
Filomat 31:6 (2017), 1721–1728
DOI 10.2298/FIL1706721S

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Iván Sáncheza, Manuel Sanchisa
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Abstract. For a subgroup H of a paratopological group G we prove that the quotient topology of the coset
space G/H is induced by a rotund quasi-uniformity and the quotient topology of the semiregularization
(G/H)sr of G/H is induced by a normal quasi-uniformity. In particular, (G/H)sr is a Tychonoff space provided
that G/H is Hausdorff. The previous results are applied in order to show that every Hausdorff Lindelöf
paratopological group is ω-admissible. We also show that, if G is an ω-admissible paratopological group,
then so are the reflections Ti(G) (i=0,1,2,3), Re1(G) and Tych(G).

1. Introduction

For a function f : X→ Y defined on a quasi-uniform space (X,U) with values in a set Y the quotient quasi-
uniformity on Y is the largest quasi-uniformity making the map f quasi-uniformly continuous. In general,
the quotient quasi-uniformity does not induce the quotient topology (see [7, 8]) and even a uniform quotient
of a metrizable space can fail to be metrizable (see, for instance, [10]). These facts serve to illustrate the
delicate nature of (quasi)-uniformities on quotient spaces and the intrinsic interest of their study.

The aim of this paper is to study quasi-uniformities on coset spaces G/H where H is a subgroup
of a paratopological group G. Among other things, in the first section we show that the coset space
G/H has a natural rotund uniformity which induces the quotient topology. The same is proved for the
semiregularization (G/H)sr of G/H by means of a normal quasi-uniformity. As a consequence of this result,
we show that (G/H)sr is a Tychonoff space provided that G/H is Hausdorff. In the second section, we apply
these results in order to show that every Hausdorff Lindelöf paratopological group is ω-admissible. We
also show that, if G is an ω-admissible paratopological group, then so are the reflections Ti(G) (i=0,1,2,3),
Re1(G) and Tych(G).

Now we introduce the basic notions used in this paper.
A paratopological (semitopological) group is a group with a topology such that multiplication on the group

is jointly (separately) continuous. If G is a semitopological group with identity e, the symbol N(e) denotes
the family of open neighborhoods of e in G.

Let X be a space with topology τ. Then the family

{Int U : U ∈ τ}
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constitutes a base for a coarser topology σ on X. The space Xsr = (X, σ) is called the semiregularization of X.
Given two subsets U and V of X × X, the symbol U ◦ V stands for the set {(x, z) | there exists y ∈ X such

that (x, y) ∈ U and (y, z) ∈ V}. A quasi-uniformity on a set X is a family U of subsets of X×X which satisfies
the following conditions:

i) ∆ = {(x, x) : x ∈ X} ⊆ U for every U ∈ U;

ii) U ∩ V ∈ U, for each U,V ∈ U;

iii) if U ∈ U and U ⊆ V, then V ∈ U;

iv) for every U ∈ U, there exists V ∈ U such that V ◦ V ⊆ U.

If in addition we have that V−1 = {(y, x) | (x, y) ∈ V} belongs to U for all V ∈ U, then the quasi-uniformity
is called a uniformity.

A family B ⊂ U is called a base for the quasi-uniformity U if for every V ∈ U, there exists W ∈ B such
that W ⊆ V. A base B of a quasi-uniformity U is multiplicative if for every U,V ∈ B, we have U ◦ V ∈ B.

Suppose that U is a quasi-uniformity on a set X. Then for each x ∈ X and U ∈ U, we put B(x,U) = {y ∈
X : (x, y) ∈ U}. If A ⊆ X and U ∈ U, then B(A,U) =

⋃
x∈A B(x,U).

A quasi-uniformity U induces a topology τU on X as follows: the family {B(x,U) : U ∈ U} is a neighbor-
hood base at each point x ∈ X.

A quasi-uniformity is rotund if U has a multiplicative base B such that B(A,W) ⊆ B(A,UW) for each
A ⊆ X and U,W ∈ B (see [4]). For topological notions not defined here the reader can consult [5] and for
paratopological groups [1].

2. Quasi-Uniformities and Quotients of Paratopological Groups

In this section we study quasi-uniformities on the coset space G/H, where H is a subgroup of a paratopo-
logical group G. We start with a lemma which is straightforward.

Lemma 2.1. Let H be a subgroup of a paratopological group G and p the quotient function from G onto the quotient
space given by the right cosets G/H (respectively, by the left cosets). Then p(U) = p(HU) for each open subset of G
(respectively, p(U) = p(UH)) for each open subset U of G.

The following theorem tells us how to generate the quotient topology of G/H by means of a rotund
quasi-uniformity.

Theorem 2.2. Let H be a subgroup of a paratopological group G and G/H the quotient space given by the right
cosets. Then the topology of G/H is induced by a rotund quasi-uniformity.

Proof. Let p: G→ G/H be the quotient function. Take U ∈ N(e) and put

εU = {(p(x), p(y)) ∈ G/H × G/H : y ∈ xU}.

We claim that the family B = {εU : N(e)} is a multiplicative base of a quasi-uniformity U on G/H. In fact,
it is apparent that the diagonal of G/H is contained in εU for each U ∈ N(e) and that εU∩V ⊆ εU ∩ εV for
every U,V ∈ N(e).

Let us now show that εU ◦ εV = εUV for each U,V ∈ N(e). Take (a, c) ∈ εU ◦ εV. Thus, there exists b ∈ G/H
such that (a, b) ∈ εU and (b, c) ∈ εV. Therefore, we can find (w, x), (y, z) ∈ G × G such that p(w) = a, p(x) = b,
p(y) = b, p(z) = c, x ∈ wU and z ∈ yV. It follow that hx = y for some h ∈ H. Also, z ∈ yV = hxV ⊆ hwUV.
Since p(hw) = p(w) = a, p(z) = c and z ∈ hwUV, we have that (a, c) ∈ εUV.

Now, take (a, c) ∈ εUV. Then, there exists (w, z) ∈ G × G such that p(w) = a, p(z) = c and z ∈ wUV. So
z = wuv with u ∈ U and v ∈ V. Put x = zv−1 and b = p(x). We conclude that x = zv−1 = wu ∈ wU and
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z ∈ zv−1V = xV. It follows that (a, b) ∈ εU and (b, c) ∈ εV. We have thus proved that (a, c) ∈ εU ◦ εV. This
proves the claim.

Now fix A ⊆ G/H and U ∈ N(e). Put C = p−1(A). We claim that p(CU) = B(A, εU). Indeed, take c ∈ C and
u ∈ U. Put a = p(c) and b = p(cu). Hence (a, b) ∈ εU. So p(cu) ∈ B(a, εU) ⊆ B(A, εU). For the other inclusion,
choose b ∈ B(A, εU). Hence b ∈ B(a, εU) for some a ∈ A. So (a, b) ∈ εU. It follows that there exist x, y ∈ G
such that p(x) = a, p(y) = b and y ∈ xU. We conclude that b ∈ p(xU) ⊆ p(CU). We have thus proved that
p(CU) = B(A, εU). In particular, if a ∈ G/H, then B(a, εU) = p(xU) for each x ∈ G such that p(x) = a. Therefore,
U induces the quotient topology on G/H.

Let us show that U is rotund. Take A ⊆ G/H and U,W ∈ N(e). Put C = p−1(A). Since p is open and
continuous, p−1(A) = p−1(A) = C.

We have that B(A, εU) = p(CU) ⊆ p(CU) = p(CU) ⊆ p(CWU) = B(A, εWεU). This finishes the proof.

Corollary 2.3. If H is a subgroup of a paratopological group G such that G/H is regular, then G/H is Tychonoff.

Proof. It follows from Theorem 2.2 and [2].

A quasi-uniformity U on a set X is normal if A ⊆ IntB(A,U) for any subset A ⊆ X and any entourage
U ∈ U. Here the interior and the closure are taken in τU. It is known that a uniformity is always normal
(see [2]).

In the following result, if B is a subset of the paratopological group G, we put B = B
G

.

Theorem 2.4. Let H be a subgroup of a paratopological group G. Then the topology of the semiregularization (G/H)sr
of the quotient space G/H is induced by a normal quasi-uniformity.

Proof. Let p: G→ G/H be the quotient function, X = G/H and Y = (G/H)sr. Take U ∈ N(e) and put

εU = {(p(x), p(y)) ∈ Y × Y : p(y) ∈ Int p(xU)
X
}.

Let us show that the family {εU : U ∈ N(e)} is a base for some quasi-uniformity U on Y. Clearly, the
diagonal ∆Y ⊆ εU for each U ∈ N(e).

Let us show that εU ◦ εV ⊆ εUV for each U,V ∈ N(e). Take (a, c) ∈ εU ◦ εV. Thus, there exists b ∈ G/H
such that (a, b) ∈ εU and (b, c) ∈ εV. Therefore, we can find w, x, y, z ∈ G such that p(w) = a, p(x) = b,

p(y) = b, p(z) = c, p(x) ∈ Int p(wU)
X

and p(z) ∈ Int p(yV)
X

. We know that hx = y for some h ∈ H. So

p(z) ∈ Int p(yV)
X

= Int p(hxV)
X

= Int p(xV)
X

. By Lemma 2.1, p(x) ∈ p(wU)
X

= p(HwU). Then x ∈ HHwU. By
the continuity of the multiplication in G and the fact that H is subgroup, x ∈ HHwU ⊆ HwU. Therefore,

p(z) ∈ Int p(xV)
X
⊆ Int p(HwUV)

X
⊆ Int p(HwUV)

X
= Int p(wUV)

X
. Hence (a, c) ∈ εUV.

Fix a ∈ X and U ∈ N(e). Choose x ∈ G such that p(x) = a. We claim that B(a, εU) = Int p(xU)
X

. Indeed,

if (a, b) ∈ εU, then there exist y, z ∈ G such that p(y) = a, p(z) = b and p(z) ∈ Int p(yU)
X

. Since p(x) = p(y),

we can find h ∈ H satisfying hx = y. Therefore, p(z) ∈ Int p(hxU)
X

and b = p(z) ∈ Int p(hxU)
X

= Int p(xU)
X

.

Hence B(a, εU) ⊆ Int p(xU)
X

.

Conversely, b ∈ Int p(xU)
X

. Take y ∈ G such that p(y) = b. We have that (a, b) ∈ εU. We have thus proved

that B(a, εU) = Int p(xU)
X

. This shows that U generates the topology on Y = (G/H)sr.
Let us show that the quasi-uniformity U is normal. Take A ⊆ Y, U ∈ N(e), and put C = p−1(A). Take an

open neighborhood V of e in G such that V2
⊆ U. Denote by BX(A, εU) the U-neighborhood of A given by

the quasi-uniformity on X as in Theorem 2.2. Since BX(A, εV) is open in X, we have that

A
Y
⊆ IntXBX(A, εV)

X
Y

= IntXBX(A, εV)
X

X

= BX(A, εV)
X

(1)
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The quasi-uniformity in Theorem 2.2 is rotund, so it is normal. Then, we conclude that

BX(A, εV)
X
⊆ IntXBX(BX(A, εV), εV)

X
⊆ BX(A, εU)

X
⊆ BX(A, εU)

Y
(2)

It follows from (1), (2) and the inclusion BX(A, εU) ⊆ B(A, εU) that A
Y
⊆ IntYB(A, εU)

Y
. This shows that

U is normal.

Corollary 2.5. Let H be a subgroup of a paratopological group G such that G/H is Hausdorff. Then (G/H)sr is
Tychonoff.

Proof. It is known that (Xsr)sr = Xsr for every space X. So (G/H)sr is semiregular. By Theorem 2.4, the topology
on (G/H)sr is induced by a normal quasi-uniformity. Finally, [2] implies that (G/H)sr is Tychonoff.

3. Some Results on ω-Admissible Paratopological Groups

According to [14], a paratopological group G with identity e is ω-admissible if for every sequence
{Un : n ∈ ω} of open neighborhoods of e in G, there exists a subgroup H of G such that H ⊆

⋂
n∈ω Un and the

quotient space G/H is submetrizable.
In Theorem 3.5, we will prove that every Hausdorff Lindelöf paratopological group is ω-admissible.

Before, we need to recall some concepts. Let G be a semitopological group with identity e. A subset V of
G is called ω-good if there exists a countable family γ ⊂ N(e) such that for every x ∈ V, we can find W ∈ γ
with xW ⊆ V. The symbol N∗(e) denotes the family of ω-good sets of G which contains the identity. The
following lemmas are useful.

Lemma 3.1. ([15, Lemma 3.10]) Every paratopological group G has a local base at the neutral element consisting of
ω-good sets.

Lemma 3.2. Let G be a semitopological group with identity e. Suppose that a family γ ⊂ N(e) satisfies the following
condition:

(a) for every U ∈ γ and x ∈ U, there exists V ∈ γ such that xV ⊂ U.

Then the set N =
⋂
{U ∩U−1 : U ∈ γ} is a subgroup of G. Moreover, UN = U for each U ∈ γ.

Proof. It is clear that N = N−1. Let us show that N is a subgroup of G. Take a, b ∈ N and U ∈ γ. It
follows that a, b ∈ U ∩ U−1. By (a), there exists V ∈ γ such that aV ⊆ U. Hence ab ∈ aN ⊆ aV ⊆ U. Since
b−1
∈ U, by (a) again we can find W ∈ γ satisfying b−1W ⊆ U, that is, W−1b ⊆ U−1. Thus, we have that

ab ∈ Nb ⊆ W−1b ⊆ U−1 and, consequently, ab ∈ U ∩ U−1 for each U ∈ γ. Therefore, ab ∈ N. We have thus
proved that N is a subgroup of G.

Next, we show that UN = U for each U ∈ γ. For this, pick up U ∈ γ and take a ∈ U. By (a), we can find
V ∈ γ such that aV ⊆ U. It follows that aN ⊆ aV ⊆ U. This completes the proof.

For a Hausdorff semitopological group G with identity e, the Hausdorff number of G, denoted by Hs(G),
is the minimum cardinal number κ such that for every neighborhood U of e in G, there exists a family γ of
neighborhoods of e such that

⋂
V∈γ VV−1

⊆ U and |γ| ≤ κ (see [16]).
We know that a paratopological group G with identity e is Hausdorff if and only if

⋂
V∈N(e) V−1VV−1 = {e}.

This motivates the next definition.

Definition 3.3. Let G be a Hausdorff paratopological group with identity e. The bilateral Hausdorff number
of G, denoted by BHs(G), is the minimum cardinal number κ such that for every neighborhood U ∈ N(e),
there exists a family γ ⊆ N(e) such that

⋂
V∈γ V−1VV−1

⊆ U and |γ| ≤ κ.
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It follows from the previous definition that Hs(G) ≤ BHs(G) for every Hausdorff paratopological group
G. Clearly, if G is 2-oscillating, then we have the equality Hs(G) = BHs(G). It will be interesting to find a
Hausdorff paratopological group G such that Hs(G) < BHs(G). Recall that a paratopological group G is said
to be 2-oscillating if for every neighborhood U of the identity e in G there is a neighborhood V of e such that
V−1V ⊆ UU−1. Precompact and Abelian paratopological groups are 2-oscillating (see [3]).

By [16, Proposition 2.4], every Hausdorff Lindelöf paratopological group has countable Hausdorff
number. Using a similar argument, we can prove the following result.

Proposition 3.4. Every Hausdorff Lindelöf paratopological group satisfies the inequality BHs(G) ≤ ω.

Proof. Take U ∈ N(e). Since G is a Hausdorff paratopological group, for each x ∈ G \U there exists Vx ∈ N(e)
such that VxxV2

x ∩ Vx = ∅ or, equivalently, xVx ∩ V−1
x VxV−1

x = ∅. The set G \U is closed in G and the family
{xVx : x ∈ G \U} is an open cover of G \U, so there exists a countable subset S ⊆ G \U such that the family
{xVx : x ∈ S} covers G \U. It follows that

⋂
x∈S V−1

x VxV−1
x ⊆ U. Therefore, BHs(G) ≤ ω.

Theorem 3.5. If G is a Hausdorff Lindelöf paratopological group, then G is ω-admissible.

Proof. Take a sequence {Un : n ∈ ω} ⊆ N(e). By Lemma 3.1, for each n ∈ ω there exists U∗n ∈ N∗(e) such that
U∗n ⊆ Un. By induction, we will construct a sequence {γn : n ∈ ω} such that for every n ∈ ω:

(i) γn ⊆ N∗(e) and |γn| ≤ ω;
(ii) γn ⊆ γn+1;
(iii) γn is closed under finite intersections;
(iv) for every U ∈ γn and x ∈ U, there exists V ∈ γn+1 such that xV ⊆ U;
(v)

⋂
V∈γn+1

V−1VV−1
⊆

⋂
γn.

Let γ0 be the minimal family containing {U∗n : n ∈ ω} and closed under finite intersections. Suppose that
we have defined γn. As γn ⊆ N∗(e), there exists a countable family λn,1 ⊆ N∗(e) such that for each U ∈ γn and
x ∈ U, there exists V ∈ λn,1 satisfying xV ⊆ U. Since G is a Hausdorff Lindeöf space, Proposition 3.4 implies
that we can find a countable family λn,2 ⊆ N∗(e) such that for every U ∈ γn, we have

⋂
V∈λn,2

V−1VV−1
⊆ U.

Let γn+1 be the minimal family containing γn∪
(⋃2

i=1 λn,i

)
and closed under finite intersections. Clearly, γn+1

satisfies (i)–(v). This finishes our construction.
Put γ =

⋃
n∈ω γn. By construction, γ satisfies condition (a) in Lemma 3.2. Thus, H =

⋂
{U ∩U−1 : U ∈ γ}

is a subgroup of G. By item (v), H =
⋂
{UU−1 : U ∈ γ}. It follows that H =

⋂
{U : U ∈ γ} =

⋂
{U : U ∈ γ} =⋂

{U−1UU−1 : U ∈ γ}.
Let p be the quotient function from G onto G/H, the quotient space given by the left cosets. Let us show

that G/H is a Hausdorff space. Take x, y ∈ G such that p(x) , p(y). So x−1y < H. Since H =
⋂
{UU−1 : U ∈ γ},

we can find U ∈ γ with x−1y < UU−1. It follows that xU ∩ yU = ∅. By Lemma 3.2, xUH ∩ yUH = ∅. Hence
p(xU)∩ p(yU) = ∅. We have thus proved that G/H is Hausdorff. Corollary 2.5, implies that X = (G/H)sr is a
Tychonoff space. By [5, Theorem 5.1.2], X is paracompact.

Let us show that X has Gδ-diagonal. Put U(U) =
⋃

x∈G Intp(xU)× Intp(xU), for every U ∈ γ. Clearly, U(U)
is open in X ×X and contains the diagonal ∆X. Take a, b ∈ G such that p(a) , p(b). It follows that b−1a < H =⋂
{U−1UU−1 : U ∈ γ}. Therefore, there exists U ∈ γ such that b−1a < U−1UU−1. Take V ∈ γ with V2

⊆ U. We
claim that (p(a), p(b)) < U(V). Suppose the contrary. Then, we can find x ∈ G such that p(a), p(b) ∈ Intp(xV).
It follows from Lemmas 2.1 and 3.2 that Intp(xV) = Intp(xV). Therefore, p(a) ∈ Intp(xV) ⊆ p(xVV−1) and
p(b) ∈ Intp(xV) ⊆ p(xV−1V). Hence a ∈ xVV−1H ⊆ xVV−2 and b ∈ xV−1VH ⊆ xV−1V2. It follows that
b−1a ∈ (V−2Vx−1)(xVV−2) = V−2V2V−2

⊆ U−1UU−1. This contradicts the choice of U. We have thus proved
that

⋂
U∈γ U(U) = ∆X.

Finally, since every Hausdorff paracompact space with a Gδ-diagonal is submetrizable (see [6, Corollary
2.9]), the space X is submetrizable. The topology on X = (G/H)sr is weaker than the topology on G/H and,
consequently, G/H is submetrizable. This completes the proof.

Corollary 3.6. ([9],[12]) Every Hausdorff Lindelöf paratopological group with countable pseudocharacter is sub-
metrizable.
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According to [17] (also [18]), given a semitopological group G, the Ti-reflection of G for i ∈ {0, 1, 2, 3} is
defined as a pair (H, ϕG,i) where H is a semitopological group satisfying the Ti separation axiom and ϕG,i
is a continuous homomorphism of G onto H with the following property: for every continuous mapping
f : G→ X to a Ti-space X, there exists a continuous mapping h: H→ X such that f = h ◦ ϕG,i.

G
ϕG,i //

f
��

H

h��
X

Similarly, a regular (Tychonoff ) reflection of a semitopological group G is defined. As is customary, by
‘regular’ we mean ‘T1 & T3’.

Abusing of terminology, we will usually refer to T0(G), T1(G), T2(G), Re1(G) and Tych(G) as the T0-, T1-,
Hausdorff, regular and Tychonoff reflection, respectively, of the group G.

Problem 3.7. Let H be a subgroup of a regular Lindelöf paratopological group G such that the space G/H is Hausdorff
(regular) and it has countable pseudocharacter. Is G/H submetrizable?

Theorem 3.8. Let G be an ω-admissible paratopological group. Then

i) Ti(G) is ω-admissible for each i = 0, 1, 2;

ii) T3(G) is ω-admissible;

iii) Re1(G) is ω-admissible;

iv) Tych(G) is ω-admissible.

Proof. i) Fix i ∈ {0, 1, 2}. Let {Un : n ∈ ω} be sequence of open neighborhoods of the identity in Ti(G).
According to [17] and [18], Ti(G) � G/N, where N is a normal subgroup of G. Consider ϕG,i: G → Ti(G).
For each n ∈ ω, there exists an open neighborhood Vn of the identity e in G such that ϕG,i(Vn) ⊆ Un. Since
G is ω-admissible, there exists a subgroup H of G such that H ⊆

⋂
n∈ω Vn and the left quotient space G/H

is submetrizable. Then M = ϕG,i(H) ⊆
⋂

n∈ω ϕG,i(Vn) ⊆
⋂

n∈ω Un. Let us show that the left quotient space
Ti(G)/M is submetrizable. Consider the quotient functions p: G→ G/H and q: Ti(G)→ Ti(G)/M. Since G/H
is submetrizable, there exists a bijective continuous function from G/H onto a metrizable space X. Since X
is a Ti space, we can find a continuous function h: Ti(G)→ X such that h ◦ ϕG,i = f ◦ p. We claim that there
exists a function 1: Ti(G)/M→ X such that 1 ◦ q ◦ ϕG,i = f ◦ p.

Indeed, take y ∈ Ti(G)/M. There exists x ∈ G such that q(ϕG,i(x)) = y. We have that f (p(ϕ−1
G,i(q

−1(y)))) =

f (p(ϕ−1
G,i(ϕG,i(xH)))) = f (p(xHN)) = f (p(xNH)) = f (p(xN)) = h(ϕG,i(xN)) = {h(ϕG,i(x))}. This proves our claim.

Since q ◦ ϕG,i is open and f ◦ p is continuous, the function 1: Ti(G)/M→ X is continuous.
Let us show that 1 is injective. Take x, y ∈ G such that q(ϕG,i(x)) , q(ϕG,i(y)). This implies that y−1x < HN.

Hence y−1x < H. So p(x) , p(y). Since f is injective, we have that f (p(x)) , f (p(y)). It follows that 1 is
injective.

We have thus proved that Ti(G)/M is submetrizable.

ii) Since G is a paratopological group, T3(G) = Gsr. Let {IntUn : n ∈ ω} be a sequence of open neigh-
borhoods of the identity in Gsr. Since G is ω-admissible, there exists a subgroup H ⊂

⋂
n∈ω IntUn such that

G/H is submetrizable, that is, there is a condensation p from G/H onto a metrizable space M. Consider the
quotient maps π1 and π2 from G onto G/H and from Gsr onto Gsr/H, respectively. Notice that, as functions,
the equality π1 = π2 holds and, consequently, we have p ◦ π1 = p ◦ π2. Since p ◦ π1 is a continuous function
from G onto a metrizable space, p ◦ π2 is also continuous. The definition of quotient topology implies that
p is continuous as a function from Gsr/H onto M. This proves ii).
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iii) By [17, Proposition 3.7], Re1(G) = T0(T3(G)). It remains to apply i)–ii).

iv) The paratopological group Re1(G) is regular. By Corollary 2.3, the space Re1(G) is Tychonoff. So
Tych(G) = Re1(G).

Following [13], we say that a semitopological group G has countable symmetry number if for every open
neighborhood U of the identity e in G, there exists a countable family γ of open neighborhoods of e in G
such that

⋂
V∈γ V−1

⊆ U.
The following result may be of interest in itself.

Proposition 3.9. Every ω-admissible paratopological group G has countable symmetry number.

Proof. Let U be an open neighborhood of the identity e in G. Since G is ω-admissible, there exists H ≤ G
such that H ⊆ U and G/H is submetrizable. We have that G/H has countable pseudocharacter. This implies
that we can find a countable family γ of open neighborhoods of e in G such that

⋂
V∈γ p(V) = {H}, where p is

the quotient function from G onto G/H. It follows that
⋂

V∈γ VH = H. Therefore,
⋂

V∈γ V−1
⊆ H ⊆ U. This

completes the proof.

Proposition 3.9 permits us to construct an example of an ω-narrow paratopological group which is not
ω-admissible. In addition, the next example answers in the negative [11, Problem 3].

Example 3.10. There exists an Abelian Tychonoff ω-narrow paratopological group H which is not ω-
admissible. In fact, H has uncountable symmetry number.

Proof. Let Z be the discrete group of integers and κ an uncountable cardinal. For a finite set A ⊆ κ, we
define a set UA ⊆ Zκ by

UA = {x ∈ Zκ : x(α) = 0 if α ∈ A and x(α) ≥ 0 if α ∈ κ \ A}.
The family U = {UA : A ⊆ κ, |A| < ω} is a local base at the neutral element of Zκ for a topology τ such that
G = (Zκ, τ) is a completely regular paratopological group (see [16, Example 2.9]). Define the subset H of
Zκ as follows: x ∈ H if there exists a positive integer nx such that |x(α)| < nx for each α ∈ κ. Clearly, H is a
subgroup of G. Let us show that (H, τ|H) is ω-narrow. Take a finite subset A of κ and put V = H ∩UA. For
each r ∈ Z Consider the subset

Dr = {x ∈ Zκ : x(α) = r if α < A}.
It is easy to see that Dr ⊆ H. Since A is finite and Z is countable, the subset Dr is countable. Put

D =
⋃

r∈ZDr. Clearly, D ⊆ H and D is countable.
Take x ∈ H. Then, there exists a positive integer n such that |x(α)| < n for each α ∈ κ. Choose d ∈ D−n

such that d(α) = x(α) for every α ∈ A. Consider v ∈ V such that v(α) = x(α) + n if α ∈ κ \ A. Of course,
v(α) = 0 if α ∈ A. We claim that d + v = x. Indeed, d(α) + v(α) = −n + x(α) + n = x(α) if α ∈ κ \ A. On the
other hand, d(α) + v(α) = x(α) + 0 = x(α) if α ∈ A. We have thus proved that D + V = H.

We will prove that H has uncountable symmetry number. Put U = H∩U∅. Let {An : n ∈ ω} be a sequence
of finite subset of κ and put Un = H ∩ UAn for each n ∈ ω. The set A =

⋃
n∈ω An is a countable subset of κ.

Since κ is uncountable, we can choose k ∈ κ \ A. Take x ∈ H satisfying h(α) = 0 if α , k, and x(k) = −1. It is
easy to see that x ∈

⋂
n∈ω U−1

n , but x < U = H ∩U∅. This shows that H has uncountable symmetry number.
Since H has uncountable symmetry number, Proposition 3.9 implies that H is not ω-admissible.
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