Odd-Dimensional Weyl and Pseudo-Weyl spaces with Additional Tensor Structures

Musa Ajeti ${ }^{\text {a }}$, Marta Teofilova ${ }^{\text {b }}$, Georgi Zlatanov ${ }^{\text {b }}$
${ }^{a}$ State Universty of Tetovo, Faculty of Natural Sciences and Mathematics, dispersed in Skopje, Macedonia
${ }^{b}$ University of Plovdiv Paisii Hilendarski, 24 Tzar Asen, 4000 Plovdiv, Bulgaria

Abstract

Odd-dimensional Weyl and pseudo-Weyl spaces admitting almost contact, almost paracontact and nilpotent structures are considered in this work. The results are obtained by means of the apparatus of the prolonged covariant differentiation. A linear connection with torsion is constructed. With respect to this connection the prolonged covariant derivatives of the fundamental tensors of the Weyl and pseudo-Weyl spaces are found to be zero. The curvature tensor with respect to this connection is considered.

1. Introduction

Riemannian spaces with almost contact and almost paracontact structures have been studied in $[1,3,5$, $6,13-15]$. In [11, 12, 16, 17] Weyl spaces are studied, and in [19] nilpotent structures have been considered.

In this paper, we study odd-dimensional Weyl and pseudo-Weyl spaces endowed with various structures: almost contact, almost paracontact and nilpotent. In our investigations we use the apparatus of the prolonged covariant differentiation which is defined in [4] and developed in [18, 21,22]. The affinors of the considered structures are defined by means of $2 n+1$ independent directional fields $v_{\sigma}^{\alpha}(\sigma, \alpha=1,2, \ldots, 2 n+1)$ and their reciprocal covectors $\stackrel{\sigma}{v}_{\alpha}[2,23,24]$. We pay special attention to the spaces with parallel structures with respect to the Levi-Civita connection of the metric, i.e. the so called Kähler-like classes. For such spaces we obtain a decomposition of three mutually orthogonal subspaces and also their line elements (fundamental forms).

In the last section, we introduce a linear non-symmetric connection. With respect to this connection the prolonged covariant derivatives of the fundamental tensors of the Weyl and pseudo-Weyl spaces are proved to be zero. We study the curvature tensor corresponding to the introduced connection.

2. Preliminaries

A set of quantities that differ from each other by a non-zero factor is called a pseudo-quantity. A particular quantity of this set is called a representative of the pseudo-quantity. The choice of a representative from a pseudo-quantity is called normalization.

[^0]Let A_{n} be an n-dimensional space with an affine connection and the pseudo-quantity $A \in A_{n}$.
The following definitions are given in [7, 10, 20]:
Definition 2.1. By a pseudo-quantity with weight k it is meant a set of objects A admitting a transformation (renormalization) of the form

$$
\begin{equation*}
\breve{A}=\lambda^{k} A \tag{1}
\end{equation*}
$$

where $\lambda=\lambda(\stackrel{1}{u}, \stackrel{2}{u}, \ldots, \stackrel{n}{u})$ is a non-zero function of the point, and $k \in \mathbb{R}$. We denote a pseudo-quantity with weight k by $A\{k\}$.

Definition 2.2. A normalizer is defined as a covector (1-form) T_{σ} which is transformed by the rule

$$
\begin{equation*}
\breve{T}_{\sigma}=T_{\sigma}+\partial_{\sigma} \ln \lambda, \quad \partial_{\sigma} \ln \lambda=\frac{\partial \ln \lambda}{\partial u^{\sigma}} . \tag{2}
\end{equation*}
$$

In [4], V. Hlavatý introduced the notion of prolonged derivative of a pseudo-quantity $A\{k\}$ by

$$
\begin{equation*}
\partial_{\sigma}^{\bullet} A=\partial_{\sigma} A-k T_{\sigma} A . \tag{3}
\end{equation*}
$$

Because of (1) and (3) we have $\partial_{\sigma}^{\bullet} \breve{A}=\lambda^{k} \partial_{\sigma}^{\bullet} A$ from which it follows that the prolonged differentiation preservers the weight of a pseudo-quantity. It is known that if $A\{p\}$ and $B\{q\}$, then $A B\{p+q\}$ and $\partial_{\sigma}^{*}(A B)=$ $\left(\partial_{\sigma}^{\bullet} A\right) B+A\left(\partial_{\sigma}^{\bullet} B\right)$.

Definition 2.3. The prolonged covariant derivative of a pseudo-quantity $A\{k\}$ is called the object $[7,10,20]$

$$
\begin{equation*}
\dot{\nabla}_{\sigma} A=\nabla_{\sigma} A-k T_{\sigma} A \tag{4}
\end{equation*}
$$

where $\nabla_{\sigma} A$ is the usual covariant derivative of A.
Let $M_{2 n+1}\left(g_{\alpha \beta}, T_{\sigma}\right)$ be a $(2 n+1)$-dimensional smooth manifold with a Weyl connection ∇, a symmetric pseudo-tensor $g_{\alpha \beta}$ and an additional covector T_{σ}. The space $M_{2 n+1}\left(g_{\alpha \beta}, T_{\sigma}\right)$ will be denoted by $W_{2 n+1}$ and will be called a Weyl space. The coefficients $\Gamma_{\alpha \beta}^{\sigma}$ of the Weyl connection are given by [7](p. 154)

$$
\Gamma_{\alpha \beta}^{\sigma}=\left\{\begin{array}{l}
\sigma \tag{5}\\
\alpha \beta
\end{array}\right\}-\left(T_{\alpha} \delta_{\beta}^{\sigma}+T_{\beta} \delta_{\alpha}^{\sigma}-T_{\nu} g^{v \sigma} g_{\alpha \beta}\right),
$$

where $\left\{{ }_{\alpha \beta}^{\sigma}\right\}$ are the Christoffel symbols of the tensor $g_{\alpha \beta}$.
According to [7](p. 152), the fundamental tensor $g_{\alpha \beta}$ admits a transformation of the form

$$
\begin{equation*}
\breve{g}_{\alpha \beta}=\lambda^{2} g_{\alpha \beta} \tag{6}
\end{equation*}
$$

where $\lambda=\lambda\left({ }_{u}, \stackrel{2}{u}, \ldots, \stackrel{2 n+1}{u}\right), \lambda \neq 0$, is an arbitrary smooth function of the point.
By the renormalization (6) of $g_{\alpha \beta}$, the additional covector T_{σ} is transformed by formula (2) ([7], p. 152). According to [7](p. 152), the following hold

$$
\begin{equation*}
\nabla_{\sigma} g_{\alpha \beta}=2 T_{\sigma} g_{\alpha \beta}, \quad \nabla_{\sigma} g^{\alpha \beta}=-2 T_{\sigma} g^{\alpha \beta} \tag{7}
\end{equation*}
$$

where $g_{\alpha \beta} g^{\alpha v}=\delta_{\beta}^{v}$.
From (6) it follows that $g_{\alpha \beta}\{2\}$ and $g^{\alpha \beta}\{-2\}$. Then, according to (4) and (7), we obtain

$$
\begin{equation*}
\dot{\nabla}_{\sigma} g_{\alpha \beta}=0, \quad \dot{\nabla}_{\sigma} g^{\alpha \beta}=0 \tag{8}
\end{equation*}
$$

Since the identity affinor has zero weight, i.e. $\delta_{\alpha}^{\beta}\{0\}$, then $\dot{\nabla}_{\sigma} \delta_{\alpha}^{\beta}=0$.

Let us introduce the notations

$$
\begin{align*}
& \alpha, \beta, \gamma, \sigma, \tau, v, \delta=1,2, \ldots, 2 n+1 ; \quad p, q, r, t=1,2, \ldots, 2 n ; \\
& j, s, k, l, m=1,2, \ldots, n ; \quad \bar{j}, \bar{s}, \bar{k}, \bar{l}, \bar{m}=n+1, n+2, \ldots, 2 n . \tag{9}
\end{align*}
$$

Let $\underset{\alpha}{v^{\beta}}(\alpha=1,2, \ldots, 2 n+1)$ be $2 n+1$ independent directional fields over $M_{2 n+1}$. The pseudo-vectors v_{α}^{β} are renormalized by the condition

$$
\begin{equation*}
g_{\alpha \beta} \tilde{\sigma}_{\sigma}^{\alpha} v_{\sigma}^{\beta}=1 \tag{10}
\end{equation*}
$$

From (10) it follows that $\gamma_{\alpha}^{\beta}\{-1\}$. According to [7](p. 153) and (10), we have

$$
\begin{equation*}
g_{\alpha \beta} v_{\sigma}^{\alpha} v_{v}^{\beta}=\cos \underset{\sigma v}{\omega}, \tag{11}
\end{equation*}
$$

where $\underset{\sigma v}{\omega}\{0\}$ is the angle between the pseudo-vectors ${\underset{\sigma}{\alpha}}^{\alpha}$ and $\underset{v}{v^{\beta}}$.
Let the following conditions hold

$$
\begin{equation*}
g_{\alpha \beta} v_{k}^{\alpha} \frac{v^{\beta}}{\beta}=0, \quad g_{\alpha \beta} v_{p}^{\alpha} v_{2 n+1}^{v}=0 . \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
v_{\sigma}^{\beta} \stackrel{\stackrel{\sigma}{v}}{\alpha}=\delta_{\alpha}^{\beta} \Longleftrightarrow v_{\alpha}^{\sigma} \stackrel{\beta}{v}_{\sigma}^{\beta}=\delta_{\alpha}^{\beta} \tag{13}
\end{equation*}
$$

from which it follows that ${ }_{v}^{\alpha}\{1\}$.
We choose $\underset{\alpha}{\{v\}}$ to be the coordinate net. Then, from (10), (11), (12) and (13) we have

$$
\begin{align*}
& {\underset{1}{v}}^{\beta}\left(\frac{1}{\sqrt{g_{11}}}, 0,0, \ldots, 0\right), v_{2}^{\beta}\left(0, \frac{1}{\sqrt{g_{22}}}, 0, \ldots, 0\right), \ldots, \underset{2 n+1}{v} \quad \beta\left(0,0, \ldots, 0, \frac{1}{\sqrt{g_{2 n+1} 2 n+1}}\right) ; \tag{14}\\
& { }_{v}^{1}{ }_{\beta}\left(\sqrt{g_{11}}, 0,0, \ldots, 0\right), \stackrel{2}{v}_{\beta}\left(0, \sqrt{g_{22}}, 0, \ldots, 0\right), \ldots, \stackrel{2 n}{v}_{v_{\beta}}^{\beta}\left(0,0, \ldots, 0, \sqrt{g_{2 n+1} 2 n+1}\right) .
\end{align*}
$$

In the parameters of the coordinate net $\{v\}$ the matrix of the fundamental tensor $g_{\alpha \beta}$ has the following block diagonal form

$$
\left\|g_{\alpha \beta}\right\|=\left\|\begin{array}{ccc}
g_{k s} & 0 & 0 \tag{15}\\
0 & g_{\bar{k} \bar{s}} & 0 \\
0 & 0 & g_{2 n+1} 2 n+1
\end{array}\right\|, \quad \operatorname{det} g_{\alpha \beta} \neq 0, \quad g_{\alpha \alpha}>0 .
$$

Let us consider the pseudo-tensor $\widetilde{g}_{\alpha \beta}$ whose matrix has the following form in the parameters of the coordinate net $\{v\}$:

$$
\left\|\widetilde{g}_{\alpha \beta}\right\|=\left\|\begin{array}{ccc}
g_{k s} & 0 & 0 \tag{16}\\
0 & -g_{\bar{k} \bar{s}} & 0 \\
0 & 0 & g_{2 n+1} 2 n+1
\end{array}\right\| .
$$

By (8), (15) and (16) we get

$$
\begin{equation*}
\nabla_{\sigma} \widetilde{g}_{\alpha \beta}=2 T_{\sigma} \widetilde{g}_{\alpha \beta}, \quad \nabla_{\sigma} \widetilde{g}^{\alpha \beta}=-2 T_{\sigma} \widetilde{g}^{\alpha \beta} \tag{17}
\end{equation*}
$$

where $\widetilde{g}_{\alpha \beta} \widetilde{g}^{\alpha \sigma}=\delta_{\beta}^{\sigma}$. According to (16) and $\widetilde{g}_{\alpha \beta} \widetilde{g}^{\alpha \sigma}=\delta_{\beta}^{\sigma}$, it follows that $\widetilde{g}_{\alpha \beta}\{2\}$ and $\widetilde{g}^{\alpha \beta}\{-2\}$. Then, by (4) and (17) we obtain

$$
\begin{equation*}
\dot{\nabla}_{\sigma} \widetilde{g}_{\alpha \beta}=0, \quad \dot{\nabla}_{\sigma} \widetilde{g}^{\alpha \beta}=0 \tag{18}
\end{equation*}
$$

The space $W_{2 n+1}\left(\widetilde{g}_{\alpha \beta}, T_{\sigma}\right)$ will be denoted by $\widetilde{W}_{2 n+1}$ and will be called a pseudo-Weyl space with fundamental tensor $\widetilde{g}_{\alpha \beta}$ and additional covector T_{σ}. The coefficients of the connection of $\widetilde{W}_{2 n+1}$ coincide with the coefficients of the connection of the space $W_{2 n+1}$.

From (10) and (16) it follows

$$
\begin{equation*}
\widetilde{g}_{\alpha \beta} v_{k}^{\alpha} v_{k}^{\beta}=1, \quad \widetilde{g}_{\alpha \beta} \frac{v^{\alpha}}{\bar{k}} \frac{v^{\beta}}{\bar{k}}=-1, \quad \widetilde{g}_{\alpha \beta}{ }_{2 n+1}{ }^{\alpha} v_{2 n+1}^{v}{ }^{\beta}=1 . \tag{19}
\end{equation*}
$$

In the parameters of the coordinate net $\left\{\underset{\alpha}{\{v\}}\right.$ it it easy to prove that $g_{\alpha \beta}{ }_{2 n+1}{ }^{\alpha}={ }^{2 n+1}{ }_{\beta}$ and $\widetilde{g}_{\alpha \beta}{ }_{2 n+1}{ }^{\alpha}={ }^{2 n+1}{ }_{\beta}$.
The direction fields v_{α}^{β} satisfy the following derivative equations [22]:

$$
\begin{equation*}
\dot{\nabla}_{\sigma} v_{\alpha}^{\beta}=\stackrel{v}{\alpha}_{T_{\sigma}}^{v} v_{v}^{\beta}, \quad \dot{\nabla}_{\sigma}{ }_{\sigma}^{\alpha} v_{\beta}=-\stackrel{T}{v}_{\sigma}^{\alpha}{ }_{v}^{v} v_{\beta}, \tag{20}
\end{equation*}
$$

\left. where ${\underset{\alpha}{\nu}}_{T_{\sigma}}^{\sigma} 0\right\}$.
Lemma 2.4. In the parameters of the coordinate net $\underset{\alpha}{\{v\}}\}$ the coefficients of the derivative equations (20) have the form:

$$
\begin{align*}
& {\underset{\alpha}{\sigma}}_{\sigma}^{\gamma}=\frac{\sqrt{g_{\gamma \gamma}}}{\sqrt{g_{\alpha \alpha}}} \Gamma_{\sigma \alpha}^{\gamma} \quad \gamma \neq \alpha, \tag{21}\\
& {\underset{\alpha}{T}}_{\sigma}^{\alpha}=\Gamma_{\sigma \alpha}^{\alpha}-\frac{1}{2} \frac{\partial_{\sigma} g_{a \alpha}}{g_{\alpha \alpha}}+T_{\sigma} \quad(\text { no summation over } \alpha) .
\end{align*}
$$

Proof. According to (4) and the first of the equalities (20), we have $\dot{\nabla}_{\sigma} v_{\alpha}^{\beta}=\nabla_{\sigma_{\alpha}} v^{\beta}+T_{\sigma} v_{\alpha}^{\beta}={\underset{\sim}{\alpha}}_{\sigma}^{v} v_{v}^{\beta}$, from which we get

$$
\begin{equation*}
\underset{\alpha}{T_{\sigma} v_{v}^{\beta}}=\partial_{\sigma} v_{\alpha}^{\beta}+\Gamma_{\sigma v}^{\beta} v_{\alpha}^{v}+T_{\sigma} v_{\alpha}^{\beta} . \tag{22}
\end{equation*}
$$

Having in mind (13), after contracting (22) with γ_{β}, we obtain

By (23) we get

We choose $\{\underset{\alpha}{\{v\}}$ for the coordinate net. Then, according to (14), equalities (24) take the form (21).
Let us consider the affinor field a_{α}^{β} defined by $[2,23,24]$

$$
\begin{equation*}
a_{\alpha}^{\beta}=v_{p}^{\beta}{ }^{\beta} v_{\alpha}-v_{2 n+1}{ }^{\beta}{ }^{2 n+1}{ }_{\alpha} . \tag{25}
\end{equation*}
$$

By (13) and (25) it follows that $a_{\alpha}^{\beta} a_{\beta}^{\sigma}=\delta_{\alpha}^{\sigma}$. Hence, the affinor a_{α}^{β} defines a composition $X_{2 n} \times X_{1}$ of the basic manifolds $X_{2 n}$ and X_{1} [8]. The positions (tangent planes) of the basic manifolds $X_{2 n}$ and X_{1} are denoted by $P\left(X_{2 n}\right)$ and $P\left(X_{1}\right)$, respectively [8]. According to [8, 9], the affinors

$$
\stackrel{1}{a}_{\alpha}^{\beta}=\frac{1}{2}\left(\delta_{\alpha}^{\beta}+a_{\alpha}^{\beta}\right)=\underset{p}{v^{\beta}} \stackrel{p}{v_{\alpha}} \quad \quad \stackrel{2}{a}{ }_{\alpha}^{\beta}=\frac{1}{2}\left(\delta_{\alpha}^{\beta}-a_{\alpha}^{\beta}\right)=\underset{2 n+1}{v} \stackrel{{ }^{\beta}}{{ }_{v}^{2 n+1}}{ }_{\alpha}
$$

are the projecting affinors of the composition $X_{2 n} \times X_{1}$. If v^{β} is an arbitrary vector, we have $v^{\beta}={ }_{a}^{1 \beta} v^{\alpha} v^{2}+a_{\alpha}^{\beta} v^{\alpha}=$
 affinors $a_{\alpha}^{\beta},{ }_{a}^{1} a_{\alpha},{ }_{a}^{2 \beta}$ have zero weights.

Let $X_{a} \times X_{b}(a+b=2 n+1)$ be an arbitrary composition in the space $W_{2 n+1}$, and $P\left(X_{a}\right)$ and $P\left(X_{b}\right)$ be the positions of the differentiable manifolds X_{a} and X_{b}, respectively. According to [9], the composition $X_{a} \times X_{b}$ is of the type (c, c), i.e. (Cartesian, Cartesian), if the positions $P\left(X_{a}\right)$ and $P\left(X_{b}\right)$ are translated parallelly along any line in the space $M_{2 n+1}$.

3. Almost Contact and Almost Paracontact Structures in $W_{2 n+1}$ and $\widetilde{W}_{2 n+1}$

Let us consider the following affinor fields
where $\boldsymbol{\chi}=1, i\left(i^{2}=-1\right)$. According to (13) and (26), we have $b_{\chi}^{\beta}{ }_{\alpha}^{\beta}{ }_{2 n+1}^{v}{ }^{\alpha}=0$ and ${\underset{\chi}{\alpha}}_{\beta}^{\beta}{ }_{v}^{2 n+1}{ }_{\beta}=0$.
Let $\varkappa=1$. From (13) and (26) we obtain ${\underset{1}{\alpha}}_{\beta}^{\beta} b_{\beta}^{\sigma}=\delta_{\alpha}^{\sigma}-\underset{2 n+1}{v}{ }^{\sigma}{ }_{v}^{2 n+1}{ }_{\alpha}$, i.e. the affinor b_{α}^{β} defines an almost paracontact structure on $W_{2 n+1}$.

Let $\varkappa=i$. By (13) and (26) it follows that $b_{i}^{\beta} b_{i}^{\sigma}=-\delta_{\alpha}^{\sigma}+\underset{2 n+1}{v}{ }^{\sigma}{ }_{v}^{2 n+1}{ }_{\alpha}$, i.e. b_{i}^{β} defines an almost contact structure on $W_{2 n+1}$.
Theorem 3.1. The affinor ${\underset{\varkappa}{\alpha}}_{\beta}^{\beta}$ is parallel with respect to the Weyl connection ∇, i.e.

$$
\begin{equation*}
\nabla_{\sigma} b_{\varkappa}^{\beta}=0 \tag{27}
\end{equation*}
$$

if and only if the coefficients of the derivative equations (20) satisfy the conditions:

$$
\begin{equation*}
{\stackrel{\bar{s}}{T_{\sigma}}}_{\sigma}=\stackrel{s}{T}_{\bar{k}_{\sigma}}=\stackrel{p}{T}_{2 n+1}{ }^{\sigma}=\stackrel{2 n+1}{T}_{p}^{T}=0 . \tag{28}
\end{equation*}
$$

Proof. Because of (4) and $b_{\alpha}^{\beta}\{0\}$, the condition (27) is equivalent to

$$
\begin{equation*}
\dot{\nabla}_{\sigma} b_{\alpha}^{\beta}=0 . \tag{29}
\end{equation*}
$$

According to (20) and (26), equality (29) has the form

If we write the sums over the index v in a more detailed form and regroup the addends, the last equality has the form

The independence of the pseudo-covectors v_{α} yields that (30) holds true if and only if the following equalities are valid:

 proved that equalities (31), and hence (27), are valid if and only if conditions (28) hold.

Corollary 3.2. If $\nabla_{\sigma}{\underset{\varkappa}{\alpha}}_{\beta}^{\beta}=0$, in the parameters of the coordinate net $\left\{\underset{\alpha}{\{v\}}\right.$, the coefficients $\Gamma_{\alpha \beta}^{v}$ of the Weyl connection satisfy:

$$
\begin{equation*}
\Gamma_{\sigma s}^{\bar{k}}=\Gamma_{\sigma \bar{s}}^{k}=\Gamma_{\sigma 2 n+1}^{p}=\Gamma_{\sigma p}^{2 n+1}=0 \tag{32}
\end{equation*}
$$

Proof. According to (21), equalities (28) imply (32).
Let the space $M_{2 n+1}$ be a topological product of three smooth manifolds X_{a}, X_{b} and $X_{c}(a+b+c=2 n+1)$, i.e. let $M_{2 n+1}$ be the space of the composition $X_{a} \times X_{b} \times X_{c}$. We denote by $P\left(X_{a}\right), P\left(X_{b}\right)$ and $P\left(X_{c}\right)$, respectively, the positions of the manifolds X_{a}, X_{b} and X_{c}.

Definition 3.3. The composition $X_{a} \times X_{b} \times X_{c}$ is said to be of type (c, c, c) if the positions $P\left(X_{a}\right), P\left(X_{b}\right)$ and $P\left(X_{c}\right)$ are translated parallelly along any line in $W_{2 n+1}$.

Definition 3.4. The composition $X_{a} \times X_{b} \times X_{c}$ is said to be orthogonal if the positions $P\left(X_{a}\right), P\left(X_{b}\right)$ and $P\left(X_{c}\right)$ are mutually orthogonal.

Theorem 3.5. If $\dot{\nabla}_{\sigma} b_{\alpha}^{\beta}=0$, the space $W_{2 n+1}$ is a space of orthogonal compositions $X_{n} \times \bar{X}_{n} \times X_{1}$ of the type (c, c, c).
Proof. Let condition (29) hold true. Then, in the parameters of the net $\{v\}$ the conditions (32) are valid. Let us consider the composition $X_{2 n} \times X_{1}$ defined by the affinor (25). According to [9], by (32) it follows that the composition $X_{2 n} \times X_{1}$ is of the type (c, c). Hence, the position $P\left(X_{1}\right)$ of the manifold X_{1} (which is a curve) is translated parallelly along any line in $M_{2 n+1}$.

Let us consider the following affinors

By (13) and (33) it follows that $c_{\alpha}^{\beta} c_{\beta}^{\sigma}=\delta_{\alpha}^{\sigma}$ and $d_{\alpha}^{\beta} d_{\beta}^{\sigma}=\delta_{\alpha}^{\sigma}$. Hence, affinors c_{α}^{β} and d_{α}^{β} define the compositions $X_{n} \times Y_{n+1}$ and $\bar{X}_{n} \times Z_{n+1}$, respectively, where Y_{n+1} and Z_{n+1} are smooth $(n+1)$-dimensional manifolds. In the parameters of the coordinate net the affinors $a_{\alpha}^{\beta}, c_{\alpha}^{\beta}$ and d_{α}^{β} have the form, respectively:

$$
\left(a_{\alpha}^{\beta}\right)=\left(\begin{array}{cc}
\delta_{p}^{q} & 0 \tag{34}\\
0 & -1
\end{array}\right), \quad\left(c_{\alpha}^{\beta}\right)=\left(\begin{array}{ccc}
\delta_{k}^{s} & 0 & 0 \\
0 & -\delta_{\bar{k}}^{\bar{s}} & 0 \\
0 & 0 & -1
\end{array}\right), \quad\left(d_{\alpha}^{\beta}\right)=\left(\begin{array}{ccc}
\delta_{k}^{s} & 0 & 0 \\
0 & -\delta_{\bar{k}}^{\bar{s}} & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

By (34) it follows that $Y_{n+1}=\bar{X}_{n} \times X_{1}$ and $Z_{n+1}=X_{n} \times X_{1}$, therefore $W_{2 n+1}$ is a space of the composition $X_{n} \times \bar{X}_{n} \times X_{1}$. We denote by $P\left(X_{n}\right)$ and $P\left(\bar{X}_{n}\right)$, respectively, the positions of the manifolds X_{n} and \bar{X}_{n}. According to [9], equality (32) yields that the compositions $X_{n} \times Y_{n+1}$ and $\bar{X}_{n} \times Z_{n+1}$ are of the type (c, c). Hance, the positions $P\left(X_{n}\right)$ and $P\left(\bar{X}_{n}\right)$ are translated parallelly along any line in $W_{2 n+1}$, i.e. we proved that the composition $X_{n} \times \bar{X}_{\times} X_{1}$ is of the type (c, c, c). The projecting affinors of the composition $X_{n} \times \bar{X}_{n} \times X_{1}$ are:

If w^{β} is an arbitrary vector, we have

$$
w^{\beta}={ }^{1}{ }_{c}^{\beta} w^{\alpha}+\stackrel{1}{d}_{\alpha}^{\beta} w^{\alpha}+{ }^{2} a_{\alpha}^{\beta} w^{\alpha}=\stackrel{1}{W}^{\beta}+\stackrel{2}{W}^{\beta}+\stackrel{3}{W}^{\beta}
$$

where $\stackrel{1}{W}^{\beta}=\stackrel{1}{c}_{\alpha}^{\beta} w^{\alpha} \in P\left(X_{n}\right), \stackrel{2}{W^{\beta}}=\stackrel{1}{d}{ }_{\alpha}^{\beta} w^{\alpha} \in P\left(\bar{X}_{n}\right)$ and $\stackrel{3}{W}^{\beta}=\stackrel{2}{a}_{\alpha}^{\beta} w^{\alpha} \in P\left(X_{1}\right)$. Because ${\underset{k}{v}}^{\alpha} \in P\left(X_{n}\right), \stackrel{v_{\bar{k}}^{\alpha}}{\bar{k}} \in P\left(\bar{X}_{n}\right)$ and ${\underset{2 n+1}{ }}^{\alpha} \in P\left(X_{1}\right)$, from (15) or (16) it follows that the positions $P\left(X_{n}\right), P\left(\bar{X}_{n}\right)$ and $P\left(X_{1}\right)$ are mutually orthogonal.

We denote by $\mathrm{d} s^{2}=g_{\alpha \beta} \mathrm{d} \stackrel{\alpha}{u} \mathrm{~d} \stackrel{\beta}{u}$ and $\mathrm{d} \widetilde{s}^{2}=\widetilde{g}_{\alpha \beta} \mathrm{d}^{\alpha} \mathrm{d}^{\beta} u$ the fundamental forms of the spaces $W_{2 n+1}$ and $\widetilde{W}_{2 n+1}$, respectively.

Theorem 3.6. If $\dot{\nabla}_{\sigma} b_{\alpha}^{\beta}=0$, in the parameters of the coordinate net $\left\{\underset{\alpha}{\{v\}}\right.$, the fundamental forms of the space $W_{2 n+1}$ and $\widetilde{W}_{2 n+1}$ are given by

$$
\begin{align*}
& \mathrm{d} s^{2}=f_{1}^{\circ} \dot{g}_{k s} \mathrm{~d} u \mathrm{~d}{ }^{s} u+f_{2}^{\circ} \dot{g}_{\bar{k} \bar{s}} \mathrm{~d} u \mathrm{~d} \mathrm{~d}^{\bar{s}}+f_{3}^{\circ} \dot{g}_{2 n+1} 2 n+1 \mathrm{~d}\left({ }^{2 n+1}\right)^{2} \tag{35}
\end{align*}
$$

where

$$
T_{s}=\frac{1}{2} \partial_{s} \ln \underset{2}{f}=\frac{1}{2} \partial_{s} \ln \underset{3}{f}, \quad T_{\bar{s}}=\frac{1}{2} \partial_{\bar{s}} \ln \underset{1}{f}=\frac{1}{2} \partial_{\bar{s}} \ln \underset{3}{f}, \quad T_{2 n+1}=\frac{1}{2} \partial_{2 n+1} \ln \underset{1}{f}=\frac{1}{2} \partial_{2 n+1} \ln \underset{2}{f},
$$

Proof. Let condition (29) hold. Then, in the parameters of the coordinate net $\left.\{v\}_{\alpha}\right\}$, conditions (32) will be valid. From (7), (17) and (32) we obtain

$$
\begin{align*}
& \partial_{j} g_{\bar{k} \bar{s}}=2 T_{j} g_{\bar{k} \bar{s},} \quad \partial_{j} g_{2 n+1} 2 n+1=2 T_{j} g_{2 n+12 n+1}, \quad \partial_{\bar{j}} g_{k s}=2 T_{\bar{j}} g_{k s}, \quad \partial_{\bar{j}} g_{2 n+12 n+1}=2 T_{j} g_{2 n+12 n+1,}, \\
& \partial_{2 n+1} g_{k s}=2 T_{2 n+1} g_{k s}, \quad \partial_{2 n+1} g_{\bar{k} \bar{s}}=2 T_{2 n+1} g_{\bar{k} \bar{s}} . \tag{36}
\end{align*}
$$

The truthfulness of the theorem follows after integration of equations (36).
By (35) it follows that the positions $P\left(X_{n}\right)$ (or $P\left(\bar{X}_{n}\right)$, or $P\left(X_{1}\right)$) are in conformal correspondence under parallel translation.

According to (14), a direction field w^{α} defines an isotropic direction in $\widetilde{W}_{2 n+1}$ if $\widetilde{g}_{\alpha \beta} w^{\alpha} w^{\beta}=0$. Then, by (12) and (19) it is easy to prove that the direction fields $\underset{v^{\alpha}}{v^{\alpha}} \pm \frac{v^{\alpha}}{}$ and $\underset{2 n+1}{v}{ }^{\alpha} \pm \bar{v}_{\bar{s}}^{\alpha}$ define isotropic directions in the space $\widetilde{W}_{2 n+1}$.

Let the functions f_{1}, f_{2} and f_{3} involved in (35) satisfy the condition $f_{1}=f_{2}=f$. Then, $T_{\alpha}=$ grad, and according to [7](p. 157), the spaces $W_{2 n+1}$ and $\widetilde{W}_{2 n+1}$ are Riemannian and pseudo-Riemannian, respectively, which we denote by $V_{2 n+1}$ and $\widetilde{V}_{2 n+1}$. After renormalization of the fundamental tensor $g_{\alpha \beta}$ we get [7](p. 157) $\nabla_{\sigma} g_{\alpha \beta}=\nabla_{\sigma} \widetilde{g}_{\alpha \beta}=0$. By (35) it follows that the line elements $\mathrm{d} S^{2}$ and $\mathrm{d} \widetilde{S}^{2}$ of the spaces $V_{2 n+1}$ and $\widetilde{V}_{2 n+1}$ have the form, respectively:

$$
\begin{align*}
& \mathrm{d} S^{2}=g_{k s}(\stackrel{j}{u}) \mathrm{d} \stackrel{k}{u} \mathrm{~d} \stackrel{s}{u}+g_{\bar{k} \bar{s}}(\overline{\bar{u}}) \mathrm{d} \frac{\bar{k}}{u} \mathrm{~d} \stackrel{\overline{5}}{u}+g_{2 n+1} 2 n+1\left({ }^{2 n+1} u^{2}\right) \mathrm{d}\left({ }^{2 n+1}\right)^{2}, \tag{37}\\
& \mathrm{~d} \widetilde{S}^{2}=g_{k s}\left({ }^{j}\right) \mathrm{d} \mathrm{u}^{k} \mathrm{~d} \stackrel{s}{u}^{-}-g_{\bar{k} \bar{s}}(\overline{\bar{u}}) \mathrm{d} \hat{\bar{u}} \mathrm{~d} \overline{\mathrm{~s}}^{\bar{u}}+g_{2 n+1} 2 n+1\left((^ { 2 n + 1 } u ^ { 2 }) \mathrm { d } \left(\left(^{2 n+1}\right)^{2} .\right.\right.
\end{align*}
$$

Equalities (37) imply that the positions $P\left(X_{n}\right)$ (or $P\left(\bar{X}_{n}\right)$, or $P\left(X_{1}\right)$) are in conformal correspondence under parallel translation.

Theorem 3.7. Condition (29) is equivalent to the following conditions:

$$
\begin{equation*}
{ }_{c_{v}^{\sigma}}^{\sigma_{v}} \stackrel{\rightharpoonup}{\nabla}_{\alpha}{ }_{c_{\sigma}^{\beta}}^{1 \beta}=0, \quad \stackrel{1}{d}_{v}^{\sigma} \dot{\nabla}_{\alpha}{ }^{1} d_{\sigma}^{\beta}=0, \quad \stackrel{2}{a}_{v}^{\sigma} \dot{\nabla}_{\alpha}{ }^{2} a_{\sigma}^{\beta}=0 \tag{38}
\end{equation*}
$$

where ${ }_{c}^{1}{ }_{v}^{\sigma}, d_{v}^{\sigma}$ and ${ }_{a}^{2}$ are the projecting affinors of the composition $X_{n} \times \bar{X}_{n} \times X_{1}$.
Proof. Since ${\underset{c}{c}}_{v}^{\sigma}=v_{k}^{\sigma}{ }_{v}^{k}, \frac{1}{d_{v}} d_{v}^{\sigma}=\frac{v_{k}^{\sigma}}{\bar{k}} \stackrel{\bar{v}}{v}$ and $\stackrel{2}{a_{v}^{\sigma}}=\underset{2 n+1}{v}{ }^{\sigma}{ }^{2 n+1}{ }_{v}$, we obtain

By (20) and (39) we get

By (40) it follows that conditions (38) are valid if and only if conditions (28) are valid, too. Then, in accordance to Theorem 3.1, conditions (37) are equivalent to (29).

4. A Nilpotent Structure on $W_{2 n+1}$ and $\widetilde{W}_{2 n+1}$

Let us consider the affinor

$$
\begin{equation*}
f_{\alpha}^{\beta}=v_{i}^{\beta} \stackrel{n}{v}_{\alpha}{ }_{\alpha} \tag{41}
\end{equation*}
$$

Obviously, $f_{\alpha}^{\beta}\{0\}$ and hence $\dot{\nabla}_{\sigma} f_{\alpha}^{\beta}=\nabla_{\sigma} f_{\alpha}^{\beta}$. By (13) and (15) we get $f_{\alpha}^{\beta} f_{\beta}^{\sigma}=0$, i.e. the affinor f_{α}^{β} is nilpotent. In the parameters of the coordinate net $\underset{\alpha}{\{v\}}$ the matrix of f_{α}^{β} is given by

$$
\left\|f_{\alpha}^{\beta}\right\|=\left\|\begin{array}{cccccccc}
0 & \ldots & 0 & \frac{\sqrt{g_{n+1} n+1}}{\sqrt{g_{11}}} & 0 & \ldots & 0 & 0 \\
0 & \ldots & 0 & 0 & \frac{\sqrt{g_{n+2} n+2}}{\sqrt{g_{22}}} & \ldots & 0 & 0 \\
\ldots & \ldots \\
0 & \ldots & 0 & 0 & 0 & \ldots & \frac{\sqrt{g_{2 n} 2 n}}{\sqrt{g_{n n}}} & 0 \\
0 & \ldots & 0 & 0 & \ldots & 0 & \ldots & 0 \\
\ldots & \ldots \\
0 & \ldots & 0 & 0 & \ldots & 0 & \ldots & 0
\end{array}\right\| .
$$

Theorem 4.1. The affinor f_{α}^{β} is parallel with respect to ∇, i.e.

$$
\begin{equation*}
\nabla_{\sigma} f_{\alpha}^{\beta}=0 \tag{42}
\end{equation*}
$$

if and only if the coefficients of the derivative equations (20) satisfy the following conditions:

$$
\begin{equation*}
\stackrel{n+k}{T}_{\sigma}=\stackrel{n+k}{T}_{2 n+1}^{\sigma}=\stackrel{2 n+1}{T}_{s}{ }_{\sigma}=\stackrel{k}{T}_{\sigma}{ }^{\sigma}-\stackrel{n+k}{T}_{n+s}{ }^{\sigma}=0 \tag{43}
\end{equation*}
$$

Proof. Since $\dot{\nabla}_{\sigma} f_{\alpha}^{\beta}=\nabla_{\sigma} f_{\alpha}^{\beta}$, and because of (20) and (41), equality (42) has the form

$$
\stackrel{v}{s}_{T_{\sigma}} v_{v}^{\beta} \stackrel{n}{v}_{\alpha}^{n+s}-\stackrel{n}{T}_{v}^{n+s}{\underset{v}{v}}_{v^{\beta}}^{v_{\alpha}}=0
$$

If we write the sums over the index v in a more detailed form and regroup the addends, the last equality is equivalent to

Because of the independence of the pseudo-covectors $\stackrel{v}{v}_{\alpha}$, equality (44) is valid if and only if the following equalities hold:

The independence of the pseudo-vectors v_{v}^{β} yields that the last equalities, and hence (42), are valid if and only if conditions (43) hold true.
Corollary 4.2. If $\nabla_{\sigma} f_{\alpha}^{\beta}=0$, the coefficients of the Weyl connection $\Gamma_{\alpha \beta}^{v}$ satisfy the following conditions in the parameters of the coordinate net ${\underset{\alpha}{\alpha}}_{\{v\}}$:

$$
\begin{align*}
& \Gamma_{\sigma s}^{\bar{k}}=\Gamma_{\sigma 2 n+1}^{\bar{k}}=\Gamma_{\sigma s}^{2 n+1}=0, \tag{45}\\
& \quad \frac{\sqrt{g_{k k}}}{\sqrt{g_{s s}}} \Gamma_{\sigma s}^{k}-\frac{\sqrt{g_{n+k} n+k}}{\sqrt{g_{n+s} n+s}} \Gamma_{\sigma n+s}^{n+k}=0, \quad k \neq s, \quad \Gamma_{\sigma k}^{k}-\frac{1}{2} \frac{\partial_{\sigma} g_{k k}}{g_{k k}}=\Gamma_{\sigma n+k}^{n+k}-\frac{1}{2} \frac{\partial_{\sigma} g_{n+k} n+k}{g_{n+k} n+k} . \tag{46}
\end{align*}
$$

Proof. According to (21), equalities (43) take the form (45) and (46).
Proposition 4.3. If $\nabla_{\sigma} f_{\alpha}^{\beta}=0$, in the parameters of the coordinate net $\{v\}$, the fundamental tensor $g_{\alpha \beta}$, the additional covector T_{σ} and the coefficients of the connection $\Gamma_{\alpha \beta}^{\sigma}$ satisfy the following conditions:

$$
\begin{align*}
& g_{\bar{k} \bar{s}}=h \stackrel{\circ}{g}_{\bar{k} \bar{s} \prime} \quad g_{2 n+1} 2 n+1=h \stackrel{\circ}{g}_{2 n+1} 2 n+1, \quad T_{j}=\frac{1}{2} \partial_{j} \ln h, \quad T_{2 n+1}=\frac{1}{2} \partial_{2 n+1} \ln h, \tag{47}\\
& \Gamma_{s k}^{k}+T_{s}=\frac{1}{2} \frac{\partial_{s} g_{k k}}{g_{k k}}, \quad \Gamma_{2 n+1 k}^{k}+T_{2 n+1}=\frac{1}{2} \frac{\partial_{2 n+1} g_{k k}}{g_{k k}}, \quad \Gamma_{j k}^{k}-\Gamma_{\dot{j} n+k}^{n+k}=\frac{1}{2} \frac{\partial_{j} g_{k k}}{g_{k k}}-\frac{1}{2} \frac{\partial_{j} g_{n+k} n+k}{g_{n+k} n+k}, \tag{48}
\end{align*}
$$

Proof. By (7) and (45) we obtain

$$
\begin{equation*}
\partial_{j} g_{\bar{k} \bar{s}}=2 T_{j} g_{\bar{k} \bar{s},} \quad \partial_{2 n+1} g_{\bar{k} \bar{s}}=2 T_{2 n+1} g_{\bar{k} \bar{s} \prime} \quad \partial_{j} g_{2 n+12 n+1}=2 T_{j} g_{2 n+12 n+1} . \tag{49}
\end{equation*}
$$

After integration of equations (49), we get (47). According to (45) and (49), equalities (46) imply (48).

5. Transformations of Connections

Let us consider the connections

$$
\begin{equation*}
{ }^{1} \Gamma_{\alpha \beta}^{v}=\Gamma_{\alpha \beta}^{v}+S_{\alpha \beta}^{v}, \quad{ }^{1} \widetilde{\Gamma}_{\alpha \beta}^{v}=\Gamma_{\alpha \beta}^{v}+\widetilde{S}_{\alpha \beta}^{v}, \tag{50}
\end{equation*}
$$

where

$$
\begin{align*}
& \widetilde{S}_{\alpha \beta}^{v}=\frac{1}{\sqrt{\widetilde{g}_{2 n+1} 2 n+1}} \sum_{\tau=1}^{2 n+1} \tau_{\alpha}^{\tau} \widetilde{g}_{\beta \delta} \sum_{k=1}^{n} \sum_{\bar{s}=n+1}^{2 n}\left(\begin{array}{cc}
v^{\delta} \\
k & v_{\bar{s}}^{v}-v^{v} \\
k & \frac{v_{\bar{s}}^{\delta}}{\delta}
\end{array}\right) \tag{51}
\end{align*}
$$

Obviously, $S_{\alpha \beta}^{v}\{0\}, \widetilde{S}_{\alpha \beta}^{v}\{0\}$.
We denote by ${ }^{1} \nabla\left({ }^{1} \widetilde{\nabla}\right)$ and ${ }^{1} R\left({ }^{1} \widetilde{R}\right)$ the covariant derivative and the curvature tensor corresponding to the connection $\Gamma_{\alpha \beta}^{v}\left(\widetilde{\Gamma}_{\alpha \beta}^{v}\right)$, respectively.

Theorem 5.1. The fundamental tensors $g_{\alpha \beta}$ and $\widetilde{g}_{\alpha \beta}$ of the spaces $W_{2 n+1}$ and $\widetilde{W}_{2 n+1}$, respectively, satisfy

$$
\begin{equation*}
{ }^{1} \dot{\nabla}_{\sigma} g_{\alpha \beta}=0, \quad \dot{\widetilde{\nabla}}_{\sigma} \widetilde{g}_{\alpha \beta}=0 \tag{52}
\end{equation*}
$$

Proof. By (4) and (50) we obtain

$$
\begin{equation*}
{ }^{1} \dot{\nabla}_{\sigma} g_{\alpha \beta}=\dot{\nabla}_{\sigma} g_{\alpha \beta}-S_{\sigma \alpha}^{v} g_{v \beta}-S_{\sigma \beta}^{v} g_{\alpha v}, \quad \dot{\bar{\nabla}}_{\sigma} \widetilde{g}_{\alpha \beta}=\dot{\nabla}_{\sigma} \widetilde{g}_{\alpha \beta}-\widetilde{S}_{\sigma \alpha}^{v} \widetilde{g}_{v \beta}-\widetilde{S}_{\sigma \beta}^{v} \widetilde{g}_{\alpha v} \tag{53}
\end{equation*}
$$

Let us consider the tensors defined by

$$
\begin{equation*}
T_{\sigma \alpha \beta}=S_{\sigma \alpha}^{v} g_{v \beta}, \quad \widetilde{T}_{\sigma \alpha \beta}=\widetilde{S}_{\sigma \alpha}^{v} \widetilde{g}_{v \beta} \tag{54}
\end{equation*}
$$

Obviously, $T_{\sigma \alpha \beta}\{2\}, \widetilde{T}_{\sigma \alpha \beta}\{2\}$.
According to (50) and (54), we have

$$
\begin{align*}
& T_{\sigma \alpha \beta}=\frac{1}{\sqrt{g_{2 n+1} 2 n+1}} \sum_{\tau=1}^{2 n+1} v_{\sigma}^{\tau} g_{\alpha \delta} \sum_{k=1}^{n} \sum_{\bar{s}=n+1}^{2 n}\left(\begin{array}{c}
v^{\delta} \\
k \\
\bar{s} \\
v^{v}
\end{array}-v_{k}^{v} \frac{v^{\delta}}{\delta}\right) g_{v \beta}, \\
& \widetilde{T}_{\sigma \alpha \beta}=\frac{1}{\sqrt{\widetilde{g}_{2 n+1}^{2 n+1}}} \sum_{\tau=1}^{2 n+1} \stackrel{v}{\sigma}_{\sigma}^{\tau} \widetilde{g}_{\alpha \delta} \sum_{k=1}^{n} \sum_{\bar{s}=n+1}^{2 n}\left(\begin{array}{c}
v^{\delta} \\
k \\
\frac{v^{v}}{v}
\end{array}-\frac{v^{v}}{v} \frac{v^{\delta}}{\delta}\right) \widetilde{g}_{v \beta} . \tag{55}
\end{align*}
$$

In the parameters of the coordinate net $\underset{\alpha}{\{\underset{\alpha}{ }\}}$ we obtain

$$
\begin{align*}
& T_{\sigma \alpha \beta}=\frac{1}{\sqrt{g_{2 n+1}^{2 n+1}}} \sum_{\tau=1}^{2 n+1} v_{\sigma} \sum_{k=1}^{n} \sum_{\bar{s}=n+1}^{2 n} \frac{g_{\alpha k} g_{\beta s}-g_{a s} g_{\beta k}}{\sqrt{g_{k k}} \sqrt{g_{s s}}}, \\
& \widetilde{T}_{\sigma \alpha \beta}=\frac{1}{\sqrt{\widetilde{g}_{2 n+1}^{2 n+1}}} \sum_{\tau=1}^{2 n+1} v_{\sigma} \sum_{k=1}^{n} \sum_{\bar{s}=n+1}^{2 n} \frac{\widetilde{g}_{\alpha k} \widetilde{g}_{g_{s} s}-\widetilde{g}_{a s} \widetilde{g}_{\beta k}}{\sqrt{\widetilde{g}_{k k}} \sqrt{\widetilde{g}_{s s}}}, \tag{56}
\end{align*}
$$

from which it follows that

$$
\begin{equation*}
T_{\sigma(\alpha \beta)}=0, \quad \widetilde{T}_{\sigma(\alpha \beta)}=0 \tag{57}
\end{equation*}
$$

Then, (8), (18), (53) and (57) imply (52).
In the parameters of the coordinate net $\underset{\alpha}{\{v\}}$, by (14) and (51) we obtain the following non-zero components of the tensors $S_{\alpha \beta}^{v}$ and $\widetilde{S_{\alpha \beta}^{v}}$:

$$
\begin{align*}
& S_{l \bar{m}}^{j}=-\widetilde{S}_{l \bar{m}}^{j}=-\frac{\sqrt{g_{\|}}}{\sqrt{g_{j j}} \sqrt{g_{2 n+1} 2 n+1}} \sum_{\bar{s}=n+1}^{2 n} \frac{g_{\overline{\bar{m}}}}{\sqrt{g_{s s^{\prime}}}}, \quad S_{\bar{l} \bar{m}}^{j}=-\widetilde{S}_{\bar{l} \bar{m}}^{j}=-\frac{\sqrt{g_{\overline{\bar{I}}}}}{\sqrt{g_{j j}} \sqrt{g_{2 n+1}^{2 n+1}}} \sum_{\bar{s}=n+1}^{2 n} \frac{g_{\bar{m}}}{\sqrt{g_{\bar{s}}}}, \\
& S_{2 n+1 \bar{m}}^{j}=-\widetilde{S}_{2 n+1 \bar{m}}^{j}=-\frac{1}{\sqrt{g_{j j}}} \sum_{\bar{S}=n+1}^{2 n} \frac{g_{m \bar{s}}}{\sqrt{g_{\overline{5}}}}, \quad S_{l m}^{\bar{j}}=\widetilde{S}_{l m}^{\bar{j}}=\frac{\sqrt{g_{n}}}{\sqrt{g_{j \bar{j}}} \sqrt{g_{2 n+1} 2 n+1}} \sum_{k=1}^{n} \frac{g_{m k}}{\sqrt{g_{k k}}}, \tag{58}\\
& S_{\bar{l} m}^{\bar{j}}=\widetilde{S}_{\bar{l} m}^{\bar{j}}=\frac{\sqrt{g_{\bar{I}}}}{\sqrt{g_{\bar{j}}} \sqrt{g_{2 n+1} 2 n+1}} \sum_{k=1}^{n} \frac{g_{m k}}{\sqrt{g_{k k}}}, \quad \quad S_{2 n+1 m}^{\bar{j}}=\widetilde{S}_{2 n+1 m}^{\bar{j}}=\frac{1}{\sqrt{g_{\bar{j}}}} \sum_{k=1}^{n} \frac{g_{m k}}{\sqrt{g_{k k}}} .
\end{align*}
$$

In the parameters of the net $\{v\}$, by (32), (50) and (58) we obtain the following non-zero coefficients of the connections ${ }^{1} \Gamma_{\alpha \beta}^{v}$ and ${ }^{1} \widetilde{\Gamma}_{\alpha \beta}^{v}$:

$$
\begin{align*}
& { }^{1} \Gamma_{l m}^{j}={ }^{1} \widetilde{\Gamma}_{l m}^{j}=\Gamma_{l m^{\prime}}^{j} \quad{ }^{1} \Gamma_{l \bar{m} \bar{m}}^{j}=-{ }^{1} \widetilde{\Gamma}_{l \bar{m}}^{j}=S_{l \bar{m}^{\prime}}^{j} \quad{ }^{1} \Gamma_{\bar{l} \bar{m} \bar{m}}^{j}=-{ }^{1} \widetilde{\Gamma}_{\bar{l} \bar{m}}^{j}=S_{\bar{m} \bar{m}^{\prime}}^{j} \\
& { }^{1} \Gamma_{l m}^{\bar{j}}={ }^{1} \widetilde{\Gamma}_{l m}^{\bar{j}}=S_{l m^{\prime}}^{\bar{j}} \quad{ }^{1} \Gamma_{\bar{L} \bar{m}}^{\bar{j}}={ }^{1} \widetilde{\Gamma}_{\bar{L} \bar{m}}^{\bar{j}}=\Gamma_{\overline{\bar{l}} \bar{m}^{\prime}}^{\bar{j}} \quad{ }^{1} \Gamma_{\bar{l} m}^{\bar{j}}={ }^{1} \widetilde{\Gamma}_{\bar{l} m}^{\bar{j}}=S_{\bar{l} m^{\prime}}^{\bar{j}} \tag{59}\\
& { }^{1} \Gamma_{2 n+1 \bar{m}}^{j}=-{ }^{1} \widetilde{\Gamma}_{2 n+1 \bar{m}}^{j}=S_{2 n+1 \bar{m}^{\prime}}^{j} \quad{ }^{1} \Gamma_{2 n+1 m}^{\bar{j}}={ }^{1} \widetilde{\Gamma}_{2 n+1 m}^{\bar{j}}=S_{2 n+1 m}^{\bar{j}} .
\end{align*}
$$

By (59) and straightforward computations we get the following components of the curvature tensors ${ }^{1} R_{\alpha \beta \sigma}^{v}$ and ${ }^{1} \widetilde{R}_{\alpha \beta \sigma}{ }^{v}$:

$$
\begin{aligned}
& { }^{1} R_{s k m}{ }^{j}=R_{s k m}{ }^{j}+2 S_{[s \mid \bar{l}}^{j} S_{k] m^{\prime}}^{\bar{l}} \quad{ }^{1} R_{\bar{s} \bar{k} \bar{m}}^{\bar{j}}=R_{\bar{s} k \bar{m}}{ }^{\bar{j}}+2 S_{[\overline{s \mid l}}^{\bar{j}} S_{\bar{k}] \bar{m}^{\prime}}^{l} \\
& { }^{1} \widetilde{R}_{s k m}^{j}=R_{s k m}^{{ }^{j}}-2 S_{[s \mid \bar{l}}^{j} S_{k] m^{\prime}}^{\bar{l}} \quad{ }^{1} \widetilde{R}_{\overline{\bar{k}} \bar{m} \bar{m}}^{\bar{j}}=R_{\overline{\bar{s} k} \bar{m}}^{\bar{j}}-2 S_{[\overline{s \mid l}}^{\bar{j}} S_{\bar{k}] \overline{m^{\prime}}}^{l} \\
& { }^{1} R_{2 n+1 \bar{s} \bar{k}}^{j}=2 \partial_{[2 n+1} S_{\bar{s}] \bar{k}}^{j}+S_{2 n+1 \bar{l}^{j}}^{j} \Gamma_{\overline{k^{\prime}}}^{\bar{l}} \quad{ }^{1} R_{2 n+1 s k}^{\bar{j}}=2 \partial_{[2 n+1} S_{s] k}^{\bar{j}}+S_{2 n+1}^{\bar{j}} \Gamma_{s k^{\prime}}^{l} \\
& { }^{1} \widetilde{R}_{2 n+1 \bar{s} \bar{k}}^{j}=-2 \partial_{[2 n+1} S_{\bar{s}] \bar{k}}^{j}-S_{2 n+1 \bar{l}}^{j} \Gamma_{\bar{s} \bar{k}^{\prime}}^{\bar{l}} \quad{ }^{1} \widetilde{R}_{2 n+1 s k}^{\bar{j}}=2 \partial_{[2 n+1} S_{s] k}^{\bar{j}}+S_{2 n+1}^{\bar{j}} I_{s k^{\prime}}^{l}
\end{aligned}
$$

where $R_{\alpha \beta \sigma}{ }^{\nu}$ is the curvature tensor of the space $W_{2 n+1}$.

References

[1] T. Adati, T. Miyazawa,On paracontact Riemannian manifolds, TRU Math. 13(2) (1977), 27-39.
[2] M. Ajeti, M. Teofilova, G. Zlatanov, Triads of compositions in an even-dimensional space with a symmetric affine connection, Tensor, N.S. 73(3) (2011), 171-187.
[3] D. Blair, Riemannian geometry of contact and symplectic manifolds, Prog. in Math. 203, Birkhäuser Boston, 2002.
[4] V. Hlavatý, Les courbes de la variété W_{n}, Memor. Sci. Math., Paris, 1934.
[5] S. Kaneyuki, F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J. 99 (1985), 173-187.
[6] S. Kaneyuki, M. Kozai, Paracomplex structures and affine symmetric spaces, Tokyo J. Math. 8(1) (1985), 81-98.
[7] A. P. Norden, Affinely connected spaces, Izd. GRFML Moscow (1976) (in Russian).
[8] A. P. Norden, Spaces of Cartesian composition, Izv. Vyssh. Uchebn. Zaved., Math. 4 (1963), 117-128 (in Russian).
[9] A. P. Norden, G. N. Timofeev, Invariant criteria for special compositions of multidimensional spaces, Izv. Vyssh. Uchebn. Zaved., Math. 8 (1972), 81-89 (in Russian).
[10] A. P. Norden, A. Sh. Yafarov, Theory of the nongeodesic vector field in two-dimensional affinely connected spaces, Izv. Vyssh. Uchebn. Zaved., Math. 12 (1974), 29-34 (in Russian)
[11] A. Özdeğer, Conformal and generalized concircular mappings on Einstein-Weyl manifolds, Acta Math. Sci. 30B(5) (2010), 17391745.
[12] A. Özdeǧer, Generalized Einstein tensor for a Weyl manifold and its applications, Acta Math. Sin. (Engl. Ser.) 29(2) (2013), 373-382.
[13] S. Sasaki, On paracontact Riemannian manifolds, TRU Math. 16(2) (1980), 75-86.
[14] S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure I, Tohoku Math. J.(2) 12(3) (1960), 459-476.
[15] I. Sato, On a structure similar to the almost contact structure, Tensor, N.S. 30(3) (1976), 219-224.
[16] G. N. Timofeev, Invariant characteristics of special compositions in Weyl spaces, Izv. Vyssh. Uchebn. Zaved., Math. 1 (1976), 87-99 (in Russian).
[17] G. N. Timofeev, Orthogonal compositions in Weyl spaces, Izv. Vyssh. Uchebn. Zaved., Math. 3 (1976), 73-85 (in Russian).
[18] B. Tsareva, G. Zlatanov, Proportional nets in Weyl spaces, J. Geom. 71 (2001), 192-196.
[19] V. V. Vishnevskii, Manifolds over plural numbers and semi tangent structures, Itogi Sci. Tech., Geom. 20 (1988), 35-47 (in Russian).
[20] G. Zlatanov, A. P. Norden, Orthogonal trajectories of a geodesic field, Izv. Vyssh. Uchebn. Zaved., Math. 7 (1975), 42-46 (in Russian).
[21] G. Zlatanov, Nets in an n-dimensional space of Weyl, C. R. Acad. Bulg. Sci. 41 (1988), 29-32 (in Russian).
[22] G. Zlatanov, Special networks in the n-dimensional space of Weyl W_{n}, Tensor, N.S. 48 (1989), 234-240.
[23] G. Zlatanov, Compositions generated by special nets in affinely connected spaces, Serdica Math. J. 28 (2002), 1001-1012.
[24] G. Zlatanov, Special compositions in affinely connected spaces without a torsion, Serdica, Math. J. 37 (2011), 211-220.

[^0]: 2010 Mathematics Subject Classification. Primary 53B05, 53B99.
 Keywords. composition, almost (para-)contact structure, nilpotent structure, Weyl space, prolonged differentiation.
 Received: 27 March 2015; Accepted: 27 September 2015
 Communicated by Dragan S. Djordjević
 This work is partially supported by project NI15-FMI-004 of the Scientific Research Fund, Plovdiv University, Bulgaria.
 Email addresses: m-ajeti@hotmail.com (Musa Ajeti), marta@uni-plovdiv.bg (Marta Teofilova), zlatanovg@gmail.com (Georgi Zlatanov)

