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Abstract. A mapping f : X → Y is statistically sequence covering map if whenever a sequence {yn}

convergent to y in Y, there is a sequence {xn} statistically converges to x in X with each xn ∈ f −1(yn)
and x ∈ f −1(y). In this paper, we introduce the concept of statistically sequence covering map which is a
generalization of sequence covering map and discuss the relation with covering maps by some examples.
Using this concept, we prove that every closed and statistically sequence-covering image of a metric space
is metrizable. Also, we give characterizations of statistically sequence covering compact images of spaces
with a weaker metric topology.

1. Introduction

In 1971, Siwiec [12] introduced the concept of sequence covering maps which is closely related to the
question about compact covering and s-images of metric spaces. In 1982, Chaber gave a characterization
of perfect images and open and compact images of spaces that can be mapped onto metrizable spaces by
a mapping with fibers having a given property P in [3]. After that characterizations of sequence covering
compact images and sequentially quotient compact images of spaces with a weaker metric topology are
studied. In this paper, we characterize statistically sequence covering compact images of spaces with a
weaker metric topology. Also, we prove that every closed and sequence covering image of a metric space is
metrizable. Also, we introduce ssn-cover and scs-cover which is a generalization of sn-cover and cs-cover,
respectively, to characterize statistically sequence covering compact map.

Throughout this paper, all spaces are regular and T1, all maps are continuous and onto, and N is the
set of natural numbers. xn → x denote a sequence {xn} converging to x. Let X be a space and P ⊂ X. A
sequence {xn} converging to x in X is eventually in P if {xn | n > k} ∪ {x} ⊂ P for some k ∈N; it is frequently
in P if {xnk } is eventually in P for some subsequence {xnk } of {xn}. Let P be a family of subsets of X. Then
∪P and ∩P denote the union ∪{P | P ∈ P} and the intersection ∩{P | P ∈ P}, respectively. Let A be a
subset of a space X, x ∈ X, and U be a family of subsets of X. We write st(x,U) =

⋃
{U ∈ U | x ∈ U} and

st(A,U) =
⋃
{U ∈ U | U ∩ A , ∅}.

Definition 1.1. Let X be a space, P ⊂ X and x ∈ P. Then P is called a sequential neighborhood [5] of x in X if
whenever {xn} is a sequence converging to the point x, then {xn} is eventually in P.
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The research of the second author is supported by the Council of Scientific & Industrial Research Fellowship in Sciences (CSIR,

New Delhi) for Meritorious Students, India
Email addresses: renu−siva2003@yahoo.com (V. Renukadevi), prakashphd101@gmail.com (B. Prakash)



V. Renukadevi, B. Prakash / Filomat 31:6 (2017), 1681–1686 1682

Definition 1.2. ([7]) Let X be a space, and let P be a cover of X.

(1) P is a cs-cover of X, if for any convergent sequence S in X, there exists P ∈ P such that S is eventually
in P.

(2) P is an sn-cover of X, if each element of P is a sequential neighborhood of some point of X and for
each x ∈ X, there exists P ∈ P such that P is the sequential neighborhood of x.

Definition 1.3. A space X is strongly Fréchet [12] if whenever {An | n ∈ N} is a decreasing sequence of sets
in X and x is a point which is in the closure of each An where n ∈ N, then for each n ∈ N, there exists an
xn ∈ An such that the sequence xn → x.

Definition 1.4. A space X is said to have property ωD [14] if every infinite closed discrete subset has an
infinite subset A such that there exists a discrete open family {Ux | x ∈ A}with Ux ∩ A = {x} for each x ∈ A.

Definition 1.5. A class of mappings is said to be hereditary [1] if whenever f : X → Y is in the class, then
for each subspace H of Y, the restriction of f to f−1(H) is in the class.

Definition 1.6. Let f : X→ Y be a mapping.

(a) f is a sequence covering map [7] if for every convergent sequence S in Y, there is a convergent sequence
L in X such that f (L) = S. Equivalently, if whenever {yn} is a convergent sequence in Y, there is a
convergent sequence {xn} in X with each xn ∈ f−1(yn) [12].

(b) f is a sequentially quotient map [7] if for every convergent sequence S in Y, there is a convergent
subsequence L in X such that f (L) is an infinite subsequence of S. Equivalently, if whenever {yn} is a
convergent sequence in Y, there is a convergent sequence {xk} in X with each xk ∈ f−1(ynk ) [12].

Definition 1.7. If X is a space that can be mapped onto a metric space by a one-to-one mapping, then X is
said to have a weaker metric topology [3].

Definition 1.8. [4, 11] If K ⊂N, then Kn will denote the set {k ∈ K | k ≤ n} and |Kn| stands for the cardinality
of Kn. The natural density of K is defined by d(K) = lim

n→∞
|Kn |

n , if limit exists.

Definition 1.9. A subset K of the setN is called statistically dense [2] if d(K) = 1.

Definition 1.10. A subsequence S of the sequence L is called statistically dense in L if the set of all indices of
elements from S is statistically dense.

Definition 1.11. Let X be a space and P ⊂ X. P is called a statistically sequential neighborhood of x ∈ P, if every
sequence {xn}n∈N converges to x is frequently statistically dense in P, that is, d({n ∈N | xn < P}) = 0.

Definition 1.12. Let X be a space and P be a cover of X.

(a) P is a scs-cover of X if for any convergent sequence S in X, there exists P ∈ P such that S is frequently
statistically dense in P.

(b) P is a ssn-cover of X if each element of P is a statistically sequential neighborhood of some point of X
and for each x ∈ X, there exists P ∈ P such that P is the statistically sequential neighborhood of x.

Definition 1.13. A sequence {xn} in a topological space X is said to converge statistically [8] to x ∈ X, if for
every neighborhood U of x, d({n ∈N | xn < U}) = 0.

Lemma 1.14. ([8]) Let X be a first countable space. If a sequence {xn} in X statistically converges to x, then there
exists a statistically dense subsequence {xn j } converges to x.

Lemma 1.15. ([16]) Let X be a space with a weaker metric topology. Then there is a sequence {Pi}i∈N of locally finite
open covers of X such that

⋂
i∈N st(K,Pi) = K for each compact subset K of X.
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2. Statistically Sequence Covering Map

In this section, we introduce a map, namely, statistically sequence covering map and give their properties.
A mapping f : X→ Y is said to be a statistically sequence covering map if for given yn → y in Y, there exists a
sequence xn statistically converges to x, x ∈ f−1(y) and xn ∈ f−1(yn)

Proposition 2.1. Let f : X→ Y and 1 : Y→ Z be any two maps. Then the following hold:
(a) If f and 1 are statistically sequence covering map and Y is a first countable space, then 1 ◦ f is statistically

sequence cover.
(b) If 1 ◦ f is statistically sequence covering map, then 1 is statistically sequence cover.

Proof. (a) Let z ∈ Z and zn → z be a sequence. Since 1 is a statistically sequence covering map, there exists
a sequence statistically converges to y with yn ∈ 1

−1(zn) and y ∈ 1−1(z). By Lemma 1.14, there exists a
statistically dense subsequence ynk converges to y. Since f is a statistically sequence covering map, there
exists a statistically convergent sequence xnk → x, where xnk ∈ f−1(ynk ) and x ∈ f−1(y). Choose xn ∈ f−1(yn)
for n , nk.
To prove {xn} is statistically convergent to x, it is enough to prove d({n | xn < Ux}) = 0 for every open
neighborhood Ux of x.
Since ynk is statistically dense in yn, xnk is statistically dense in xn and so d(K1) = 0 where K1 = {n | n , nk}.
Also, xnk statistically converges to x implies that for every open set U, d(K2) = 0 where K2 = {nk | xnk < U}.
Now for Ux,

d(K) = lim
n→∞

|{n0≤n | xn0<Ux}|

n

= lim
n→∞

|{n0≤n | xn0<Ux and n0,nk} ∪ {n0≤n | xn0<Ux and n0=nk}|

n

= lim
n→∞

|{n0≤n | xn0<Ux and n0,nk}| + |{n0≤n | xn0<Ux and n0=nk}|

n

= lim
n→∞

|{n0≤n | xn0<Ux and n0,nk}|

n + lim
n→∞

|{n0≤n | xn0<Ux and n0=nk}|

n

= d(K1) + d(K2)
= 0

(b) Since f is continuous and by Theorem 3 in [6], 1 is a statistically sequence covering map.

Proposition 2.2. (a) Finite product of statistically sequence covering mapping is a statistically sequence covering
map.

(b) Statistically sequence covering mappings are hereditarily statistically sequence covering mappings.

Proof. (a) Let
∏
N

i=1 fi :
∏
N

i=1 Xi →
∏
N

i=1 Yi be a map where each fi : Xi → Yi is statistically sequence covering
map for i = 1, 2, 3, ...N . Let {(yi,n)}n∈N be converges to (yi) in

∏
N

i=1 Yi. Then each {yi,n} is a sequence converges
to yi in Yi. Since each fi is a statistically sequence covering map, there exists a sequence {xi,n} statistically
converges to xi such that fi(xi,n) = yi,n. Take a sequence {(xi,n)}n∈N which is statistically converges to (xi) by
inductive application of Corollary 2.1 (a) and (b) in [2]. Therefore,

∏
N

i=1 fi is a statistically sequence covering
map.

(b) Let f : X → Y be a statistically sequence covering map and H be a subspace of Y. Take 1 = f | f−1(H)

such that 1 : f−1(H)→ H be a map.
Given a sequence {yn} convergence to y in H, there exists a sequence xn ∈ f−1(yn) ∈ f−1(H) such that

(xn) statistically converges to x ∈ f−1(y) ∈ f−1(H), since f is statistically sequence covering map and {yn}

statistically converges to y in Y. Therefore, 1 is a statistically sequence covering map.

We observe that every sequence covering map is a statistically sequence covering map. But the reverse
implication need not be true as shown by the following Example 2.3. Also, Example 2.4 and Example 2.5
below shows that statistically sequence covering map and sequentially quotient map are independent.
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Example 2.3. Let ∧ = {K | d(K) = 1,K is a subsequence ofN obtained by deleting infinitely many elements}
and Sα be a convergent sequence with its limit xα where α = K ∈ ∧. That is, Sα = {xα,i, xα | i ∈ K}. Let X be a
disjoint union of Sα and Y be a sequence {xn} → x. Then f : X→ Y defined by f (xα,i) = f (xi) and f (xα) = f (x)
is a statistically sequence covering map and a sequentially quotient map but not a sequence covering map.

Example 2.4. Let X be a topological sum of a collection {I,Sα | α ∈ I}, where I is the closed unit interval and
each Sα is a sequence with its limit for each α ∈ I and Y be the space obtained from X by identifying the
limit point of Sα with α. Let f : X → Y be the obvious map. Then Y is the quotient, finite to one image
of a locally compact metric space X under f so that f is sequentially quotient. But f is not a statistically
sequence covering map.

Example 2.5. Let ∧ = {K | d(K) = 1,K is a subsequence ofN obtained by deleting infinitely many elements}
and Sα be a statistically convergent sequence with its limit xα where α = K ∈ ∧. That is, Sα = {xα,i, xα | i ∈ K}.
Let X be a disjoint union of Sα and Y be a sequence {xn} → x.Note that each Sα is not a sequential space, since
singleton set {xα} is vacuously sequentially open but not open, that is, there is no convergent sequence in
Sα converges to xα. Therefore, X is not a sequential space, since its open subspace must be. Then f : X→ Y
defined by f (xα,i) = f (xi) and f (xα) = f (x) is a statistically sequence covering map but not a sequentially
quotient map.

3. Statistically Sequence Covering and Compact Map

Theorem 3.1. Let f : X → Y be a statistically sequence covering compact map. Then for each y ∈ Y, there exists
x ∈ f−1(y) such that if U is an open neighborhood of x, then f (U) is a sequential neighborhood of y.

Proof. Suppose not, that is, there exists y ∈ Y, for every x ∈ f−1(y), there exists an open neighborhood
Ux of x such that f (Ux) is not a sequential neighborhood of y. Since f−1(y) ⊂

⋃
x∈ f−1(y) Ux and f is a

compact map, there exists a finite Ui such that f−1(y) ⊂
⋃n0

i=1 Ui. Since each f (Ui) is not a sequential
neighborhood of y, choose {ym,n}

∞

n=1 → y such that ym,n < f (Um) for all m ∈ {1, 2, ...,n0} and n ∈ N. Now
form a sequence yk = ym,n where k = (n − 1)n0 + m, 1 ≤ m ≤ n0 and n ∈ N. Then {yk} is a sequence
converging to y in Y. Since f is a statistically sequence covering map, there exists x ∈ f−1(y) and xk ∈ f−1(yk)
such that {xk} → x statistically. Since x ∈ f−1(y) ⊂

⋃n0
i=1 Ui, there exist Um0 such that x ∈ Um0 so that

d({n ∈ N | xn < Um0 }) = 0 and hence d({n ∈ N | yn < f (Um0 )}) = 0 which is a contradiction. Since
ym0,n < f (Um0 ), d({n ∈N | yn < f (Um0 )}) ≥ d({n ∈N | n = (n′ − 1)n0 + m0,n′ ∈N}) > 1

m0
.

Theorem 3.2. The following conditions are equivalent for a space Y:

(a) Y is a statistically sequence covering compact image of a space with a weaker metric topology.
(b) Y has a sequence {Fi}i∈N of point-finite ssn-covers such that

⋂
i∈N st(y,Fi) = {y} for each y ∈ Y.

(c) Y has a sequence {Fi}i∈N of point-finite scs-covers such that
⋂

i∈N st(y,Fi) = {y} for each y ∈ Y.
(d) Y has a sequence {Fi}i∈N of point-finite sn-covers such that

⋂
i∈N st(y,Fi) = {y} for each y ∈ Y.

(e) Y has a sequence {Fi}i∈N of point-finite cs-covers such that
⋂

i∈N st(y,Fi) = {y} for each y ∈ Y.

Proof. It is clear that (b)⇒ (c), (d)⇒ (e), (d)⇒ (b), (e)⇒ (c).
(a) ⇒ (d) Suppose f : X → Y is a statistically sequence covering compact mapping. As X being a

space with a weaker metric topology, there is a sequence {Pi}i∈N of locally finite open covers of X such that⋂
i∈N st(K,Pi) = K for each compact subset K ⊂ X, by Lemma 1.15. For each i ∈ N, put Fi = f (Pi). Then Fi

is a point finite cover of Y, since f is compact. By Theorem 3.1, for each y ∈ Y, there exists x ∈ f−1(y) such
that for every open neighborhood Ux of x, f (Ux) is a sequential neighborhood of y. Since each Pi is an open
cover of X, there exists P ∈ Pi such that x ∈ P, and so F = f (P) is a sequential neighborhood of y. Choose
F
′

i ⊂ Fi which are sequential neighborhoods of y. F ′i is a point finite sn-cover of Y. For each y ∈ Y, f−1(y) is
a compact subset of X and

⋂
i∈N st( f−1(y),Pi) = f−1(y). Thus,

⋂
i∈N st(y,Fi) = {y}.

(c)⇒ (d) First we collect the set of all sequential neighborhoods F ′i from Fi. Suppose there is no such
sequential neighborhood in Fi. For each y ∈ Y, put (Fi)y = {F | y ∈ F,F ∈ Fi} = {Fm | m ≤ k}. Since each Fm is
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not a sequential neighborhood for each Fm, there exists a convergent sequence ym,n → y such that ym,n < Fm,
for all n ∈ N. Now form a new sequence {zn′ } by taking zn′ = ym,n, where n′ = (n − 1)k + m, 1 ≤ m ≤ k and
n ∈ N. Then the sequence {zn′ } is also converging to y, but d({n′ | zn′ < Fm}) ≥ 1

k > 0, for all m. That is, Fi is
not a scs-covers, which is a contradiction.

(b) ⇒ (a) For each i ∈ N, take Fi = {Fα | α ∈ Xi} and each Xi is endowed with discrete topology. Let
M = {(αi) ∈

∏
i∈N Xi | there is y ∈ Y such that

⋂
i∈N Fαi = {y}} and give M the subspace topology induced

from the usual product topology. Then M is a metric space. Let X = {(y, (αi)) ∈ Y ×M | y ∈
⋂

i∈N Fαi }. Let
f : X→ Y and P : X→M be the onto projection map.

(1) X is a space with weaker metric topology.
Since P : X → M is the onto projection map, for each (αi) ∈ M, there is y ∈ Y such that

⋂
i∈N Fαi = {y}

which implies P−1((αi)) = (y, (αi)) and hence P is a one-to-one mapping. Thus, X is a space with a
weaker metric topology.

(2) f is a compact map.
f−1(y) = {(y, (αi)) ∈ Y ×M|

⋂
Fαi = {y}}.

Let {Uβ}β∈∧′ be a cover of f−1(y). Since M being a subspace topology induced from the usual product
topology, for β′ ∈ ∧′, P(Uβ′ ) = VM = (..,Vi1 , ...,Vi2 , ..,Vin , ..), that is,

∏
i(VM) = Xi

⋂∏
i(M) except some

finite place i = {i1, i2, ..., in} where
∏

i : M → Xi is a projection map. Since Fi is a point finite cover
of Y for each i ∈ N,

∏
i j
(P( f−1(y))) is finite for each j ∈ {i1, i2, ..., in}. Therefore, we can choose a finite

subcover of {Uβ} to cover the element of
∏

i j
(P( f−1(y))) where j ∈ {i1, i2, ..., in}. In addition, Uβ′ will

cover f−1(y). Therefore, f is a compact map.
(3) f is a statistically sequence covering map.

Take y0 ∈ Y and then choose β0 ∈ f−1(y0) ⊂ Y×M such that for each i ∈N, chooseαi ∈ Xi such that Fαi is
a statistically sequential neighborhood of y0.Let β0 = (y0, (αi)) ∈ Y×

∏
i∈N Xi.Then β0 ∈ f−1(y0) ⊂ Y×M.

Now for given convergent sequence {yn}n∈N in Y converging to y0, we choose a sequence {xn}n∈N in
X as follows: Since Fαi is a ssn-neighborhood of y0, {yn}n∈N is frequently statistically dense in Fαi for
each i ∈N.
Choose αin = αi if yn ∈ Fαi , otherwise choose βi ∈ Xi such that yn ∈ Fβi so that αin = βi. Then {αin }

statistically converges to αi in Xi and hence {(αin )} statistically converges to (αi) in M. Put βn = (yn, (αin ))
for each n ∈N. Then f (βn) = yn and the sequence {βn}n∈N is statistically converges to β0 in X. Therefore,
f is a statistically sequence covering mapping.

Theorem 3.3. Let X be a strongly Fréchet space with propertyωD. If f : X→ Y is a closed and statistically sequence
covering map, then Y is strongly Fréchet.

Proof. Clearly, Y is a Fréchet space, since it is a closed image of a strongly Fréchet, in particular, Fréchet.
Suppose Y is not strongly Fréchet. Then Y contains a homeomorphic copy of the sequential fan Sω [13], and
the copy can be closed in Y [10]. Hence let Sω ⊂ Y as a closed set. Let it be Sω = {y} ∪ {ym,n | m,n ∈ ω}where
each Sm = {ym,n}n∈ω is a convergent sequence converges to y.
For each m ∈N, choose

ymk =

{
y0, k+1

2
, if k is odd

ym, k
2
, if k is even.

Then the sequence {ymk } converges to y. Since f is statistically sequence cover, there exist xm ∈ f−1(y) and a
sequence Qm statistically converges to xm such that f (Qm) = {ymk }. For each k ∈ ω, let Tk = ∪{ f−1(Sm) | m ≥ k}
Suppose that there exists z ∈ X such that for every open neighborhood U of z, {n ∈ N | xn ∈ U} is infinite.
Then z ∈ ∩k∈NTk. Since X is strongly Fréchet, there exists a convergent sequence {zk}k∈N converges to z,
where zk ∈ Tk. But { f (zk)}k∈N does not converge to y, which is a contradiction. Suppose the set {xn}n∈N is
finite. Let it be z = xn, n ∈ N′, N′ is a infinite subset of N. Then for every open neighborhood U of z,
{n ∈ N|xn ∈ U} is infinite which is a contradiction. Therefore, the set {xn}n∈N is infinite, closed and discrete
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in X.
Since X has the property ωD, there exist an infinite subset {xn j }n∈N and a discrete open family {U j} j∈ω such
that U j ∩ {xn j } j∈ω = {xn j }. Recall that Qn j statistically converges to xn j and f (Qn j ) = {yn j }. Therefore, we can
take u j ∈ U j ∩Qn j such that { f (u j)} j∈ω is infinite and contained in {y0,n | n ∈ N}. Since {u j} j∈ω is closed in X,
{ f (u j)} j∈ω is closed in Sω, which is a contradiction. Thus, Y is strongly Fréchet.

Corollary 3.4. Every closed and statistically sequence covering image of a metric space is metrizable.

Proof. Since every metrizable space has ωD property [14], Y is strongly Fréchet by Theorem 3.3. Also,
m every strongly Fréchet space which is a closed image of a metric space is metrizable [9]. Hence Y is
metrizable.

Corollary 3.5. ([15]) Every closed and sequence covering image of a metric space is metrizable.
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