

((
p−1N

) j+1
· −λ

)
: λ ∈ Λ

}
.

Let bλ(x) = (qN)( j+1)/2 Γn

(
(p−1N) j+1x−λ

)
, λ ∈ Λ. Then {bλ : λ ∈ Λ} forms an orthonormal basis for the Hilbert

space Un
j+1. For 0 ≤ ` ≤ qN − 1, we define
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F`σ(x) = (qN)1/2
∑
λ∈Λ

h`λ−qNσbλ(x), σ ∈ Λ, (3.13)

and
P` = span

{
F`σ : σ ∈ Λ

}
.

Then, by Corollary 2.5, we have

Un
j+1 =

qN−1⊕
`=0

P`.

Therefore, Eq. (3.13) becomes

F`σ(x) =
∑
λ∈Λ

(qN)1/2h`λ−qNσbλ(x)

=
∑
λ∈Λ

(qN)1/2h`λ bλ+qNσ(x)

=
∑
λ∈Λ

(qN)( j+2)/2h`λ Γn

( (
p−1N

) j+1
x − λ − p−1Nσ

)
= (qN) j/2

∑
λ∈Λ

(qN)h`λ Γn

( (
p−1N

) ((
p−1N

) j
x − σ

)
− λ

)
= (qN) j/2 Γ`+qNn

((
p−1N

) j
x − σ

)
.

Hence

P` = U`+(qN)n
j and Un

j+1 =

qN−1⊕
`=0

U`+(qN)n
j .

The above decomposition can be used to obtain various decompositions of the wavelet subspaces W j, j ≥ 0
as follows:

W j =

qN−1⊕
`=1

U`
j =

(qN)2
−1⊕

`=qN

U`
j−1 = · · · =

(qN) j+1
−1⊕

`=(qN) j

U`
0. (3.14)

Note that one can construct various orthonormal basis of L2(K) by using (3.14). As we know L2(K) =
V0 ⊕ W0 ⊕ W1 ⊕ W2 ⊕ . . . . Therefore, for each j ≥ 0, we can choose any of the decomposition of W j
obtained above. For example, if we do not want to decompose any W j, then we have the usual wavelet
decomposition. On the other hand, if we prefer the last decomposition in (3.14) for each W j, then we get
the non-uniform wavelet packet decomposition.

Let S ⊂N0 ×Z. We want to characterize the sets S such that the collection

FS =
{
(qN) j/2 Γn

((
p−1N

) j
· −λ

)
: λ ∈ Λ, (n, j) ∈ S

}
,
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will form an orthonormal basis of L2(K). In other words, we are searching those subsets S of N0 × Z for
which ⊕

(n, j)∈S

Un
j = L2(K). (3.15)

Theorem 3.5. Let {Γn : n ≥ 0} be the basic wavelet packets associated with the NUMRA
{
V j : j ∈ Z

}
of L2(K) and

S ⊂ N0 × Z. Then FS is an orthonormal basis of L2(K) if and only if
{
In, j : (n, j) ∈ S

}
is a partition of N0, where

In, j =
{
` ∈N0 : (qN) jn ≤ ` ≤ (qN) j(n + 1) − 1

}
.

Proof. Using decomposition (3.12) repeatedly, we obtain

Un
j =

(qN)−1⊕
`=0

U`+(qN)n
j−1 =

(qN)(n+1)−1⊕
`=(qN)n

U`
j−1 =

(qN)(n+1)−1⊕
`=(qN)n

(qN)−1⊕
k=0

Uk+(qN)`
j−2


=

(qN)2(n+1)−1⊕
`=(qN)2n

U`
j−2 = · · · =

(qN) j(n+1)−1⊕
`=(qN) jn

U`
0 =

⊕
`∈In, j

U`
0.

Therefore, we have ⊕
(n, j)∈S

Un
j =

⊕
(n, j)∈S

⊕
`∈I(n, j)

U`
0.

By Theorem 3.2(iii), we get L2(K) =
⊕

`∈N0
U`

0. Hence (3.15) holds if and only if
{
In, j : (n, j) ∈ S

}
is a partition

ofN0.

4. The Orthogonal Properties of Nonuniform Wavelet Packets

In this Section, we investigate certain orthonormal properties of the nonuniform wavelet packets on local
fields of positive characteristic by virtue of the Fourier transform.

Lemma 4.1. Let f (x) be any function in L2(K). Then, the system
{

f (x − λ) : λ ∈ Λ
}

is orthonormal if and only if∑
k∈N0

∣∣∣∣ f̂ (ξ + u(k)
)∣∣∣∣2 = 1 (4.1)

and ∑
k∈N0

χ
( r

N
,u(k)

) ∣∣∣∣ f̂ (ξ + u(k)
)∣∣∣∣2 = 0. (4.2)

Proof. We have 〈
f (x), f (x − λ)

〉
=

∫
K

f̂ (ξ) f̂ (ξ)χ(λ, ξ) dξ

=
∑
k∈N0

∫
D

∣∣∣∣ f̂ (ξ + u(k)
)∣∣∣∣2 χ(λ, ξ + u(k)

)
dξ.
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If λ ∈N0, we have 〈
f (x), f (x − λ)

〉
=

∫
D

∑
k∈N0

∣∣∣∣ f̂ (ξ + u(k)
)∣∣∣∣2χ(λ, ξ) dξ.

On taking λ =
r
N

+ u(m),m ∈N0, we obtain

〈
f (x), f (x − λ)

〉
=

∑
k∈N0

∫
D

∣∣∣∣ f̂ (ξ + u(k)
)∣∣∣∣2 χ ( r

N
+ u(m), ξ + u(k)

)
dξ

=

∫
D

∑
k∈N0

χ
( r

N
,u(k)

) ∣∣∣∣ f̂ (ξ + u(k)
)∣∣∣∣2χ ( r

N
, ξ

)
χ
(
u(m), ξ

)
dξ.

Therefore, the system
{

f (x−λ) : λ ∈ Λ
}

is orthonormal if and only if the equalities (4.1) and (4.2) hold.

Lemma 4.2. If
{
ψ`(· − λ) : 1 ≤ ` ≤ qN − 1, λ ∈ Λ

}
are the basic orthonormal wavelets associated with a NUMRA{

V j : j ∈ Z
}
. Then ∑

λ∈Λ

hk
λ h`λqN−σ =

1
qN

δk,` δ0,σ, 1 ≤ k, ` ≤ qN − 1, σ ∈ Λ. (4.3)

Proof. By wavelet equation (2.9), we have〈
ψk(x), ψ`(x − σ)

〉
= (qN)2

∫
K

∑
λ∈Λ

hk
λϕ

(
p−1Nx − λ

)∑
ω∈Λ

h`ω ϕ (p−1Nx − p−1Nσ − ω) dx

= (qN)2
∫

K

∑
λ∈Λ

hk
λϕ

(
p−1Nx − λ

)∑
ω∈Λ

h`ω−qNσ ϕ (p−1Nx − ω) dx

= (qN)
∑
λ∈Λ

∑
ω∈Λ

hk
λ h`ω−qNσ

〈
ϕ(x − λ), ϕ(x − ω)

〉
= (qN)

∑
λ∈Λ

hk
λ h`λ−qNσ.

which implies that (4.3) follows.

We are now in a position to investigate the orthogonal properties of the nonuniform wavelet packets
on local fields of positive characteristic.

Theorem 4.3. Let {Γn : n ∈N0} be the basic nonuniform wavelet packets associated with a NUMRA
{
V j : j ∈ Z

}
of

L2(K). Then, we have 〈
Γn(x),Γn(x − λ)

〉
= δ0,λ, λ ∈ Λ. (4.4)

Proof. We prove this result by using induction on n. Since
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〈
Γ0(x),Γ0(x − λ)

〉
=

〈
ϕ(x), ϕ(x − λ)

〉
= δ0,λ,

and hence, the claim is true for n = 0. Assume that (4.4) follows if 0 ≤ n ≤ (qN)r, r is a fixed positive integer.
Then, for (qN)r

≤ n ≤ (qN)r+1, we have (qN)r−1
≤ [n/N] ≤ (qN)r. Let n = N[n/N] + s, s = 0, 1, . . . , qN − 1. In

view of induction hypothesis and Lemma 4.1, we have

〈
Γ[n/N](x),Γ[n/N](x − λ)

〉
= δ0,λ ⇔

∑
k∈N0

∣∣∣∣Γ̂[n/N]

(
ξ + u(k)

)∣∣∣∣2 = 1,

∑
k∈N0

χ
( r

N
,u(k)

) ∣∣∣∣Γ̂[n/N]

(
ξ + u(k)

)∣∣∣∣2 = 0.

(4.5)

By virtue of (3.3), we obtain

〈
Γn(x),Γn(x − λ)

〉
=

∫
K

∣∣∣∣∣mσ

(
pξ
N

)∣∣∣∣∣2 ∣∣∣∣∣Γ̂[n/N]

(
pξ
N

)∣∣∣∣∣2 χ(λ, ξ) dξ

=
∑
k∈N0

∫
qN(D+k)

∣∣∣∣∣mσ

(
pξ
N

)∣∣∣∣∣2 ∣∣∣∣∣Γ̂[n/N]

(
pξ
N

)∣∣∣∣∣2 χ(λ, ξ) dξ

=
∑
k∈N0

∫
qND

∣∣∣∣∣mσ

(
p

N

(
ξ + u(k)

))∣∣∣∣∣2 ∣∣∣∣∣Γ̂[n/N]

(
p

N

(
ξ + u(k)

))∣∣∣∣∣2 χ (
λ, ξ +

p

N
u(k)

)
dξ.

In view of the specific form of Λ, we can write

∣∣∣∣∣mσ

(
p

N

(
ξ + u(k)

))∣∣∣∣∣2
=

{
m1
σ

(
p

N

(
ξ + u(k)

))
+ χ

( r
N
,
pξ
N

+ u(k)
)
m2
σ

(
p

N

(
ξ + u(k)

))}

×

{
m1
σ

(
p

N

(
ξ + u(k)

))
+ χ

( r
N
,
pξ
N

+ u(k)
)

m2
σ

(
p

N

(
ξ + u(k)

))}

=

∣∣∣∣∣m1
σ

(
pξ
N

)∣∣∣∣∣2 +

∣∣∣∣∣m2
σ

(
pξ
N

)∣∣∣∣∣2 + m1
σ

(
pξ
N

)
m2
σ

(
pξ
N

)
χ
( r

N
,
pξ
N

)
χ
( r

N
,u(k)

)

+ m1
σ

(
pξ
N

)
m2
σ

(
pξ
N

)
χ
( r

N
,
pξ
N

)
χ
( r

N
,u(k)

)
.

If λ ∈N0, then by using (4.5), we obtain

〈
Γn(x),Γn(x − λ)

〉
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=

∫
qND

{∣∣∣∣∣m1
σ

(
pξ
N

)∣∣∣∣∣2 +

∣∣∣∣∣m2
σ

(
pξ
N

)∣∣∣∣∣2}χ(λ, ξ)
∑
k∈N0

∣∣∣∣∣Γ̂[n/N]

(
p

N

(
ξ + u(k)

))∣∣∣∣∣2 dξ

+

∫
qND

m1
σ

(
pξ
N

)
m2
σ

(
pξ
N

)
χ
( r

N
,
pξ
N

)
χ(λ, ξ)

∑
k∈N0

χ
( r

N
,u(k)

) ∣∣∣∣∣Γ̂[n/N]

(
p

N

(
ξ + u(k)

))∣∣∣∣∣2
 dξ

+

∫
qND

m1
σ

(
pξ
N

)
m2
σ

(
pξ
N

)
χ
( r

N
,
pξ
N

)
χ(λ, ξ)

∑
k∈N0

χ
( r

N
,u(k)

) ∣∣∣∣∣Γ̂[n/N]

(
p

N

(
ξ + u(k)

))∣∣∣∣∣2
 dξ

=

qN−1∑
s=0

∫
sD

{∣∣∣∣∣m1
σ

(
pξ
N

)∣∣∣∣∣2 +

∣∣∣∣∣m2
σ

(
pξ
N

)∣∣∣∣∣2}χ(λ, ξ)dξ

=

∫
D

qN−1∑
s=0

{∣∣∣∣∣m1
σ

(
p

N

(
ξ + u(s)

))∣∣∣∣∣2 +

∣∣∣∣∣m2
σ

(
p

N

(
ξ + u(s)

))∣∣∣∣∣2}χ(λ, ξ)dξ

=

∫
D

χ(λ, ξ)dξ

= δ0,λ.

Similarly, let λ =
r
N

+ u(m),m ∈N0, we obtain

〈
Γn(x),Γn(x − λ)

〉
=

∫
D

qN−1∑
s=0

χ
( r

N
,u(s)

) {∣∣∣∣∣m1
σ

(
p

N

(
ξ + u(s)

))∣∣∣∣∣2 +

∣∣∣∣∣m2
σ

(
p

N

(
ξ + u(s)

))∣∣∣∣∣2}

χ
( r

N
, ξ

)
χ
(
u(s), ξ

)
dξ

= 0.

This completes the proof.

Theorem 4.4. Let {Γn : n ∈N0} be the basic nonuniform wavelet packets associated with a NUMRA
{
V j : j ∈ Z

}
of

L2(K). Then for every γ ∈N0, 0 ≤ k, ` ≤ qN − 1, we have

〈
ΓqNγ+k(x),ΓqNγ+`(x − λ)

〉
= δk,` δ0,λ, λ ∈ Λ. (4.6)

Proof. By Lemma 4.2 and Theorem 4.3, we have
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〈
ΓqNγ+k(x),ΓqNγ+`(x − λ)

〉
= (qN)2

∫
K

∑
λ∈Λ

hk
λ Γγ

(
p−1Nx − λ

)∑
ω∈Λ

h`ω Γγ (p−1Nx − p−1Nλ − ω) dx

= (qN)
∑
λ∈Λ

∑
ω∈Λ

hk
λ h`ω−qNλ

∫
K

Γγ(x − λ) Γγ(x − ω) dx

=
∑
λ∈Λ

∑
ω∈Λ

hk
λ h`ω−qNλ

〈
Γγ(x − λ), Γγ(x − ω)

〉
= δk,` δ0,λ.

Thus, the system
{
Γn(· − λ) : n ∈N0

}
forms an orthogonal system in L2(K).
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