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Abstract. Odd-dimensional Weyl and pseudo-Weyl spaces admitting almost contact, almost paracontact
and nilpotent structures are considered in this work. The results are obtained by means of the apparatus of
the prolonged covariant differentiation. A linear connection with torsion is constructed. With respect to this
connection the prolonged covariant derivatives of the fundamental tensors of the Weyl and pseudo-Weyl
spaces are found to be zero. The curvature tensor with respect to this connection is considered.

1. Introduction

Riemannian spaces with almost contact and almost paracontact structures have been studied in [1, 3, 5,
6, 13–15]. In [11, 12, 16, 17] Weyl spaces are studied, and in [19] nilpotent structures have been considered.

In this paper, we study odd-dimensional Weyl and pseudo-Weyl spaces endowed with various struc-
tures: almost contact, almost paracontact and nilpotent. In our investigations we use the apparatus of the
prolonged covariant differentiation which is defined in [4] and developed in [18, 21, 22]. The affinors of the
considered structures are defined by means of 2n + 1 independent directional fields v

σ

α (σ, α = 1, 2, ..., 2n + 1)

and their reciprocal covectors
σ
vα [2, 23, 24]. We pay special attention to the spaces with parallel structures

with respect to the Levi-Civita connection of the metric, i.e. the so called Kähler-like classes. For such
spaces we obtain a decomposition of three mutually orthogonal subspaces and also their line elements
(fundamental forms).

In the last section, we introduce a linear non-symmetric connection. With respect to this connection
the prolonged covariant derivatives of the fundamental tensors of the Weyl and pseudo-Weyl spaces are
proved to be zero. We study the curvature tensor corresponding to the introduced connection.

2. Preliminaries

A set of quantities that differ from each other by a non-zero factor is called a pseudo-quantity. A particular
quantity of this set is called a representative of the pseudo-quantity. The choice of a representative from a
pseudo-quantity is called normalization.
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Let An be an n-dimensional space with an affine connection and the pseudo-quantity A ∈ An.
The following definitions are given in [7, 10, 20]:

Definition 2.1. By a pseudo-quantity with weight k it is meant a set of objects A admitting a transformation
(renormalization) of the form

Ă = λkA, (1)

where λ = λ(
1
u,

2
u, ...,

n
u) is a non-zero function of the point, and k ∈ R. We denote a pseudo-quantity with weight k by

A{k}.

Definition 2.2. A normalizer is defined as a covector (1-form) Tσ which is transformed by the rule

T̆σ = Tσ + ∂σ lnλ, ∂σ lnλ =
∂ lnλ
∂uσ

. (2)

In [4], V. Hlavatý introduced the notion of prolonged derivative of a pseudo-quantity A{k} by

∂•σA = ∂σA − kTσA. (3)

Because of (1) and (3) we have ∂•σĂ = λk∂•σA from which it follows that the prolonged differentiation
preservers the weight of a pseudo-quantity. It is known that if A{p} and B{q}, then AB{p + q} and ∂•σ(AB) =
(∂•σA)B + A(∂•σB).

Definition 2.3. The prolonged covariant derivative of a pseudo-quantity A{k} is called the object [7, 10, 20]

•

∇σA = ∇σA − kTσA, (4)

where ∇σA is the usual covariant derivative of A.

Let M2n+1(1αβ,Tσ) be a (2n + 1)-dimensional smooth manifold with a Weyl connection ∇, a symmetric
pseudo-tensor 1αβ and an additional covector Tσ. The space M2n+1(1αβ,Tσ) will be denoted by W2n+1 and
will be called a Weyl space. The coefficients Γσαβ of the Weyl connection are given by [7](p. 154)

Γσαβ = {σαβ} −
(
Tαδσβ + Tβδσα − Tν1νσ1αβ

)
, (5)

where {σαβ} are the Christoffel symbols of the tensor 1αβ.
According to [7](p. 152), the fundamental tensor 1αβ admits a transformation of the form

1̆αβ = λ21αβ, (6)

where λ = λ(
1
u,

2
u, ...,

2n+1
u ), λ , 0, is an arbitrary smooth function of the point.

By the renormalization (6) of 1αβ, the additional covector Tσ is transformed by formula (2) ([7], p. 152).
According to [7](p. 152), the following hold

∇σ1αβ = 2 Tσ1αβ, ∇σ1
αβ = −2 Tσ1αβ, (7)

where 1αβ1αν = δνβ.
From (6) it follows that 1αβ{2} and 1αβ{−2}. Then, according to (4) and (7), we obtain

•

∇σ1αβ = 0,
•

∇σ1
αβ = 0. (8)

Since the identity affinor has zero weight, i.e. δβα{0}, then
•

∇σδ
β
α = 0.
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Let us introduce the notations

α, β, γ, σ, τ, ν, δ = 1, 2, ..., 2n + 1; p, q, r, t = 1, 2, ..., 2n;

j, s, k, l,m = 1, 2, ...,n; j̄, s̄, k̄, l̄, m̄ = n + 1,n + 2, ..., 2n.
(9)

Let v
α

β(α = 1, 2, ..., 2n + 1) be 2n + 1 independent directional fields over M2n+1. The pseudo-vectors v
α

β are

renormalized by the condition

1αβv
σ

αv
σ

β = 1. (10)

From (10) it follows that v
α

β
{−1}. According to [7](p. 153) and (10), we have

1αβv
σ

αv
ν

β = cosω
σν
, (11)

where ω
σν
{0} is the angle between the pseudo-vectors v

σ

α and v
ν

β.

Let the following conditions hold

1αβv
k

αv̄
s
β = 0, 1αβv

p
α v

2n+1

β = 0. (12)

The net defined by the pseudo-vectors v
α

β is denoted by {v
α
}. The pseudo-covectors

α
vβ are given by

v
σ

β σvα = δ
β
α ⇐⇒ v

α

σ β
vσ = δ

β
α, (13)

from which it follows that
α
vβ{1}.

We choose {v
α
} to be the coordinate net. Then, from (10), (11), (12) and (13) we have

v
1
β
(

1
√
111
, 0, 0, ..., 0

)
, v

2
β
(
0, 1
√
122
, 0, ..., 0

)
, ..., v

2n+1
β
(
0, 0, ..., 0, 1

√
12n+1 2n+1

)
;

1
vβ

(√
111, 0, 0, ..., 0

)
,

2
vβ

(
0,
√
122, 0, ..., 0

)
, ...,

2n+1
v β

(
0, 0, ..., 0,

√
12n+1 2n+1

)
.

(14)

In the parameters of the coordinate net {v
α
} the matrix of the fundamental tensor 1αβ has the following block

diagonal form

∥∥∥1αβ∥∥∥ =

∥∥∥∥∥∥∥∥
1ks 0 0
0 1k̄s̄ 0
0 0 12n+1 2n+1

∥∥∥∥∥∥∥∥ , det 1αβ , 0, 1αα > 0. (15)

Let us consider the pseudo-tensor 1̃αβ whose matrix has the following form in the parameters of the
coordinate net {v

α
}:

∥∥∥1̃αβ∥∥∥ =

∥∥∥∥∥∥∥∥
1ks 0 0
0 −1k̄s̄ 0
0 0 12n+1 2n+1

∥∥∥∥∥∥∥∥ . (16)

By (8), (15) and (16) we get

∇σ1̃αβ = 2Tσ1̃αβ, ∇σ1̃
αβ = −2Tσ1̃αβ, (17)

where 1̃αβ1̃ασ = δσβ . According to (16) and 1̃αβ1̃ασ = δσβ , it follows that 1̃αβ{2} and 1̃αβ{−2}. Then, by (4) and
(17) we obtain

•

∇σ1̃αβ = 0,
•

∇σ1̃
αβ = 0. (18)
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The space W2n+1(1̃αβ,Tσ) will be denoted by W̃2n+1 and will be called a pseudo-Weyl space with fundamental
tensor 1̃αβ and additional covector Tσ. The coefficients of the connection of W̃2n+1 coincide with the
coefficients of the connection of the space W2n+1.

From (10) and (16) it follows

1̃αβv
k

αv
k

β = 1, 1̃αβv̄
k

αv̄
k

β = −1, 1̃αβ v
2n+1

α v
2n+1

β = 1. (19)

In the parameters of the coordinate net {v
α
} it it easy to prove that 1αβ v

2n+1
α =

2n+1
v β and 1̃αβ v

2n+1
α =

2n+1
v β.

The direction fields v
α

β satisfy the following derivative equations [22]:

•

∇σv
α

β =
ν
T
α
σ v
ν

β,
•

∇σ
α
vβ = −

α
T
ν
σ
ν
vβ, (20)

where
ν
T
α
σ{0}.

Lemma 2.4. In the parameters of the coordinate net {v
α
} the coefficients of the derivative equations (20) have the form:

γ

T
α
σ =

√
1γγ
√
1αα

Γ
γ
σα, γ , α,

α
T
α
σ = Γασα −

1
2
∂σ1αα
1αα

+ Tσ (no summation over α).
(21)

Proof. According to (4) and the first of the equalities (20), we have
•

∇σv
α

β = ∇σv
α

β + Tσv
α

β =
ν
T
α
σv
ν

β, from which we get

ν
T
α
σv
ν

β = ∂σv
α

β + Γ
β
σνv
α

ν + Tσv
α

β. (22)

Having in mind (13), after contracting (22) with
γ
vβ, we obtain

γ

T
α
σ = ∂σv

α

β γvβ + Γ
β
σν v

α

ν γvβ + Tσδ
γ
α. (23)

By (23) we get

γ

T
α
σ = ∂σv

α

β
γ
vβ + Γ

β
σν v

α

ν
γ
vβ, γ , α,

α
T
α
σ = ∂σv

α

β αvβ + Γ
β
σν v

α

ν αvβ + Tσ (no summation over α). (24)

We choose {v
α
} for the coordinate net. Then, according to (14), equalities (24) take the form (21).

Let us consider the affinor field aβα defined by [2, 23, 24]

aβα = v
p
β p

vα − v
2n+1

β 2n+1
v α. (25)

By (13) and (25) it follows that aβαaσβ = δσα. Hence, the affinor aβα defines a composition X2n × X1 of the basic
manifolds X2n and X1 [8]. The positions (tangent planes) of the basic manifolds X2n and X1 are denoted by
P(X2n) and P(X1), respectively [8]. According to [8, 9], the affinors

1
aβα = 1

2 (δβα + aβα) = v
p
β

p
vα,

2
aβα = 1

2 (δβα − aβα) = v
2n+1

β 2n+1
v α
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are the projecting affinors of the composition X2n×X1. If vβ is an arbitrary vector, we have vβ =
1
aβα vα+

2
aβα vα =

1
Vβ +

2
Vβ, where

1
Vβ =

1
aβα vα ∈ P(X2n) and

2
Vβ =

2
aβα vα ∈ P(X1). Obviously, v

p
α
∈ P(X2n), and v

2n+1
α
∈ P(X1). The

affinors aβα,
1
aβα,

2
aβα have zero weights.

Let Xa × Xb (a + b = 2n + 1) be an arbitrary composition in the space W2n+1, and P(Xa) and P(Xb) be the
positions of the differentiable manifolds Xa and Xb, respectively. According to [9], the composition Xa ×Xb
is of the type (c, c), i.e. (Cartesian, Cartesian), if the positions P(Xa) and P(Xb) are translated parallelly along
any line in the space M2n+1.

3. Almost Contact and Almost Paracontact Structures in W2n+1 and W̃2n+1

Let us consider the following affinor fields

b
κ

β
α = κ

(
v
k

β k
vα − v̄

k

β k̄
vα

)
, (26)

where κ = 1, i (i2 = −1). According to (13) and (26), we have b
κ

β
α v

2n+1
α = 0 and b

κ

β
α

2n+1
v β = 0.

Let κ = 1. From (13) and (26) we obtain b
1

β
α b

1
σ
β = δσα − v

2n+1
σ 2n+1

v α, i.e. the affinor b
1

β
α defines an almost

paracontact structure on W2n+1.

Let κ = i. By (13) and (26) it follows that b
i

β
α b

i
σ
β = −δσα + v

2n+1
σ 2n+1

v α, i.e. b
i

β
α defines an almost contact

structure on W2n+1.

Theorem 3.1. The affinor b
κ

β
α is parallel with respect to the Weyl connection ∇, i.e.

∇σb
κ

β
α = 0 (27)

if and only if the coefficients of the derivative equations (20) satisfy the conditions:

s̄
T
k
σ =

s
T̄
k
σ =

p
T

2n+1
σ =

2n+1
T
p
σ = 0. (28)

Proof. Because of (4) and b
κ

β
α{0}, the condition (27) is equivalent to

•

∇σb
κ

β
α = 0. (29)

According to (20) and (26), equality (29) has the form

ν
T
k
σ v
ν

β k
vα −

k
T
ν
σ v

k

β ν
vα −

ν
T̄
k
σ v
ν

β k̄
vα +

k̄
T
ν
σ v̄

k

β ν
vα = 0.

If we write the sums over the index ν in a more detailed form and regroup the addends, the last equality has the form(
2

s̄
T
k
σ v̄

s
β +

2n+1
T
k
σ v

2n+1
β

)
k
vα −

(
2

s
T̄
k
σ v

s
β +

2n+1
T̄
k
σ v

2n+1
β

)
k̄
vα +

(
s̄
T

2n+1
σ v̄

s
β
−

s
T

2n+1
σ v

s
β

)
2n+1

v α = 0. (30)

The independence of the pseudo-covectors
ν
vα yields that (30) holds true if and only if the following equalities are valid:

2
s̄
T
k
σ v̄

s
β +

2n+1
T
k
σ v

2n+1
β = 0, 2

s
T̄
k
σ v

s
β +

2n+1
T̄
k
σ v

2n+1
β = 0,

s̄
T

2n+1
σ v̄

s
β
−

s
T

2n+1
σ v

s
β = 0. (31)
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Since the pseudo-vectors v
ν

β are mutually independent, equalities (31) are valid if and only if
s̄
T
k
σ =

s
T̄
k
σ = 0 and

s
T

2n+1
σ =

s̄
T

2n+1
σ =

2n+1
T
k
σ =

2n+1
T̄
k
σ = 0. Because of (9) the latter conditions are equivalent to

p
T

2n+1
σ =

2n+1
T
p
σ = 0. Thus we

proved that equalities (31), and hence (27), are valid if and only if conditions (28) hold.

Corollary 3.2. If ∇σ b
κ

β
α = 0, in the parameters of the coordinate net {v

α
}, the coefficients Γναβ of the Weyl connection

satisfy:

Γk̄
σs = Γk

σs̄ = Γ
p
σ2n+1 = Γ2n+1

σp = 0. (32)

Proof. According to (21), equalities (28) imply (32).

Let the space M2n+1 be a topological product of three smooth manifolds Xa, Xb and Xc (a + b + c = 2n + 1),
i.e. let M2n+1 be the space of the composition Xa×Xb×Xc. We denote by P(Xa), P(Xb) and P(Xc), respectively,
the positions of the manifolds Xa, Xb and Xc.

Definition 3.3. The composition Xa × Xb × Xc is said to be of type (c, c, c) if the positions P(Xa), P(Xb) and P(Xc)
are translated parallelly along any line in W2n+1.

Definition 3.4. The composition Xa × Xb × Xc is said to be orthogonal if the positions P(Xa), P(Xb) and P(Xc) are
mutually orthogonal.

Theorem 3.5. If
•

∇σ b
κ

β
α = 0, the space W2n+1 is a space of orthogonal compositions Xn × Xn × X1 of the type (c, c, c).

Proof. Let condition (29) hold true. Then, in the parameters of the net {v
α
} the conditions (32) are valid. Let us consider

the composition X2n×X1 defined by the affinor (25). According to [9], by (32) it follows that the composition X2n×X1
is of the type (c, c). Hence, the position P(X1) of the manifold X1 (which is a curve) is translated parallelly along any
line in M2n+1.

Let us consider the following affinors

cβα = v
k
β k

vα − v̄
k

β k̄
vα − v

2n+1
β 2n+1

v α, dβα = v
k
β k

vα − v̄
k

β k̄
vα + v

2n+1
β 2n+1

v α. (33)

By (13) and (33) it follows that cβα cσβ = δσα and dβα dσβ = δσα. Hence, affinors cβα and dβα define the compositions Xn×Yn+1

and Xn ×Zn+1, respectively, where Yn+1 and Zn+1 are smooth (n + 1)-dimensional manifolds. In the parameters of the
coordinate net the affinors aβα, cβα and dβα have the form, respectively:

(aβα) =

(
δq

p 0
0 −1

)
, (cβα) =


δs

k 0 0
0 −δs̄

k̄
0

0 0 −1

 , (dβα) =


δs

k 0 0
0 −δs̄

k̄
0

0 0 1

 . (34)

By (34) it follows that Yn+1 = Xn×X1 and Zn+1 = Xn×X1, therefore W2n+1 is a space of the composition Xn×Xn×X1.
We denote by P(Xn) and P(Xn), respectively, the positions of the manifolds Xn and Xn. According to [9], equality (32)
yields that the compositions Xn ×Yn+1 and Xn ×Zn+1 are of the type (c, c). Hance, the positions P(Xn) and P(Xn) are
translated parallelly along any line in W2n+1, i.e. we proved that the composition Xn × X×X1 is of the type (c, c, c).
The projecting affinors of the composition Xn × Xn × X1 are:

1
cβα = v

k

β k
vα,

1
dβα = v̄

k

β k̄
vα,

2
aβα = v

2n+1

β 2n+1
v α.
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If wβ is an arbitrary vector, we have

wβ =
1
cβα wα +

1
dβα wα +

2
aβα wα =

1
Wβ +

2
Wβ +

3
Wβ,

where
1

Wβ =
1
cβα wα

∈ P(Xn),
2

Wβ =
1
dβα wα

∈ P(Xn) and
3

Wβ =
2
aβα wα

∈ P(X1). Because v
k
α
∈ P(Xn), v̄

k

α
∈ P(Xn) and

v
2n+1

α
∈ P(X1), from (15) or (16) it follows that the positions P(Xn), P(Xn) and P(X1) are mutually orthogonal.

We denote by ds2 = 1αβd
α
ud

β
u and d̃s 2 = 1̃αβd

α
ud

β
u the fundamental forms of the spaces W2n+1 and W̃2n+1,

respectively.

Theorem 3.6. If
•

∇σ b
κ

β
α = 0, in the parameters of the coordinate net {v

α
}, the fundamental forms of the space W2n+1

and W̃2n+1 are given by

ds2 = f
1

◦

1ksd
k
ud

s
u + f

2

◦

1k̄s̄d
k̄
ud

s̄
u + f

3

◦

12n+1 2n+1d(
2n+1

u )2

d̃s 2 = f
1

◦

1ksd
k
ud

s
u − f

2

◦

1k̄s̄d
k̄
ud

s̄
u + f

3

◦

12n+1 2n+1d(
2n+1

u )2,

(35)

where

Ts = 1
2∂s ln f

2
= 1

2∂s ln f
3
, Ts̄ = 1

2∂s̄ ln f
1

= 1
2∂s̄ ln f

3
, T2n+1 = 1

2∂2n+1 ln f
1

= 1
2∂2n+1 ln f

2
,

and f
1

= f
1
(
α
u), f

2
= f

2
(
α
u), f

3
= f

3
(
α
u),

◦

1ks =
◦

1ks(
j
u),

◦

1k̄s̄ =
◦

1k̄s̄(
j̄
u),

◦

12n+1 2n+1 =
◦

12n+1 2n+1(
2n+1

u ), ∂ f

∂
α
u

= ∂α f .

Proof. Let condition (29) hold. Then, in the parameters of the coordinate net {v
α
}, conditions (32) will be valid. From

(7), (17) and (32) we obtain

∂ j1k̄s̄ = 2T j1k̄s̄, ∂ j12n+1 2n+1 = 2T j12n+1 2n+1, ∂ j̄1ks = 2T j̄1ks, ∂ j̄12n+1 2n+1 = 2T j̄12n+1 2n+1,

∂2n+11ks = 2T2n+11ks, ∂2n+11k̄s̄ = 2T2n+11k̄s̄.
(36)

The truthfulness of the theorem follows after integration of equations (36).

By (35) it follows that the positions P(Xn) (or P(Xn), or P(X1)) are in conformal correspondence under
parallel translation.

According to (14), a direction field wα defines an isotropic direction in W̃2n+1 if 1̃αβwαwβ = 0. Then, by
(12) and (19) it is easy to prove that the direction fields v

k
α
± v̄

s
α and v

2n+1
α
± v̄

s
α define isotropic directions in

the space W̃2n+1.
Let the functions f

1
, f

2
and f

3
involved in (35) satisfy the condition f

1
= f

2
= f

3
. Then, Tα = grad, and

according to [7](p. 157), the spaces W2n+1 and W̃2n+1 are Riemannian and pseudo-Riemannian, respectively,
which we denote by V2n+1 and Ṽ2n+1. After renormalization of the fundamental tensor 1αβ we get [7](p.
157) ∇σ1αβ = ∇σ1̃αβ = 0. By (35) it follows that the line elements dS2 and dS̃ 2 of the spaces V2n+1 and Ṽ2n+1
have the form, respectively:

dS2 = 1ks(
j
u)d

k
ud

s
u + 1k̄s̄(

j̄
u)d

k̄
ud

s̄
u + 12n+1 2n+1(

2n+1
u )d(

2n+1
u )2,

dS̃ 2 = 1ks(
j
u)d

k
ud

s
u − 1k̄s̄(

j̄
u)d

k̄
ud

s̄
u + 12n+1 2n+1(

2n+1
u )d(

2n+1
u )2.

(37)

Equalities (37) imply that the positions P(Xn) (or P(Xn), or P(X1)) are in conformal correspondence under
parallel translation.
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Theorem 3.7. Condition (29) is equivalent to the following conditions:

1
cσν
•

∇α
1
cβσ = 0,

1
dσν
•

∇α

1
dβσ = 0,

2
aσν
•

∇α
2
aβσ = 0, (38)

where
1
cσν ,

1
dσν and

2
aσν are the projecting affinors of the composition Xn × Xn × X1.

Proof. Since
1
cσν = v

k
σ k

vν,
1
dσν = v̄

k

σ k̄
vν and

2
aσν = v

2n+1
σ 2n+1

v ν, we obtain

1
cσν
•

∇α
1
cβσ = v

k
σ k

vν
•

∇α

(
v
s
β s

vσ
)
,

1
dσν
•

∇α

1
dβσ = v̄

k

σ k̄
vν
•

∇α

(
v̄
s
β s̄

vσ
)
,

2
aσν
•

∇α
2
aβσ = v

2n+1
σ 2n+1

v ν

•

∇α

(
v

2n+1
β 2n+1

v σ

)
. (39)

By (20) and (39) we get

1
cσν
•

∇α
1
cβσ =

(
s̄
T
k
α v̄

s
β +

2n+1
T
k
α v

2n+1
β

)
k
vν,

1
dσν
•

∇α

1
dβσ =

(
s
T̄
k
α v

s
β +

2n+1
T̄
k
α v

2n+1
β

)
k̄
vν,

2
aσν
•

∇α
2
aβσ =

p
T

2n+1
α v

p
β 2n+1

v ν. (40)

By (40) it follows that conditions (38) are valid if and only if conditions (28) are valid, too. Then, in accordance to
Theorem 3.1, conditions (37) are equivalent to (29).

4. A Nilpotent Structure on W2n+1 and W̃2n+1

Let us consider the affinor

f βα = v
i
β n+i

v α. (41)

Obviously, f βα {0} and hence
•

∇σ f βα = ∇σ f βα . By (13) and (15) we get f βα f σβ = 0, i.e. the affinor f βα is nilpotent.

In the parameters of the coordinate net {v
α
} the matrix of f βα is given by

∥∥∥∥ f βα
∥∥∥∥ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 ... 0
√
1n+1 n+1
√
111

0 ... 0 0

0 ... 0 0
√
1n+2 n+2
√
122

... 0 0
... ... ... ... ... ... ... ...

0 ... 0 0 0 ...
√
12n 2n
√
1nn

0
0 ... 0 0 ... 0 ... 0
... ... ... ... ... ... ... ...
0 ... 0 0 ... 0 ... 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Theorem 4.1. The affinor f βα is parallel with respect to ∇, i.e.

∇σ f βα = 0 (42)

if and only if the coefficients of the derivative equations (20) satisfy the following conditions:

n+k
T
s
σ =

n+k
T

2n+1
σ =

2n+1
T
s
σ =

k
T
s
σ −

n+k
T

n+s
σ = 0. (43)

Proof. Since
•

∇σ f βα = ∇σ f βα , and because of (20) and (41), equality (42) has the form

ν
T
s
σ v
ν

β n+s
v α −

n+s
T
ν
σ v

s
β ν

vα = 0.
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If we write the sums over the index ν in a more detailed form and regroup the addends, the last equality is equivalent
to (

n+k
T
s
σ v

k
β

)
s
vα −

[
(

k
T
s
σ −

n+k
T

n+s
σ)v

k
β +

n+k
T
s
σ v

n+k
β +

2n+1
T
s
σ v

2n+1
β

]
n+s
v α +

(
n+k
T

2n+1
σ v

k
β

)
2n+1

v α = 0. (44)

Because of the independence of the pseudo-covectors
ν
vα, equality (44) is valid if and only if the following equalities

hold:
n+k
T
s
σ v

k

β = 0,
n+k
T

2n+1
σ v

k

β = 0, (
k
T
s
σ −

n+k
T

n+s
σ)v

k

β +
n+k
T
s
σ v

n+k

β +
2n+1
T
s
σ v

2n+1

β = 0.

The independence of the pseudo-vectors v
ν

β yields that the last equalities, and hence (42), are valid if and only if
conditions (43) hold true.

Corollary 4.2. If ∇σ f βα = 0, the coefficients of the Weyl connection Γναβ satisfy the following conditions in the
parameters of the coordinate net {v

α
}:

Γk̄
σs = Γk̄

σ2n+1 = Γ2n+1
σs = 0, (45)

√
1kk
√
1ss

Γk
σs −

√
1n+k n+k
√
1n+s n+s

Γn+k
σn+s = 0, k , s, Γk

σk −
1
2
∂σ1kk
1kk

= Γn+k
σn+k −

1
2
∂σ1n+k n+k
1n+k n+k

. (46)

Proof. According to (21), equalities (43) take the form (45) and (46).

Proposition 4.3. If ∇σ f βα = 0, in the parameters of the coordinate net {v
α
}, the fundamental tensor 1αβ, the additional

covector Tσ and the coefficients of the connection Γσαβ satisfy the following conditions:

1k̄s̄ = h
◦

1k̄s̄, 12n+1 2n+1 = h
◦

12n+1 2n+1, T j = 1
2∂ j ln h, T2n+1 = 1

2∂2n+1 ln h, (47)

Γk
sk + Ts = 1

2
∂s1kk
1kk
, Γk

2n+1 k + T2n+1 = 1
2
∂2n+11kk
1kk

, Γk
j̄k
− Γn+k

j̄n+k
= 1

2
∂ j̄1kk

1kk
−

1
2
∂ j̄1n+k n+k

1n+k n+k
, (48)

where h = h(
α
u),

◦

1k̄s̄ =
◦

1k̄s̄(
j̄
u),

◦

12n+1 2n+1 =
◦

12n+1 2n+1(
ī
u,

2n+1
u ).

Proof. By (7) and (45) we obtain

∂ j1k̄s̄ = 2T j1k̄s̄, ∂2n+11k̄s̄ = 2T2n+11k̄s̄, ∂ j12n+1 2n+1 = 2T j12n+1 2n+1. (49)

After integration of equations (49), we get (47). According to (45) and (49), equalities (46) imply (48).

5. Transformations of Connections

Let us consider the connections
1Γναβ = Γναβ + Sναβ,

1Γ̃ναβ = Γναβ + S̃ναβ, (50)

where

Sναβ = 1
√
12n+1 2n+1

∑2n+1
τ=1

τ
vα 1βδ

∑n
k=1

∑2n
s̄=n+1

(
v
k
δ v̄

s
ν
− v

k
ν v̄

s
δ
)
,

S̃ναβ = 1√
1̃2n+1 2n+1

∑2n+1
τ=1

τ
vα 1̃βδ

∑n
k=1

∑2n
s̄=n+1

(
v
k
δ v̄

s
ν
− v

k
ν v̄

s
δ
) (51)

Obviously, Sναβ{0}, S̃ναβ{0}.

We denote by 1
∇ (1
∇̃) and 1R (1R̃) the covariant derivative and the curvature tensor corresponding to

the connection Γναβ (̃Γναβ), respectively.
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Theorem 5.1. The fundamental tensors 1αβ and 1̃αβ of the spaces W2n+1 and W̃2n+1, respectively, satisfy

1
•

∇σ1αβ = 0, 1
•

∇̃σ1̃αβ = 0. (52)

Proof. By (4) and (50) we obtain

1
•

∇σ1αβ =
•

∇σ1αβ − Sνσα1νβ − Sνσβ1αν,
1
•

∇̃σ1̃αβ =
•

∇σ1̃αβ − S̃νσα1̃νβ − S̃νσβ1̃αν.
(53)

Let us consider the tensors defined by

Tσαβ = Sνσα1νβ, T̃σαβ = S̃νσα1̃νβ (54)

Obviously, Tσαβ{2}, T̃σαβ{2}.
According to (50) and (54), we have

Tσαβ = 1
√
12n+1 2n+1

∑2n+1
τ=1

τ
vσ 1αδ

∑n
k=1

∑2n
s̄=n+1

(
v
k
δ v̄

s
ν
− v

k
ν v̄

s
δ
)
1νβ,

T̃σαβ = 1√
1̃2n+1 2n+1

∑2n+1
τ=1

τ
vσ 1̃αδ

∑n
k=1

∑2n
s̄=n+1

(
v
k
δ v̄

s
ν
− v

k
ν v̄

s
δ
)
1̃νβ.

(55)

In the parameters of the coordinate net {v
α
} we obtain

Tσαβ = 1
√
12n+1 2n+1

∑2n+1
τ=1

τ
vσ

∑n
k=1

∑2n
s̄=n+1

1αk1βs̄−1αs̄1βk
√
1kk
√
1s̄s̄

,

T̃σαβ = 1√
1̃2n+1 2n+1

∑2n+1
τ=1

τ
vσ

∑n
k=1

∑2n
s̄=n+1

1̃αk1̃βs̄−1̃αs̄1̃βk
√
1̃kk

√
1̃s̄s̄
,

(56)

from which it follows that

Tσ(αβ) = 0, T̃σ(αβ) = 0. (57)

Then, (8), (18), (53) and (57) imply (52).

In the parameters of the coordinate net {v
α
}, by (14) and (51) we obtain the following non-zero components

of the tensors Sναβ and S̃ναβ:

S j
lm̄ = −S̃ j

lm̄ = −
√
1ll

√
1 j j
√
12n+1 2n+1

∑2n
s̄=n+1

1m̄s̄
√
1s̄s̄
, S j

l̄m̄
= −S̃ j

l̄m̄
= −

√
1l̄l̄

√
1 j j
√
12n+1 2n+1

∑2n
s̄=n+1

1m̄s̄
√
1s̄s̄
,

S j
2n+1m̄ = −S̃ j

2n+1m̄ = − 1
√
1 j j

∑2n
s̄=n+1

1m̄s̄
√
1s̄s̄
, S j̄

lm = S̃ j̄
lm =

√
1ll

√
1 j̄ j̄
√
12n+1 2n+1

∑n
k=1

1mk
√
1kk
,

S j̄
l̄m

= S̃ j̄
l̄m

=
√
1l̄l̄

√
1 j̄ j̄
√
12n+1 2n+1

∑n
k=1

1mk
√
1kk
, S j̄

2n+1 m = S̃ j̄
2n+1 m = 1

√
1 j̄ j̄

∑n
k=1

1mk
√
1kk
.

(58)

In the parameters of the net {v
α
}, by (32), (50) and (58) we obtain the following non-zero coefficients of

the connections 1Γναβ and 1Γ̃ναβ:

1Γ
j
lm =1 Γ̃

j
lm = Γ

j
lm,

1Γ
j
lm̄ = −1Γ̃

j
lm̄ = S j

lm̄,
1Γ

j
l̄m̄

= −1Γ̃
j
l̄m̄

= S j
l̄m̄
,

1Γ
j̄
lm =1 Γ̃

j̄
lm = S j̄

lm,
1Γ

j̄
l̄m̄

=1 Γ̃
j̄
l̄m̄

= Γ
j̄
l̄m̄
, 1Γ

j̄
l̄m

=1 Γ̃
j̄
l̄m

= S j̄
l̄m
,

1Γ
j
2n+1 m̄ = −1Γ̃

j
2n+1 m̄ = S j

2n+1 m̄,
1Γ

j̄
2n+1 m =1 Γ̃

j̄
2n+1 m = S j̄

2n+1 m.

(59)
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By (59) and straightforward computations we get the following components of the curvature tensors
1R ν

αβσ and 1R̃ ν
αβσ:

1R j
skm = R j

skm + 2S j
[s|l̄

Sl̄
k]m,

1R j̄
s̄k̄m̄

= R j̄
s̄k̄m̄

+ 2S j̄
[s̄|lS

l
k̄]m̄
,

1R̃ j
skm = R j

skm − 2S j
[s|l̄

Sl̄
k]m,

1R̃ j̄
s̄k̄m̄

= R j̄
s̄k̄m̄
− 2S j̄

[s̄|lS
l
k̄]m̄
,

1R j
2n+1 s̄k̄

= 2∂[2n+1S j
s̄]k̄

+ S j
2n+1l̄

Γl̄
s̄k̄
, 1R j̄

2n+1 sk = 2∂[2n+1S j̄
s]k + S j̄

2n+1 lΓ
l
sk,

1R̃ j
2n+1 s̄k̄

= −2∂[2n+1S j
s̄]k̄
− S j

2n+1l̄
Γl̄

s̄k̄
, 1R̃ j̄

2n+1 sk = 2∂[2n+1S j̄
s]k + S j̄

2n+1 lΓ
l
sk,

where R ν
αβσ is the curvature tensor of the space W2n+1.
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