An N-order Iterative Scheme for a Nonlinear Wave Equation Containing a Nonlocal Term

Le Thi Phuong Ngoc ${ }^{\text {a }}$, Bui Minh Tri ${ }^{\text {b }}$, Nguyen Thanh Long ${ }^{\text {b }}$
${ }^{a}$ University of Khanh Hoa, 01 Nguyen Chanh Str., Nha Trang City, Vietnam.
${ }^{b}$ Department of Mathematics and Computer Science, University of Natural Science, Vietnam National University Ho Chi Minh City,
227 Nguyen Van Cu Str., Dist. 5, Ho Chi Minh City, Vietnam.

Abstract

In this paper, we consider an initial - boundary value problem for a nonlinear wave equation containing a nonlocal term. Using a high order iterative scheme, the existence of a unique weak solution is proved. Furthermore, the sequence established here converges to a unique weak solution at a rate of order $\mathrm{N}(N \geq 2)$.

1. Introduction

In this paper, we consider the following initial - boundary value problem for a nonlinear wave equation

$$
\begin{align*}
& u_{t t}-u_{x x}=f\left(x, t, u,\|u(t)\|^{2}\right), x \in \Omega=(0,1), 0<t<T \tag{1.1}\\
& u(0, t)=u(1, t)=0 \tag{1.2}\\
& u(x, 0)=\tilde{u}_{0}(x), u_{t}(x, 0)=\tilde{u}_{1}(x) \tag{1.3}
\end{align*}
$$

where $\mu, f, \tilde{u}_{0}, \tilde{u}_{1}$ are given functions and the nonlinear term $f\left(x, t, u,\|u(t)\|^{2}\right)$ contains a nonlocal term

$$
\|u(t)\|^{2}=\int_{0}^{1} u^{2}(x, t) d x
$$

Eq. (1.1) constitutes a case, relatively simpler, of a more general equation, namely

$$
\begin{equation*}
u_{t t}-\frac{\partial}{\partial x}\left(\mu\left(x, t,\|u\|^{2},\left\|u_{x}\right\|^{2}\right) u_{x}\right)=f\left(x, t, u, u_{x}, u_{t},\|u\|^{2},\left\|u_{x}\right\|^{2}\right), x \in \Omega=(0,1), 0<t<T, \tag{1.4}
\end{equation*}
$$

it has its origin in the nonlinear vibration of an elastic string (Kirchhoff [5]), for which the associated equation is

$$
\rho h u_{t t}=\left(P_{0}+\frac{E h}{2 L} \int_{0}^{L}\left|\frac{\partial u}{\partial y}(y, t)\right|^{2} d y\right) u_{x x}
$$

[^0]here u is the lateral deflection, ρ is the mass density, h is the cross section, L is the length, E is Young's modulus and P_{0} is the initial axial tension. In [2], Carrier also established a model of the type
$$
u_{t t}=\left(P_{0}+P_{1} \int_{0}^{L} u^{2}(y, t) d y\right) u_{x x}
$$
where P_{0} and P_{1} are constants.
In [11], Medeiros has studied Eq. (1.4) with $f=f(u)=-b u^{2}$, where b is a given positive constant, and Ω is a bounded open set of \mathbb{R}^{3}. In [4], Hosoya and Yamada also have considered Eq. (1.4) with $f=f(u)=-\delta|u|^{\alpha} u$, where $\delta>0, \alpha \geq 0$ are given constants.

In [3], Ficken and Fleishman established the unique global existence and stability of solutions for the equation

$$
u_{x x}-u_{t t}-2 \alpha u_{t}-\beta u=\varepsilon u^{3}+\gamma, \varepsilon>0
$$

Rabinowitz [14] proved the existence of periodic solutions for

$$
u_{x x}-u_{t t}-2 \alpha u_{t}=f\left(x, t, u, u_{x}, u_{t}\right)
$$

where ε is a small parameter and f is periodic in time.
In [8], Long and Diem have studied the linear recursive scheme associated with the nonlinear wave equation

$$
u_{t t}-u_{x x}=f\left(x, t, u, u_{x}, u_{t}\right), 0<x<1,0<t<T
$$

associated with (1.3) and the following mixed conditions

$$
u_{x}(0, t)-h_{0} u(0, t)=u_{x}(1, t)+h_{1} u(1, t)=0
$$

where $h_{0}>0, h_{1} \geq 0$ are given constants. Afterwards, this result has been extended in [9], [10] to the nonlinear wave equation with the Kirchhoff - Carrier operator. In [10], the following equation

$$
u_{t t}-\mu\left(t,\|u\|^{2},\left\|u_{x}\right\|^{2}\right) u_{x x}=f\left(x, t, u, u_{x}, u_{t},\|u\|^{2},\left\|u_{x}\right\|^{2}\right), 0<x<1,0<t<T
$$

associated with the mixed homogeneous conditions was studied. By the linear recursive scheme and by a standard argument, existence of a local solution was proved. On the other hand, an asymptotic expansion was established.

In [12], [15], a high order iterative scheme was established in order to get a convergent sequence at a rate of order $N(N \geq 1)$ to a local unique weak solution of a nonlinear Kirchhoff - Carrier wave equation as follows

$$
u_{t t}-\mu\left(t,\|u(t)\|^{2},\left\|u_{x}(t)\right\|^{2}\right) \frac{\partial}{\partial x}\left(A(x) u_{x}\right)=f(x, t, u), 0<x<1,0<t<T
$$

associated with the mixed homogeneous conditions.
Based on the above problems, we consider Prob. (1.1) - (1.3). With the assumption $f \in C^{N}([0,1] \times$ $\mathbb{R}_{+} \times \mathbb{R} \times \mathbb{R}_{+}$) and some other conditions, we shall establish a high order iterative scheme in order to get a convergent sequence at a rate of order N to a local unique weak solution of Prob. (1.1) - (1.3). By the fact that, we associate with Eq. (1.1) a recurrent sequence $\left\{u_{m}\right\}$ defined by

$$
\frac{\partial^{2} u_{m}}{\partial t^{2}}-\frac{\partial^{2} u_{m}}{\partial x^{2}}=\sum_{i+j \leq N-1} \frac{1}{i!j!} D_{3}^{i} D_{4}^{j} f\left(x, t, u_{m-1},\left\|u_{m-1}\right\|^{2}\right)\left(u_{m}-u_{m-1}\right)^{i}\left(\left\|u_{m}\right\|^{2}-\left\|u_{m-1}\right\|^{2}\right)^{j}
$$

$0<x<1,0<t<T$, where u_{m} satisfying (1.2), (1.3) for all $m \geq 1$ and the first term $u_{0}=0$. This result is a relative generalization of [8] - [10], [12], [13], [15].

2. The High Order Iterative Method

First, we denote the usual function spaces used in this paper by the notations $L^{p}=L^{p}(0,1), H^{m}=$ $H^{m}(0,1)$. Let $\langle\cdot, \cdot\rangle$ be either the scalar product in L^{2} or the dual pairing of a continuous linear functional and an element of a function space. The notation $\|\cdot\|$ stands for the norm in L^{2} and we denote by $\|\cdot\|_{X}$ the norm in the Banach space X. We call X^{\prime} the dual space of X. We denote by $L^{p}(0, T ; X), 1 \leq p \leq \infty$ for the Banach space of real functions $u:(0, T) \rightarrow X$ measurable, such that

$$
\|u\|_{L^{p}(0, T ; X)}=\left(\int_{0}^{T}\|u(t)\|_{X}^{p} d t\right)^{1 / p}<+\infty \text { for } 1 \leq p<\infty
$$

and

$$
\|u\|_{L^{\infty}(0, T ; X)}=\underset{0<t<T}{e s s} \sup \|u(t)\|_{X} \text { for } p=\infty .
$$

Let $u(t), u^{\prime}(t)=u_{t}(t)=\dot{u}(t), u^{\prime \prime}(t)=u_{t t}(t)=\ddot{u}(t), u_{x}(t)=\nabla u(t), u_{x x}(t)=\Delta u(t)$, denote $u(x, t), \frac{\partial u}{\partial t}(x, t)$, $\frac{\partial^{2} u}{\partial t^{2}}(x, t), \frac{\partial u}{\partial x}(x, t), \frac{\partial^{2} u}{\partial x^{2}}(x, t)$, respectively. With $f \in C^{k}\left([0,1] \times \mathbb{R}_{+} \times \mathbb{R} \times \mathbb{R}_{+}\right), f=f(x, t, u, z)$, we put $D_{1} f=\frac{\partial f}{\partial x}$, $D_{2} f=\frac{\partial f}{\partial t}, D_{3} f=\frac{\partial f}{\partial u}, D_{4} f=\frac{\partial f}{\partial z}$ and $D^{\alpha} f=D_{1}^{\alpha_{1}} \ldots D_{4}^{\alpha_{4}} f, \alpha=\left(\alpha_{1}, \ldots, \alpha_{4}\right) \in \mathbb{Z}_{+}^{4},|\alpha|=\alpha_{1}+\ldots+\alpha_{4}=k, D^{(0,0,0,0)} f=f$.

We then have the following lemma, the proof of which can be found in [1].
Lemma 2.1. The imbedding $H^{1} \hookrightarrow C^{0}([0,1])$ is compact and
(i) $\|v\|_{C^{0}([0,1])} \leq \sqrt{2}\|v\|_{H^{1}}$, for all $v \in H^{1}$,
(ii) $\|v\|_{C^{0}([0,1])} \leq\left\|v_{x}\right\|$, for all $v \in H_{0}^{1}$.

Now, we make the following assumptions:
$\left(H_{1}\right) \quad \tilde{u}_{0} \in H^{2} \cap H_{0}^{1}$ and $\tilde{u}_{1} \in H_{0}^{1}$,
$\left(H_{2}\right) \quad f \in C^{N}\left([0,1] \times \mathbb{R}_{+} \times \mathbb{R} \times \mathbb{R}_{+}\right)$with $f(0, t, 0, z)=f(1, t, 0, z)=0, \forall t, z \geq 0$.
Fix $T^{*}>0$. For each $M>0$ given, we define two constants $K_{0}(M, f), K_{M}(f)$ as follows

$$
\left\{\begin{array}{l}
K_{0}(f, M)=\sup \left\{|f(x, t, u, z)|: 0 \leq x \leq 1,0 \leq t \leq T^{*},|u| \leq M, 0 \leq z \leq M^{2}\right\} \\
K_{M}(f)=\sum_{|\alpha| \leq N} K_{0}\left(D^{\alpha} f, M\right)
\end{array}\right.
$$

For every $T \in\left(0, T^{*}\right]$ and $M>0$, we put

$$
\left\{\begin{align*}
W(M, T)= & \left\{v \in L^{\infty}\left(0, T ; H_{0}^{1} \cap H^{2}\right): v_{t} \in L^{\infty}\left(0, T ; H_{0}^{1}\right) \text { and } v_{t t} \in L^{2}\left(Q_{T}\right)\right. \tag{2.1}\\
& \text { with } \left.\|v\|_{L^{\infty}\left(0, T ; H_{0}^{1} \cap H^{2}\right)},\left\|v_{t}\right\|_{L^{\infty}\left(0, T ; H_{0}^{1}\right)},\left\|v_{t t}\right\|_{L^{2}\left(Q_{T}\right)} \leq M\right\} \\
W_{1}(M, T)= & \left\{v \in W(M, T): v_{t t} \in L^{\infty}\left(0, T ; L^{2}\right)\right\}
\end{align*}\right.
$$

with $Q_{T}=(0,1) \times(0, T)$. We shall choose as first term $u_{0} \equiv 0$, suppose that

$$
\begin{equation*}
u_{m-1} \in W_{1}(M, T), \tag{2.2}
\end{equation*}
$$

and associate with problem (1.1) - (1.3) the following variational problem:
Find $u_{m} \in W_{1}(M, T)(m \geq 1)$ so that

$$
\left\{\begin{array}{l}
\left\langle u_{m}^{\prime \prime}(t), v\right\rangle+\left\langle u_{m x}(t), v_{x}\right\rangle=\left\langle F_{m}(t), v\right\rangle \forall v \in H_{0^{\prime}}^{1} \tag{2.3}\\
u_{m}(0)=\tilde{u}_{0}, u_{m}^{\prime}(0)=\tilde{u}_{1},
\end{array}\right.
$$

where

$$
\begin{equation*}
F_{m}(x, t)=\sum_{i+j \leq N-1} \frac{1}{1 \cdot!} D_{3}^{i} D_{4}^{j} f\left[u_{m-1}\right]\left(u_{m}-u_{m-1}\right)^{i}\left(\left\|u_{m}(t)\right\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right)^{j}, \tag{2.4}
\end{equation*}
$$

here we use the following notations $f[u]=f\left(x, t, u,\|u(t)\|^{2}\right), D_{i} f[u]=D_{i} f\left(x, t, u,\|u(t)\|^{2}\right), i=1,2,3,4$.
Then, we have the following theorem.
Theorem 2.2. Let $\left(H_{1}\right),\left(H_{2}\right)$ hold. Then there exist a constant $M>0$ depending on $\tilde{u}_{0}, \tilde{u}_{1}$ and a constant $T>0$ depending on $\tilde{u}_{0}, \tilde{u}_{1}, f$ such that, for $u_{0} \equiv 0$, there exists a recurrent sequence $\left\{u_{m}\right\} \subset W_{1}(M, T)$ defined by (2.3), (2.4).

Proof. The proof consists of several steps.
Step 1: The Faedo - Galerkin approximation (introduced by Lions [7]).
Let us consider a special basis of H_{0}^{1}, formed by the eigenfunctions w_{j} of the operator $-\Delta=-\frac{\partial^{2} u}{\partial x^{2}}$:

$$
\begin{equation*}
-\Delta w_{j}=\lambda_{j}^{2} w_{j}, w_{j} \in H_{0}^{1} \cap H^{2}, w_{j}(x)=\sqrt{2} \sin (j \pi x), \lambda_{j}=j \pi, j=1,2,3 \ldots \tag{2.5}
\end{equation*}
$$

Put

$$
\begin{equation*}
u_{m}^{(k)}(t)=\sum_{j=1}^{k} c_{m j}^{(k)}(t) w_{j}, \tag{2.6}
\end{equation*}
$$

where the coefficients $c_{m j}^{(k)}$ satisfy the system of nonlinear differential equations

$$
\left\{\begin{array}{l}
\left\langle u_{m}^{(k)}(t), w_{j}\right\rangle+\left\langle u_{m x}^{(k)}(t), w_{j x}\right\rangle=\left\langle F_{m}^{(k)}(t), w_{j}\right\rangle, 1 \leq j \leq k, \tag{2.7}\\
u_{m}^{(k)}(0)=\tilde{u}_{0 k}, u_{m}^{\dot{(k}}(0)=\tilde{u}_{1 k},
\end{array}\right.
$$

in which

$$
\begin{align*}
& \left\{\begin{array}{l}
\tilde{u}_{0 k}=\sum_{j=1}^{k} \alpha_{j}^{(k)} w_{j} \rightarrow \tilde{u}_{0} \text { strongly in } H_{0}^{1} \cap H^{2}, \\
\tilde{u}_{1 k}=\sum_{j=1}^{k} \beta_{j}^{(k)} w_{j} \rightarrow \tilde{u}_{1} \text { strongly in } H_{0^{\prime}}^{1},
\end{array}\right. \tag{2.8}\\
& F_{m}^{(k)}(x, t)=\sum_{i+j \leq N-1} D^{i j} f\left[u_{m-1}\right]\left(u_{m}^{(k)}-u_{m-1}\right)^{i}\left(\left\|u_{m}^{(k)}(t)\right\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right)^{j}, \tag{2.9}
\end{align*}
$$

with the notations $D^{i j} f=\frac{1}{i, j!} D_{3}^{i} D_{4}^{j} f=\frac{1}{i!j!} \frac{\partial^{i+j} f}{u^{i} \partial z}, i+j \leq N, D^{00} f=f$.
Let us suppose that u_{m-1} satisfies (2.2). Then we have the following lemma.
Lemma 2.3. Let $\left(H_{1}\right)$, $\left(H_{2}\right)$ hold. For fixed $M>0$ and $T>0$, then, the system (2.7) - (2.9) has a unique solution $u_{m}^{(k)}(t)$ on an interoal $\left[0, T_{m}^{(k)}\right] \subset[0, T]$.

Proof of Lemma 2.3. The system of Eqs. (2.7) - (2.9) is rewritten in the form

$$
\left\{\begin{array}{l}
\dot{c}_{m j}^{(k)}(t)+\lambda_{j}^{2} c_{m i}^{(k)}(t)=\left\langle F_{m}^{(k)}(t), w_{j}\right\rangle, 1 \leq j \leq k, \tag{2.10}\\
c_{m j}^{(k)}(0)=\alpha_{j}^{(k)}, \dot{c}_{m j}^{(k)}(0)=\beta_{j}^{(k)} .
\end{array}\right.
$$

and it is equivalent to the system of integral equations

$$
\begin{equation*}
c_{m j}^{(k)}(t)=\alpha_{j}^{(k)} \cos \left(\lambda_{j} t\right)+\frac{1}{\lambda_{j}} \beta_{j}^{(k)} \sin \left(\lambda_{j} t\right)+\frac{1}{\lambda_{j}} \int_{0}^{t} \sin \left(\lambda_{j}(t-s)\right)\left\langle F_{m}^{(k)}(s), w_{j}\right\rangle d s, \tag{2.11}
\end{equation*}
$$

for $1 \leq j \leq k$. Omitting the indexs m, k, it is written as follows

$$
\begin{equation*}
c=L[c], \tag{2.12}
\end{equation*}
$$

where $L[c]=\left(L_{1}[c], \ldots, L_{k}[c]\right), c=\left(c_{1}, \ldots, c_{k}\right)$,

$$
\left\{\begin{array}{l}
L_{j}[c](t)=q_{j}(t)+N_{j}[c](t), \\
q_{j}(t)=\alpha_{j} \cos \left(\lambda_{j} t\right)+\frac{1}{\lambda_{j}} \beta_{j} \sin \left(\lambda_{j} t\right), \\
N_{j}[c](t)=\frac{1}{\lambda_{j}} \int_{0}^{t} \sin \left(\lambda_{j}(t-s)\right)\left\langle F[c](s), w_{j}\right\rangle d s, 1 \leq j \leq k, \\
F[c](t)=\sum_{i+j \leq N-1} D^{i j} f\left[u_{m-1}\right]\left(u(t)-u_{m-1}\right)^{i}\left(\|u(t)\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right)^{j}, \\
u(t)=\sum_{j=1}^{k} c_{j}(t) w_{j} .
\end{array}\right.
$$

For every $T_{m}^{(k)} \in(0, T]$ and $\rho>0$ that will be chosen later, we put $X=C^{0}\left(\left[0, T_{m}^{(k)}\right] ; \mathbb{R}^{k}\right), S=\left\{c \in X:\|c\|_{X} \leq\right.$ $\rho\}$, where $\|c\|_{X}=\sup _{0 \leq t \leq T_{m}^{(t)}}|c(t)|_{1},|c(t)|_{1}=\sum_{j=1}^{k}\left|c_{j}(t)\right|$, for each $c=\left(c_{1}, \ldots, c_{k}\right) \in Y$. Clearly S is a closed nonempty subset in X and we have the operator $L: X \rightarrow X$. In what follows, we shall choose $\rho>0$ and $T_{m}^{(k)}>0$ such that $L: S \rightarrow S$ is contractive.
(i) First we note that, for all $c=\left(c_{1}, \ldots, c_{k}\right) \in S$,

$$
\begin{equation*}
\|u(t)\| \leq|c(t)|_{1} \leq\|c\|_{X} \leq \rho,\|u(t)\|_{C^{0}(\Omega)} \leq \sqrt{2}|c(t)|_{1} \leq \sqrt{2} \rho, \tag{2.13}
\end{equation*}
$$

so

$$
|N[c](t)|_{1} \leq \frac{k}{\lambda_{1}} \int_{0}^{t}\|F(s)\| d s
$$

On the other hand, by

$$
\begin{aligned}
|F[c](x, t)| & \leq K_{M}(f) \sum_{i+j \leq N-1} \frac{1}{i \cdot j!}\left|u(t)-u_{m-1}\right|^{i}\|u(t)\|^{2}-\left.\left\|u_{m-1}(t)\right\|^{2}\right|^{j} \\
& \leq K_{M}(f) \sum_{i+j \leq N-1} \frac{1}{i \cdot j!}\left(\|u(t)\|_{C^{0}}(\bar{\Omega})+M\right)^{i}\left(\|u(t)\|+\left\|u_{m-1}(t)\right\|\right)^{2 j} \\
& \leq K_{M}(f) \sum_{i+j \leq N-1} \frac{1}{i \cdot j!}(\sqrt{2} \rho+M)^{i}(\rho+M)^{2 j} \\
& \leq K_{M}(f) \sum_{i+j \leq N-1} \frac{1}{i \cdot j!!}(\sqrt{2} \rho+M)^{i+2 j},
\end{aligned}
$$

we have

$$
\|N[c]\|_{X} \leq \frac{k}{\lambda_{1}} T_{m}^{(k)} K_{M}(f) \sum_{i+j \leq N-1} \frac{1}{i \cdot j!}(\sqrt{2} \rho+M)^{i+2 j}
$$

Hence, we obtain

$$
\begin{equation*}
\|L[c]\|_{X} \leq|\alpha|_{1}+\frac{1}{\lambda_{1}}|\beta|_{1}+T_{m}^{(k)} \bar{D}_{\rho}^{(1)}(\rho, M) \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{D}_{\rho}^{(1)}(\rho, M)=\frac{k}{\lambda_{1}} K_{M}(f) \sum_{i+j \leq N-1} \frac{1}{i \cdot j!}(\sqrt{2} \rho+M)^{i+2 j} . \tag{2.15}
\end{equation*}
$$

(ii) We now prove that

$$
\begin{equation*}
\|L[c](t)-L[d](t)\|_{X} \leq \frac{k}{\lambda_{1}} T_{m}^{(k)} \bar{D}_{\rho}^{(2)}(\rho, M)\|c-d\|_{X}, \forall c, d \in S, \tag{2.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{D}_{\rho}^{(2)}(\rho, M)=K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!}(\sqrt{2} \rho+M)^{i+2 j-2}(\sqrt{2} i M+2(i+j) \rho) \tag{2.17}
\end{equation*}
$$

Proof of (2.16) is as follows.
Let $c, d \in S$, put $u(t)=\sum_{j=1}^{k} c_{j}(t) w_{j}, u(t)=\sum_{j=1}^{k} c_{j}(t) w_{j}$.
For all $t \in\left[0, T_{m}^{(k)}\right]$, we have

$$
\begin{equation*}
|L[c](t)-L[d](t)|_{1}=|N[c](t)-N[d](t)|_{1} \leq \frac{k}{\lambda_{1}} \int_{0}^{t}\|F[c](s)-F[d](s)\| d s \tag{2.18}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
& F[c](x, t)-F[d](x, t) \\
& =\sum_{1 \leq i+j \leq N-1} D^{i j} f\left[u_{m-1}\right]\left(u(t)-u_{m-1}\right)^{i}\left(\|u(t)\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right)^{j} \\
& -\sum_{1 \leq i+j \leq N-1} D^{i j} f\left[u_{m-1}\right]\left(v(t)-u_{m-1}\right)^{i}\left(\|v(t)\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right)^{j} \tag{2.19}\\
& =\sum_{1 \leq i+j \leq N-1} D^{i j} f\left[u_{m-1}\right]\left[\left(u(t)-u_{m-1}\right)^{i}-\left(v(t)-u_{m-1}\right)^{i}\right]\left(\|u(t)\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right)^{j} \\
& +\sum_{1 \leq i+j \leq N-1} D^{i j} f\left[u_{m-1}\right]\left(v(t)-u_{m-1}\right)^{i}\left[\left(\|u(t)\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right)^{j}-\left(\|v(t)\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right)^{j}\right] .
\end{align*}
$$

We also note that $a^{i}-b^{i}=(a-b) \sum_{v=0}^{i-1} a^{v} b^{i-1-v}$ for all $a, b \in \mathbb{R}, i=1,2, \ldots$, we deduce from (2.13) that

$$
\begin{align*}
\left|\left(u(t)-u_{m-1}\right)^{i}-\left(v(t)-u_{m-1}\right)^{i}\right| & =|u(t)-v(t)|\left|\sum_{v=0}^{i-1}\left(u(t)-u_{m-1}\right)^{v}\left(v(t)-u_{m-1}\right)^{i-1-v}\right| \\
& \leq|u(t)-v(t)| \sum_{v=0}^{i-1}\left|u(t)-u_{m-1}\right|^{v}\left|v(t)-u_{m-1}\right|^{i-1-v} \tag{2.20}\\
& \leq \sqrt{2}\|c-d\|_{X} \sum_{v=0}^{i-1}(\sqrt{2} \rho+M)^{v}(\sqrt{2} \rho+M)^{i-1-v} \\
& =\sqrt{2} i(\sqrt{2} \rho+M)^{i-1}\|c-d\|_{X}
\end{align*}
$$

Similarly

$$
\begin{align*}
& \left|\left(\|u(t)\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right)^{j}-\left(\|v(t)\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right)^{j}\right| \\
& \quad=\left|\|u(t)\|^{2}-\|v(t)\|^{2}\right| \sum_{v=0}^{j-1}\left(\|u(t)\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right)^{v}\left(\|v(t)\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right)^{j-1-v} \mid \\
& \quad \leq\left|\|u(t)\|^{2}-\|v(t)\|^{2}\right| \sum_{v=0}^{j-1}\left|\|u(t)\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right|^{v}\left|\|v(t)\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right|^{j-1-v} \tag{2.21}\\
& \quad \leq 2 \rho\|c-d\|_{X} \sum_{v=0}^{j-1}(\rho+M)^{2 v}(\rho+M)^{2(j-1-v)} \\
& \quad=2 j \rho(\rho+M)^{2 j-2}\|c-d\|_{X} .
\end{align*}
$$

It implies that

$$
\begin{align*}
& |F[c](x, t)-F[d](x, t)| \\
& \leq K_{M}(f) \sum_{1 \leq i+j \leq N-i} \frac{1}{i!j!}\left|\left(u(t)-u_{m-1}\right)^{i}-\left(v(t)-u_{m-1}\right)^{i}\right|\left|\|u(t)\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right|^{j} \\
& +K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!}\left|v(t)-u_{m-1}\right|^{i}\left|\left(\|u(t)\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right)^{j}-\left(\|v(t)\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right)^{j}\right| \\
& \leq K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} \sqrt{2} i(\sqrt{2} \rho+M)^{i-1}\|c-d\|_{X}(\rho+M)^{2 j} \\
& +K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!}(\sqrt{2} \rho+M)^{i} 2 j \rho(\rho+M)^{2 j-2}\|c-d\|_{X} \tag{2.22}\\
& \leq K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} \sqrt{2} i(\sqrt{2} \rho+M)^{i-1+2 j}\|c-d\|_{X} \\
& +K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!!}(\sqrt{2} \rho+M)^{i+2 j-2} 2 j \rho\|c-d\|_{X} \\
& \leq K_{M}(f)\|c-d\|_{X} \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!!}(\sqrt{2} \rho+M)^{i+2 j-2}(\sqrt{2} i M+2(i+j) \rho) \\
& =\bar{D}_{\rho}^{(2)}(\rho, M)\|c-d\|_{X},
\end{align*}
$$

where $\bar{D}_{\rho}^{(2)}(\rho, M)$ defined as in (2.17).
It follows from (2.18), (2.22), that (2.16) holds.
Choosing $\rho>|\alpha|_{1}+\frac{1}{\lambda_{1}}|\beta|_{1}$ and $T_{m}^{(k)} \in(0, T]$ such that

$$
\begin{equation*}
0<T_{m}^{(k)} \bar{D}_{\rho}^{(1)}(\rho, M) \leq \rho-|\alpha|_{1}-\frac{1}{\lambda_{1}}|\beta|_{1} \text { and } \frac{k}{\lambda_{1}} T_{m}^{(k)} \bar{D}_{\rho}^{(2)}(\rho, M)<1 \tag{2.23}
\end{equation*}
$$

Therefore, it follows from (2.14), (2.16) and (2.23) that $L: S \rightarrow S$ is contractive. We deduce that L has a unique fixed point in S, i.e., the system (2.7) - (2.9) has a unique solution $u_{m}^{(k)}(t)$ on an interval $\left[0, T_{m}^{(k)}\right]$. The proof of Lemma 2.3 is complete.

The following estimates allow one to take $T_{m}^{(k)}=T$ independent of m and k.
Step 2: A priori estimates. Put

$$
\left\{\begin{array}{l}
S_{m}^{(k)}(t)=p_{m}^{(k)}(t)+q_{m}^{(k)}(t)+\int_{0}^{t}\left\|\ddot{u}_{m}^{(k)}(s)\right\|^{2} d s \tag{2.24}\\
p_{m}^{(k)}(t)=\left\|\dot{u}_{m}^{(k)}(t)\right\|^{2}+\left\|u_{m x}^{(k)}(t)\right\|^{2} \\
q_{m}^{(k)}(t)=\left\|\dot{u}_{m x}^{(k)}(t)\right\|^{2}+\left\|\Delta u_{m}^{(k)}(t)\right\|^{2}
\end{array}\right.
$$

Then, it follows from (2.7) and (2.24) that

$$
\begin{align*}
S_{m}^{(k)}(t) & =S_{m}^{(k)}(0)+2 \int_{0}^{t}\left\langle F_{m}^{(k)}(s), \dot{u}_{m}^{(k)}(s)\right\rangle d s+2 \int_{0}^{t}\left\langle F_{m x}^{(k)}(s), \dot{u}_{m x}^{(k)}(s)\right\rangle d s \\
& +\int_{0}^{t}\left\|\ddot{u}_{m}^{(k)}(s)\right\|^{2} d s=S_{m}^{(k)}(0)+\sum_{j=1}^{3} J_{j} \tag{2.25}
\end{align*}
$$

We shall estimate step by step all the terms J_{1}, J_{2}, J_{3} and $S_{m}^{(k)}(0)$.
The term J_{1}. Using the inequalities $(a+b)^{p} \leq 2^{p-1}\left(a^{p}+b^{p}\right)$, for all $a, b \geq 0, p \geq 1$ and

$$
\begin{equation*}
s^{q} \leq 1+s^{p}, \forall s \geq 0, \forall q \in(0, p] \tag{2.26}
\end{equation*}
$$

we get from (2.9) that

$$
\begin{align*}
\left|F_{m}^{(k)}(x, t)\right| & \leq K_{M}(f) \sum_{i+j \leq N-1} \frac{1}{i!j!}\left|u_{m}^{(k)}-u_{m-1}\right|^{i}\left|\left\|u_{m}^{(k)}(t)\right\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right|^{j} \\
& \leq K_{M}(f) \sum_{i+j \leq N-1} \frac{1}{i!j!}\left(\left|u_{m}^{(k)}\right|+\left|u_{m-1}\right|\right)^{i}\left(\left\|u_{m}^{(k)}(t)\right\|+\left\|u_{m-1}(t)\right\|\right)^{2 j} \\
& \leq K_{M}(f) \sum_{i+j \leq N-1} \frac{1}{i!j!!}\left(\sqrt{S_{m}^{(k)}(t)}+M\right)^{i}\left(\sqrt{S_{m}^{(k)}(t)}+M\right)^{2 j} \\
& \leq K_{M}(f) \sum_{i+j \leq N-1} \frac{1}{i!j!!}\left(\sqrt{S_{m}^{(k)}(t)}+M\right)^{i+2 j} \tag{2.27}\\
& \leq K_{M}(f) \sum_{i+j \leq N-1} \frac{1}{i!j!} 2^{i+2 j-1}\left[\left(\sqrt{S_{m}^{(k)}(t)}\right)^{i+2 j}+M^{i+2 j}\right] \\
& \leq K_{M}(f) \sum_{i+j \leq N-1} \frac{1}{i!j!!} i^{i+2 j-1}\left[1+\left(S_{m}^{(k)}(t)\right)^{N-\frac{3}{2}}+1+M^{2 N-3}\right] \\
& \leq K_{M}(f)\left(1+M^{2 N-3}\right) \sum_{i+j \leq N-1} \frac{1}{i!j!}!^{i+2 j}\left[1+\left(S_{m}^{(k)}(t)\right)^{N-\frac{3}{2}}\right] .
\end{align*}
$$

Hence

$$
\begin{align*}
\left\|F_{m}^{(k)}(t)\right\| & \leq K_{M}(f)\left(1+M^{2 N-3}\right) \sum_{i+j \leq N-1} \frac{1}{i!j!} 2^{i+2 j}\left[1+\left(S_{m}^{(k)}(t)\right)^{N-\frac{3}{2}}\right] \tag{2.28}\\
& \equiv \xi_{1}(M)\left[1+\left(S_{m}^{(k)}(t)\right)^{N-\frac{3}{2}}\right]
\end{align*}
$$

where

$$
\begin{equation*}
\xi_{1}(M)=K_{M}(f)\left(1+M^{2 N-3}\right) \sum_{i+j \leq N-1} \frac{1}{i!j!} 2^{i+2 j} \tag{2.29}
\end{equation*}
$$

Using the inequality

$$
\begin{equation*}
s^{q} \leq 1+s^{N_{0}}, \forall s \geq 0, \forall q \in\left(0, N_{0}\right], N_{0}=\max \{N, 2 N-3\}, N \geq 2 \tag{2.30}
\end{equation*}
$$

we get from (2.28), (2.30) that

$$
\begin{align*}
J_{1} & =2 \int_{0}^{t}\left\langle F_{m}^{(k)}(s), \dot{u}_{m}^{(k)}(s)\right\rangle d s \leq 2 \int_{0}^{t}\left\|F_{m}^{(k)}(s)\right\|\left\|\dot{u}_{m}^{(k)}(s)\right\| d s \\
& \leq 2 \xi_{1}(M) \int_{0}^{t}\left[1+\left(S_{m}^{(k)}(s)\right)^{N-\frac{3}{2}}\right] \sqrt{S_{m}^{(k)}(s)} d s \\
& =2 \xi_{1}(M) \int_{0}^{t}\left[\sqrt{S_{m}^{(k)}(s)}+\left(S_{m}^{(k)}(s)\right)^{N-1}\right] d s \tag{2.31}\\
& \leq 4 \xi_{1}(M) \int_{0}^{t}\left[1+\left(S_{m}^{(k)}(s)\right)^{N_{0}}\right] d s \\
& \leq \bar{\xi}_{1}(M) \int_{0}^{t}\left[1+\left(S_{m}^{(k)}(s)\right)^{N_{0}}\right] d s
\end{align*}
$$

where $\bar{\xi}_{1}(M)=4 \xi_{1}(M)$.

The term J_{2}. By (2.9), we have

$$
\begin{align*}
& F_{m x}^{(k)}(t)= D_{1} f\left[u_{m-1}\right]+D_{3} f\left[u_{m-1}\right] \nabla u_{m-1} \\
&+\sum_{1 \leq i+j \leq N-1}\left[D_{1} D^{i j} f\left[u_{m-1}\right]\right.\left.+D_{3} D^{i j} f\left[u_{m-1}\right] \nabla u_{m-1}\right]\left(u_{m}^{(k)}-u_{m-1}\right)^{i} \\
& \times\left(\left\|u_{m}^{(k)}(t)\right\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right)^{j} \tag{2.32}\\
&+\sum_{1 \leq i+j \leq N-1} D^{i j} f\left[u_{m-1}\right] i\left(u_{m}^{(k)}-u_{m-1}\right)^{i-1}\left(u_{m x}^{(k)}-\nabla u_{m-1}\right) \\
& \times\left(\left\|u_{m}^{(k)}(t)\right\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right)^{j}
\end{align*}
$$

Hence

$$
\begin{align*}
& \left\|F_{m x}^{(k)}(t)\right\| \leq K_{M}(f)(1+M)+K_{M}(f)(1+M) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!!j!}\left(M+\sqrt{S_{m}^{(k)}(t)}\right)^{i+2 j} \\
& +K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} i\left(M+\sqrt{S_{m}^{(k)}(t)}\right)^{i-1}\left(M+\sqrt{S_{m}^{(k)}(t)}\right)\left(M+\sqrt{S_{m}^{(k)}(t)}\right)^{2 j} \\
& \leq K_{M}(f)(1+M)+K_{M}(f)(1+M) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!}\left(M+\sqrt{S_{m}^{(k)}(t)}\right)^{i+2 j} \\
& +K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} i\left(M+\sqrt{S_{m}^{(k)}(t)}\right)^{i+2 j} \\
& \leq K_{M}(f)(1+M)+K_{M}(f)(1+M) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!j} 2^{i+2 j-1}\left[M^{i+2 j}+\left(\sqrt{S_{m}^{(k)}(t)}\right)^{i+2 j}\right] \\
& +(N-1) K_{M}(f) \sum_{1 \leq i+j \leq N-i} \frac{1}{i!j!} 2^{i+2 j-1}\left[M^{i+2 j}+\left(\sqrt{S_{m}^{(k)}(t)}\right)^{i+2 j}\right] \tag{2.33}\\
& \leq K_{M}(f)(1+M) \sum_{i+j \leq N-1} \frac{1}{i j j!} 2^{i+2 j-1}\left[M^{i+2 j}+\left(\sqrt{S_{m}^{(k)}(t)}\right)^{i+2 j}\right] \\
& +(N-1) K_{M}(f)(1+M) \sum_{i+j \leq N-1} \frac{1}{i!j!} 2^{i+2 j-1}\left[M^{i+2 j}+\left(\sqrt{S_{m}^{(k)}(t)}\right)^{i+2 j}\right] \\
& =N(1+M) K_{M}(f) \sum_{i+j \leq N-1} \frac{1}{i!j!} 2^{i+2 j-1}\left[M^{i+2 j}+\left(\sqrt{S_{m}^{(k)}(t)}\right)^{i+2 j}\right] \\
& \leq N(1+M) K_{M}(f) \sum_{i+j \leq N-1} \frac{1}{i!j!!} i^{i+2 j-1}\left[1+M^{2 N-2}+1+\left(S_{m}^{(k)}(t)\right)^{N-1}\right] \\
& \leq N(1+M) K_{M}(f)\left(1+M^{2 N-2}\right) \sum_{i+j \leq N-1} \frac{1}{i!j!} 2^{i+2 j}\left[1+\left(S_{m}^{(k)}(t)\right)^{N-1}\right] \\
& \equiv \xi_{2}(M)\left[1+\left(S_{m}^{(k)}(t)\right)^{N-1}\right],
\end{align*}
$$

where

$$
\begin{equation*}
\xi_{2}(M)=N(1+M) K_{M}(f)\left(1+M^{2 N-2}\right) \sum_{i+j \leq N-1} \frac{1}{i!j!} 2^{i+2 j} \tag{2.34}
\end{equation*}
$$

Using the inequality (2.30) we get from (2.33) that

$$
\begin{align*}
J_{2} & =2 \int_{0}^{t}\left\langle F_{m x}^{(k)}(s), \dot{u}_{m x}^{(k)}(s)\right\rangle d s \leq 2 \int_{0}^{t}\left\|F_{m x}^{(k)}(s)\right\|\left\|\dot{u}_{m x}^{(k)}(s)\right\| d s \\
& \leq 2 \xi_{2}(M) \int_{0}^{t}\left[1+\left(S_{m}^{(k)}(s)\right)^{N-1}\right] \sqrt{S_{m}^{(k)}(s)} d s \\
& =2 \xi_{2}(M) \int_{0}^{t}\left[\sqrt{S_{m}^{(k)}(s)}+\left(S_{m}^{(k)}(s)\right)^{N-\frac{1}{2}}\right] d s \tag{2.35}\\
& \leq 4 \xi_{2}(M) \int_{0}^{t}\left[1+\left(S_{m}^{(k)}(s)\right)^{N_{0}}\right] d s \\
& \equiv \bar{\xi}_{2}(M) \int_{0}^{t}\left[1+\left(S_{m}^{(k)}(s)\right)^{N_{0}}\right] d s
\end{align*}
$$

where $\bar{\xi}_{2}(M)=4 \xi_{2}(M)$.
The term J_{3}. Equation (2.7) $)_{1}$ can be rewritten as follows

$$
\begin{equation*}
\left\langle\ddot{u}_{m}^{(k)}(t), w_{j}\right\rangle-\left\langle\Delta u_{m}^{(k)}(t), w_{j}\right\rangle=\left\langle F_{m}^{(k)}(t), w_{j}\right\rangle, 1 \leq j \leq k \tag{2.36}
\end{equation*}
$$

Hence, it follows after replacing w_{j} with $\ddot{u}_{m}^{(k)}(t)$ and integrating that

$$
\begin{align*}
J_{3} & =\int_{0}^{t}\left\|\ddot{u}_{m}^{(k)}(s)\right\|^{2} d s \leq 2 \int_{0}^{t}\left\|\Delta u_{m}^{(k)}(s)\right\|^{2} d s+2 \int_{0}^{t}\left\|F_{m}^{(k)}(s)\right\|^{2} d s \\
& \leq 2 \int_{0}^{t} S_{m}^{(k)}(s) d s+2 \xi_{1}^{2}(M) \int_{0}^{t}\left[1+\left(S_{m}^{(k)}(s)\right)^{N-\frac{3}{2}}\right]^{2} d s \\
& \leq 2 \int_{0}^{t} S_{m}^{(k)}(s) d s+4 \xi_{1}^{2}(M) \int_{0}^{t}\left[1+\left(S_{m}^{(k)}(s)\right)^{2 N-3}\right] d s \\
& \leq 2 \int_{0}^{t} S_{m}^{(k)}(s) d s+4 \xi_{1}^{2}(M) \int_{0}^{t}\left[1+\left(S_{m}^{(k)}(s)\right)^{2 N-3}\right] d s \tag{2.37}\\
& \leq 2\left(1+2 \xi_{1}^{2}(M)\right) \int_{0}^{t}\left[1+\left(S_{m}^{(k)}(s)\right)^{N_{0}}\right] d s \\
& \equiv \bar{\xi}_{3}(M) \int_{0}^{t}\left[1+\left(S_{m}^{(k)}(s)\right)^{N_{0}}\right] d s,
\end{align*}
$$

with $\bar{\xi}_{3}(M)=2\left(1+2 \xi_{1}^{2}(M)\right)$.
Now, we need an estimate on the term $S_{m}^{(k)}(0)$. We have

$$
\begin{equation*}
S_{m}^{(k)}(0)=\left\|\tilde{u}_{1 k}\right\|^{2}+\left\|\tilde{u}_{1 k x}\right\|^{2}+\left\|\tilde{u}_{0 k x}\right\|^{2}+\left\|\Delta \tilde{u}_{k 0}\right\|^{2} \tag{2.38}
\end{equation*}
$$

By means of the convergences in (2.8), we can deduce the existence of a constant $M>0$ independent of k and m such that

$$
\begin{equation*}
S_{m}^{(k)}(0) \leq M^{2} / 2 \tag{2.39}
\end{equation*}
$$

Finally, it follows from (2.25), (2.31), (2.35), (2.37), (2.39) that

$$
\begin{equation*}
S_{m}^{(k)}(t) \leq \frac{M^{2}}{2}+T \bar{\xi}(M)+\bar{\xi}(M) \int_{0}^{t}\left(S_{m}^{(k)}(s)\right)^{N_{0}} d s, \text { for } 0 \leq t \leq T_{m}^{(k)} \leq T, \tag{2.40}
\end{equation*}
$$

where

$$
\bar{\xi}(M)=\bar{\xi}_{1}(M)+\bar{\xi}_{2}(M)+\bar{\xi}_{3}(M)
$$

Then, by solving a nonlinear Volterra integral inequality (2.40) (based on the methods in [6]), the following lemma is proved.

Lemma 2.4. There exists a constant $T>0$ independent of k and m such that

$$
\begin{equation*}
S_{m}^{(k)}(t) \leq M^{2} \forall t \in[0, T], \text { for all } k \text { and } m . \tag{2.41}
\end{equation*}
$$

By Lemma 2.4, we can take constant $T_{m}^{(k)}=T$ for all k and m. Therefore, we have

$$
\begin{equation*}
u_{m}^{(k)} \in W(M, T), \text { for all } k \text { and } m \tag{2.42}
\end{equation*}
$$

Step 3: Convergence. From (2.42), we can extract from $\left\{u_{m}^{(k)}\right\}$ a subsequence $\left\{u_{m}^{\left(k_{i}\right)}\right\}$ such that

$$
\left\{\begin{array}{lll}
u_{m}^{\left(k_{i}\right)} \rightarrow u_{m} \quad \text { in } \quad L^{\infty}\left(0, T ; H_{0}^{1} \cap H^{2}\right) & \text { weak* } \tag{2.43}\\
\dot{u}_{m}^{\left(k_{i}\right)} \rightarrow u_{m}^{\prime} \quad \text { in } \quad L^{\infty}\left(0, T ; H_{0}^{1}\right) & \text { weak* } \\
\ddot{u}_{m}^{\left(k_{i}\right)} \rightarrow u_{m}^{\prime \prime} \quad \text { in } \quad L^{2}\left(Q_{T}\right) & \text { weak, }
\end{array}\right.
$$

$u_{m} \in W(M, T)$.
We can easily check from (2.7), (2.8), (2.43), (2.44) that u_{m} satisfies (2.3), (2.4) in $L^{2}(0, T)$, weak.
On the other hand, it follows from (2.3) $)_{1}$ and $u_{m} \in W(M, T)$ that $u_{m}^{\prime \prime}=\Delta u_{m}+F_{m} \in L^{\infty}\left(0, T ; L^{2}\right)$, hence $u_{m} \in W_{1}(M, T)$ and the proof of Theorem 2.2 is complete.

Next, we put

$$
W_{1}(T)=\left\{v \in L^{\infty}\left(0, T ; H_{0}^{1}\right): v^{\prime} \in L^{\infty}\left(0, T ; L^{2}\right)\right\}
$$

then $W_{1}(T)$ is a Banach space with respect to the norm (see [7]):

$$
\|v\|_{W_{1}(T)}=\|v\|_{L^{\infty}\left(0, T ; H_{0}^{1}\right)}+\left\|v^{\prime}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)} .
$$

Then, we have the following theorem.
Theorem 2.5. Let $\left(H_{1}\right),\left(H_{2}\right)$ hold. Then, there exist constants $M>0$ and $T>0$ such that
(i) Prob. (1.1) - (1.3) has a unique weak solution $u \in W_{1}(M, T)$.
(ii) The recurrent sequence $\left\{u_{m}\right\}$ defined by (2.3), (2.4) converges at a rate of order N to the solution u strongly in the space $W_{1}(T)$ in the sense

$$
\begin{equation*}
\left\|u_{m}-u\right\|_{W_{1}(T)} \leq C\left\|u_{m-1}-u\right\|_{W_{1}(T)}^{N} \tag{2.45}
\end{equation*}
$$

for all $m \geq 1$, where C is a suitable constant.
Furthermore, we have the estimation

$$
\begin{equation*}
\left\|u_{m}-u\right\|_{W_{1}(T)} \leq C_{T} \beta^{N^{m}}, \tag{2.46}
\end{equation*}
$$

for all $m \geq 1$, where C_{T} and $0<\beta<1$ are positive constants depending only on T.
Proof.
Put $v_{m}=u_{m+1}-u_{m}$, it is clear that v_{m} satisfies the variational problem

$$
\left\{\begin{array}{l}
\left\langle v_{m}^{\prime \prime}(t), v\right\rangle+\left\langle v_{m x}(t), v_{x}\right\rangle=\left\langle F_{m+1}(t)-F_{m}(t), v\right\rangle \forall v \in H_{0}^{1} \tag{2.47}\\
v_{m}(0)=v_{m}^{\prime}(0)=0
\end{array}\right.
$$

where

$$
\begin{equation*}
F_{m}(x, t)=\sum_{i+j \leq N-1} D^{i j} f\left[u_{m-1}\right]\left(u_{m}-u_{m-1}\right)^{i}\left(\left\|u_{m}(t)\right\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right)^{j} . \tag{2.48}
\end{equation*}
$$

Taking $v=v_{m}^{\prime}$ in (2.47), after integrating in t we get

$$
\begin{equation*}
\sigma_{m}(t)=2 \int_{0}^{t}\left\langle F_{m+1}(s)-F_{m}(s), v_{m}^{\prime}(s)\right\rangle d s, \tag{2.49}
\end{equation*}
$$

with

$$
\begin{equation*}
\sigma_{m}(t)=\left\|v_{m}^{\prime}(t)\right\|^{2}+\left\|v_{m x}(t)\right\|^{2} \tag{2.50}
\end{equation*}
$$

On the other hand, by using Taylor's expansion for the function $f\left(x, t, u_{m},\left\|u_{m}(t)\right\|^{2}\right)$ around the point $\left(x, t, u_{m-1},\left\|u_{m-1}(t)\right\|^{2}\right)$ up to order N, we obtain

$$
\begin{align*}
f\left[u_{m}\right]-f\left[u_{m-1}\right] & =f\left(x, t, u_{m},\left\|u_{m}(t)\right\|^{2}\right)-f\left(x, t, u_{m-1},\left\|u_{m-1}(t)\right\|^{2}\right) \\
& =\sum_{1 \leq i+j \leq N-1} D^{i j} f\left[u_{m-1}\right] v_{m-1}^{i}\left(\left\|u_{m}(t)\right\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right)^{j} \tag{2.51}\\
& +\sum_{i+j=N} D^{i j} f\left[\eta_{m}\right] v_{m-1}^{i}\left(\left\|u_{m}(t)\right\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right)^{j},
\end{align*}
$$

where

$$
\left[\eta_{m}\right]=\left(x, t, u_{m-1}+\theta v_{m-1}, \theta\left\|u_{m}(t)\right\|^{2}+(1-\theta)\left\|u_{m-1}(t)\right\|^{2}\right), \quad 0<\theta<1 .
$$

Hence, it follows from (2.4), (2.51) that

$$
\begin{align*}
F_{m+1}(t)-F_{m}(t) & =\sum_{1 \leq i+j \leq N-1} D^{i j} f\left[u_{m}\right] v_{m}^{i}\left(\left\|u_{m+1}(t)\right\|^{2}-\left\|u_{m}(t)\right\|^{2}\right)^{j} \\
& +\sum_{i+j=N} D^{i j} f\left[\eta_{m}\right] v_{m-1}^{i}\left(\left\|u_{m}(t)\right\|^{2}-\left\|u_{m-1}(t)\right\|^{2}\right)^{j} . \tag{2.52}
\end{align*}
$$

Then we deduce, from (2.52), that

$$
\begin{align*}
& \left\|F_{m+1}(t)-F_{m}(t)\right\| \\
& \leq K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{1 \cdot j!}\left\|v_{m x}(t)\right\|^{i}\left(\left\|u_{m+1}(t)\right\|+\left\|u_{m}(t)\right\|\right)^{j}\left\|u_{m+1}(t)\right\|-\left.\left\|u_{m}(t)\right\|\right|^{j} \\
& +K_{M}(f) \sum_{i+j=N} \frac{1}{i \cdot j!}\left\|v_{m-1}\right\|_{W_{1}(T)}^{i}\left(\left\|u_{m}(t)\right\|+\left\|u_{m-1}(t)\right\|\right)^{j}\left\|u_{m}(t)\right\|-\left.\left\|u_{m-1}(t)\right\|\right|^{j} \\
& \leq K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i \cdot[j]}\left\|v_{m x}(t)\right\|^{i+j}(2 M)^{j} \\
& +K_{M}(f) \sum_{i+j=N} \frac{1}{1 \cdot j!}\left\|v_{m-1}\right\|\left\|_{W_{1}(T)}^{i}(2 M)^{j}\right\| v_{m-1}(t) \|^{j} \tag{2.53}\\
& \leq K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i \cdot j!}\left\|v_{m x}(t)\right\|^{i+j-1}(2 M)^{j}\left\|v_{m x}(t)\right\|+K_{M}(f) \sum_{i+j=N} \frac{1}{i \cdot j!}(2 M)^{j}\left\|v_{m-1}\right\|_{W_{1}(T)}^{i+j} \\
& \leq K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i \cdot j!} 2^{j} M^{i+2 j-1}\left\|v_{m x}(t)\right\|+K_{M}(f) \sum_{i+j=N} \frac{1}{\frac{1}{i j!}}(2 M)^{j}\left\|v_{m-1}\right\|_{W_{1}(T)}^{N} \\
& \equiv \gamma_{T}\left\|v_{m x}(t)\right\|+\bar{\gamma}_{T}\left\|v_{m-1}\right\|_{W_{1}(T)}^{N},
\end{align*}
$$

where

$$
\begin{equation*}
\left.\gamma_{T}=K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i \cdot i!}\right]^{j} M^{i+2 j-1}, \quad \bar{\gamma}_{T}=K_{M}(f) \sum_{i+j=N} \frac{1}{i \cdot j!}(2 M)^{j} . \tag{2.54}
\end{equation*}
$$

Then we deduce, from (2.49), (2.50) and (2.53), that

$$
\begin{align*}
\sigma_{m}(t) & =2 \int_{0}^{t}\left\langle F_{m+1}(s)-F_{m}(s), v_{m}^{\prime}(s)\right\rangle d s \leq 2 \int_{0}^{t}\left\|F_{m+1}(s)-F_{m}(s)\right\|\left\|v_{m}^{\prime}(s)\right\| d s \\
& \leq 2 \int_{0}^{t}\left(\gamma_{T}\left\|v_{m x}(s)\right\|+\bar{\gamma}_{T}\left\|v_{m-1}\right\|_{W_{1}(T)}^{N}\right)\left\|v_{m}^{\prime}(s)\right\| d s \tag{2.55}\\
& \leq 2 \gamma_{T} \int_{0}^{t}\left\|v_{m x}(s)\right\|\left\|v_{m}^{\prime}(s)\right\| d s+2 \bar{\gamma}_{T} \int_{0}^{t}\left\|v_{m-1}\right\|_{W_{1}(T)}^{N}\left\|v_{m}^{\prime}(s)\right\| d s \\
& \leq T \bar{\gamma}_{T}\left\|v_{m-1}\right\|_{W_{1}(T)}^{2 N}+\left(\gamma_{T}+\bar{\gamma}_{T}\right) \int_{0}^{t} \sigma_{m}(s) d s .
\end{align*}
$$

By using Gronwall's lemma, we obtain from (2.55) that

$$
\begin{equation*}
\left\|v_{m}\right\|_{W_{1}(T)} \leq 2 \sqrt{T \bar{\gamma}_{T} e^{T\left(\gamma_{T}+\bar{\gamma}_{T}\right)}}\left\|v_{m-1}\right\|_{W_{1}(T)}^{N} \equiv \mu_{T}\left\|v_{m-1}\right\|_{W_{1}(T)}^{N} \tag{2.56}
\end{equation*}
$$

where μ_{T} is the constant given by

$$
\begin{equation*}
\mu_{T}=2 \sqrt{T \bar{\gamma}_{T} e^{T\left(\gamma_{T}+\bar{\gamma}_{T}\right)}} \tag{2.57}
\end{equation*}
$$

Hence, we obtain from (2.56) that

$$
\begin{equation*}
\left\|u_{m}-u_{m+p}\right\|_{W_{1}(T)} \leq(1-\beta)^{-1}\left(\mu_{T}\right)^{\frac{-1}{N-1}} \beta^{N^{m}} \tag{2.58}
\end{equation*}
$$

for all m and p.
We take $T>0$ small enough, such that $\beta=\left(\mu_{T}\right)^{\frac{1}{N-1}} M<1$. It follows that $\left\{u_{m}\right\}$ is a Cauchy sequence in $W_{1}(T)$. Then there exists $u \in W_{1}(T)$ such that $u_{m} \rightarrow u$ strongly in $W_{1}(T)$.

It is similar to argument used in the proof of Theorem 2.2, we obtain that $u \in W_{1}(M, T)$ is a unique weak solution of Prob. (1.1) - (1.3). Passing to the limit as $p \rightarrow+\infty$ for m fixed, we get the estimate (2.46) from (2.58). This completes the proof of Theorem 2.5.

Remark. In order to construct a N-order iterative scheme, we need the condition $f \in C^{N}\left([0,1] \times \mathbb{R}_{+} \times\right.$ $\mathbb{R} \times \mathbb{R}_{+}$). Then, we get a convergent sequence at a rate of order N to a local unique weak solution of problem and the existence follows. This condition of f can be relaxed if we only consider the existence of solution, it is not necessary that $f \in C^{1}\left([0,1] \times \mathbb{R}_{+} \times \mathbb{R} \times \mathbb{R}_{+}\right)$, see [10].

Acknowledgements. The authors wish to express their sincere thanks to the referees for the suggestions, remarks and valuable comments.

References

[1] R. A. Adams, Sobolev Spaces, Academic Press, NewYork, 1975.
[2] G.F. Carrier, On the nonlinear vibrations problem of elastic string, Quart. J. Appl. Math. 3 (1945) 157-165.
[3] F. Ficken, B. Fleishman, Initial value problems and time periodic solutions for a nonlinear wave equation, Comm. Pure Appl. Math. 10 (1957) 331-356.
[4] M. Hosoya, Y. Yamada, On some nonlinear wave equation I: Local existence and regularity of solutions, J. Fac. Sci. Univ. Tokyo. Sect. IA, Math. 38 (1991) 225-238.
[5] G. R. Kirchhoff, Vorlesungen über Mathematiche Physik: Mechanik, Teuber, Leipzig, 1876, Section 29.7.
[6] Lakshmikantham V, Leela S, Differential and Integral Inequalities, Vol.1. Academic Press, NewYork, 1969.
[7] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non-linéaires, Dunod-Gauthier -Villars, Paris 1969.
[8] N. T. Long, T. N. Diem, On the nonlinear wave equation $u_{t t}-u_{x x}=f\left(x, t, u, u_{x}, u_{t}\right)$ associated with the mixed homogeneous conditions, Nonlinear Anal. TMA. 29 (11) (1997) 1217-1230.
[9] N.T. Long, A. P. N. Dinh, T. N. Diem, Linear recursive schemes and asymptotic expansion associated with the Kirchhoff-Carrier operator, J. Math. Anal. Appl. 267 (1) (2002) 116-134.
[10] N. T. Long, On the nonlinear wave equation $u_{t t}-B\left(t,\|u\|^{2},\left\|u_{x}\right\|^{2}\right) u_{x x}=f\left(x, t, u, u_{x}, u_{t},\|u\|^{2},\left\|u_{x}\right\|^{2}\right)$ associated with the mixed homogeneous conditions, J. Math. Anal. Appl. 306 (1) (2005) 243-268.
[11] L. A. Medeiros, On some nonlinear perturbation of Kirchhoff-Carrier operator, Comp. Appl. Math. 13 (1994) 225 - 233.
[12] L. T. P. Ngoc, L. X. Truong, N. T. Long, An N order iterative scheme for a nonlinear Kirchhoff-Carrier wave equation associated with mixed homogeneous conditions Acta Mathematica Vietnamica, 35 (2) (2010) 207-227.
[13] E. L. Ortiz, A. P. N. Dinh, Linear recursive schemes associated with some nonlinear partial differential equations in one dimension and the Tau method, SIAM J. Math. Anal. 18 (1987) 452-464.
[14] P. H. Rabinowitz, Periodic solutions of nonlinear hyperbolic differential equations, Comm. Pure. Appl. Math. 20 (1967) 145 - 205.
[15] L. X. Truong, L. T. P. Ngoc, N. T. Long, High-order iterative schemes for a nonlinear Kirchhoff - Carrier wave equation associated with the mixed homogeneous conditions, Nonlinear Anal. TMA. 71 (1-2) (2009) 467-484.

[^0]: 2010 Mathematics Subject Classification. 35L20; 35L70; 35Q72
 Keywords. Nonlinear wave equation containing a nonlocal term, Faedo - Galerkin method, the convergence of order N
 Received: 13 April 2015; Accepted: 01 October 2015
 Communicated by Naseer Shahzad
 Email addresses: ngoc1966@gmail.com (Le Thi Phuong Ngoc), tri.hcmuns@gmail.com (Bui Minh Tri), longnt2@gmail.com (Nguyen Thanh Long)

