Filomat 31:6 (2017), 1755–1767 DOI 10.2298/FIL1706755N

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

An N-order Iterative Scheme for a Nonlinear Wave Equation Containing a Nonlocal Term

Le Thi Phuong Ngoc^a, Bui Minh Tri^b, Nguyen Thanh Long^b

^aUniversity of Khanh Hoa, 01 Nguyen Chanh Str., Nha Trang City, Vietnam.
^bDepartment of Mathematics and Computer Science, University of Natural Science, Vietnam National University Ho Chi Minh City, 227 Nguyen Van Cu Str., Dist. 5, Ho Chi Minh City, Vietnam.

Abstract. In this paper, we consider an initial - boundary value problem for a nonlinear wave equation containing a nonlocal term. Using a high order iterative scheme, the existence of a unique weak solution is proved. Furthermore, the sequence established here converges to a unique weak solution at a rate of order N ($N \ge 2$).

1. Introduction

In this paper, we consider the following initial - boundary value problem for a nonlinear wave equation

$$u_{tt} - u_{xx} = f\left(x, t, u, \|u(t)\|^2\right), \ x \in \Omega = (0, 1), \ 0 < t < T,$$
(1.1)

$$u(0,t) = u(1,t) = 0,$$
(1.2)

$$u(x,0) = \tilde{u}_0(x), \ u_t(x,0) = \tilde{u}_1(x), \tag{1.3}$$

where μ , f, \tilde{u}_0 , \tilde{u}_1 are given functions and the nonlinear term $f(x, t, u, ||u(t)||^2)$ contains a nonlocal term

$$||u(t)||^2 = \int_0^1 u^2(x,t)dx.$$

Eq. (1.1) constitutes a case, relatively simpler, of a more general equation, namely

$$u_{tt} - \frac{\partial}{\partial x} \left(\mu(x, t, ||u||^2, ||u_x||^2) u_x \right) = f(x, t, u, u_x, u_t, ||u||^2, ||u_x||^2), \ x \in \Omega = (0, 1), \ 0 < t < T,$$
(1.4)

it has its origin in the nonlinear vibration of an elastic string (Kirchhoff [5]), for which the associated equation is

$$\rho h u_{tt} = \left(P_0 + \frac{Eh}{2L} \int_0^L \left| \frac{\partial u}{\partial y}(y, t) \right|^2 dy \right) u_{xx},$$

²⁰¹⁰ Mathematics Subject Classification. 35L20; 35L70; 35Q72

Keywords. Nonlinear wave equation containing a nonlocal term, Faedo - Galerkin method, the convergence of order N Received: 13 April 2015; Accepted: 01 October 2015

Communicated by Naseer Shahzad

Email addresses: nooc1966@gmail.com (Le Thi Phuong Ngoc), tri.hcmuns@gmail.com (Bui Minh Tri), longnt2@gmail.com (Nguyen Thanh Long)

here *u* is the lateral deflection, ρ is the mass density, *h* is the cross section, *L* is the length, *E* is Young's modulus and *P*₀ is the initial axial tension. In [2], Carrier also established a model of the type

$$u_{tt} = \left(P_0 + P_1 \int_0^L u^2(y, t) dy\right) u_{xx}$$

where P_0 and P_1 are constants.

In [11], Medeiros has studied Eq. (1.4) with $f = f(u) = -bu^2$, where *b* is a given positive constant, and Ω is a bounded open set of \mathbb{R}^3 . In [4], Hosoya and Yamada also have considered Eq. (1.4) with $f = f(u) = -\delta |u|^{\alpha} u$, where $\delta > 0$, $\alpha \ge 0$ are given constants.

In [3], Ficken and Fleishman established the unique global existence and stability of solutions for the equation

$$u_{xx} - u_{tt} - 2\alpha u_t - \beta u = \varepsilon u^3 + \gamma, \ \varepsilon > 0.$$

Rabinowitz [14] proved the existence of periodic solutions for

 $u_{xx} - u_{tt} - 2\alpha u_t = f(x, t, u, u_x, u_t),$

where ε is a small parameter and *f* is periodic in time.

In [8], Long and Diem have studied the linear recursive scheme associated with the nonlinear wave equation

$$u_{tt} - u_{xx} = f(x, t, u, u_x, u_t), \ 0 < x < 1, \ 0 < t < T,$$

associated with (1.3) and the following mixed conditions

$$u_x(0,t) - h_0 u(0,t) = u_x(1,t) + h_1 u(1,t) = 0,$$

where $h_0 > 0$, $h_1 \ge 0$ are given constants. Afterwards, this result has been extended in [9], [10] to the nonlinear wave equation with the Kirchhoff - Carrier operator. In [10], the following equation

$$u_{tt} - \mu(t, ||u||^2, ||u_x||^2)u_{xx} = f(x, t, u, u_x, u_t, ||u||^2, ||u_x||^2), \ 0 < x < 1, \ 0 < t < T,$$

associated with the mixed homogeneous conditions was studied. By the linear recursive scheme and by a standard argument, existence of a local solution was proved. On the other hand, an asymptotic expansion was established.

In [12], [15], a high order iterative scheme was established in order to get a convergent sequence at a rate of order N ($N \ge 1$) to a local unique weak solution of a nonlinear Kirchhoff – Carrier wave equation as follows

$$u_{tt} - \mu(t, ||u(t)||^2, ||u_x(t)||^2) \frac{\partial}{\partial x} (A(x)u_x) = f(x, t, u), \ 0 < x < 1, \ 0 < t < T,$$

associated with the mixed homogeneous conditions.

Based on the above problems, we consider Prob. (1.1) - (1.3). With the assumption $f \in C^{N}([0,1] \times \mathbb{R}_{+} \times \mathbb{R} \times \mathbb{R}_{+})$ and some other conditions, we shall establish a high order iterative scheme in order to get a convergent sequence at a rate of order N to a local unique weak solution of Prob. (1.1) - (1.3). By the fact that, we associate with Eq. (1.1) a recurrent sequence $\{u_m\}$ defined by

$$\frac{\partial^2 u_m}{\partial t^2} - \frac{\partial^2 u_m}{\partial x^2} = \sum_{i+j \le N-1} \frac{1}{i!j!} D_3^i D_4^j f\left(x, t, u_{m-1}, ||u_{m-1}||^2\right) (u_m - u_{m-1})^i \left(||u_m||^2 - ||u_{m-1}||^2\right)^j,$$

0 < x < 1, 0 < t < T, where u_m satisfying (1.2), (1.3) for all $m \ge 1$ and the first term $u_0 = 0$. This result is a relative generalization of [8] - [10], [12], [13], [15].

2. The High Order Iterative Method

First, we denote the usual function spaces used in this paper by the notations $L^p = L^p(0, 1)$, $H^m = H^m(0, 1)$. Let $\langle \cdot, \cdot \rangle$ be either the scalar product in L^2 or the dual pairing of a continuous linear functional and an element of a function space. The notation $\|\cdot\|$ stands for the norm in L^2 and we denote by $\|\cdot\|_X$ the norm in the Banach space *X*. We call *X'* the dual space of *X*. We denote by $L^p(0, T; X)$, $1 \le p \le \infty$ for the Banach space of real functions $u : (0, T) \to X$ measurable, such that

$$\|u\|_{L^p(0,T;X)} = \left(\int_0^T \|u(t)\|_X^p dt\right)^{1/p} < +\infty \text{ for } 1 \le p < \infty,$$

and

$$||u||_{L^{\infty}(0,T;X)} = \underset{0 < t < T}{ess \sup} ||u(t)||_X \text{ for } p = \infty.$$

Let u(t), $u'(t) = u_t(t) = \dot{u}(t)$, $u''(t) = u_{tt}(t) = \ddot{u}(t)$, $u_x(t) = \nabla u(t)$, $u_{xx}(t) = \Delta u(t)$, denote u(x, t), $\frac{\partial u}{\partial t}(x, t)$, $\frac{\partial^2 u}{\partial t^2}(x, t)$, $\frac{\partial^2 u}{\partial x^2}(x, t)$, respectively. With $f \in C^k([0, 1] \times \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R}_+)$, f = f(x, t, u, z), we put $D_1 f = \frac{\partial f}{\partial x}$, $D_2 f = \frac{\partial f}{\partial t}$, $D_3 f = \frac{\partial f}{\partial u}$, $D_4 f = \frac{\partial f}{\partial z}$ and $D^\alpha f = D_1^{\alpha_1} \dots D_4^{\alpha_4} f$, $\alpha = (\alpha_1, \dots, \alpha_4) \in \mathbb{Z}_+^4$, $|\alpha| = \alpha_1 + \dots + \alpha_4 = k$, $D^{(0,0,0,0)} f = f$. We then have the following lemma, the proof of which can be found in [1].

Lemma 2.1. The imbedding $H^1 \hookrightarrow C^0([0, 1])$ is compact and

- (i) $\|v\|_{C^0([0,1])} \leq \sqrt{2} \|v\|_{H^1}$, for all $v \in H^1$,
- (ii) $\|v\|_{C^0([0,1])} \le \|v_x\|$, for all $v \in H^1_0$.

Now, we make the following assumptions:

$$(H_1)$$
 $\tilde{u}_0 \in H^2 \cap H_0^1$ and $\tilde{u}_1 \in H_0^1$

(*H*₂)
$$f \in C^{\mathbb{N}}([0,1] \times \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R}_+)$$
 with $f(0,t,0,z) = f(1,t,0,z) = 0, \forall t, z \ge 0$.

Fix $T^* > 0$. For each M > 0 given, we define two constants $K_0(M, f)$, $K_M(f)$ as follows

$$\begin{cases} K_0(f, M) = \sup\{|f(x, t, u, z)| : 0 \le x \le 1, 0 \le t \le T^*, |u| \le M, 0 \le z \le M^2\}, \\ K_M(f) = \sum_{|\alpha| \le N} K_0(D^{\alpha} f, M). \end{cases}$$

For every $T \in (0, T^*]$ and M > 0, we put

$$\begin{aligned} W(M,T) &= \{ v \in L^{\infty}(0,T;H_0^1 \cap H^2) : v_t \in L^{\infty}(0,T;H_0^1) \text{ and } v_{tt} \in L^2(Q_T), \\ &\text{with } \|v\|_{L^{\infty}(0,T;H_0^1 \cap H^2)}, \ \|v_t\|_{L^{\infty}(0,T;H_0^1)}, \ \|v_{tt}\|_{L^2(Q_T)} \leq M \}, \\ W_1(M,T) &= \{ v \in W(M,T) : v_{tt} \in L^{\infty}(0,T;L^2) \}, \end{aligned}$$

$$(2.1)$$

with $Q_T = (0, 1) \times (0, T)$. We shall choose as first term $u_0 \equiv 0$, suppose that

$$u_{m-1} \in W_1(M,T), \tag{2.2}$$

and associate with problem (1.1) – (1.3) the following variational problem: Find $u_m \in W_1(M, T)$ ($m \ge 1$) so that

$$\begin{cases} \langle u_m''(t), v \rangle + \langle u_{mx}(t), v_x \rangle = \langle F_m(t), v \rangle \ \forall v \in H_0^1, \\ u_m(0) = \tilde{u}_0, \ u_m'(0) = \tilde{u}_1, \end{cases}$$
(2.3)

where

$$F_m(x,t) = \sum_{i+j \le N-1} \frac{1}{i!j!} D_3^i D_4^j f[u_{m-1}] (u_m - u_{m-1})^i \left(||u_m(t)||^2 - ||u_{m-1}(t)||^2 \right)^j,$$
(2.4)

here we use the following notations $f[u] = f(x, t, u, ||u(t)||^2)$, $D_i f[u] = D_i f(x, t, u, ||u(t)||^2)$, i = 1, 2, 3, 4. Then, we have the following theorem.

Theorem 2.2. Let (H_1) , (H_2) hold. Then there exist a constant M > 0 depending on \tilde{u}_0 , \tilde{u}_1 and a constant T > 0 depending on \tilde{u}_0 , \tilde{u}_1 , f such that, for $u_0 \equiv 0$, there exists a recurrent sequence $\{u_m\} \subset W_1(M, T)$ defined by (2.3), (2.4). **Proof**. The proof consists of several steps.

Step 1: The Faedo - Galerkin approximation (introduced by Lions [7]).

Let us consider a special basis of H_0^1 , formed by the eigenfunctions w_j of the operator $-\Delta = -\frac{\partial^2 u}{\partial x^2}$:

$$-\Delta w_j = \lambda_j^2 w_j, \ w_j \in H_0^1 \cap H^2, \ w_j(x) = \sqrt{2}\sin(j\pi x), \ \lambda_j = j\pi, \ j = 1, 2, 3...$$
(2.5)

Put

$$u_m^{(k)}(t) = \sum_{j=1}^k c_{mj}^{(k)}(t) w_j, \tag{2.6}$$

where the coefficients $c_{mi}^{(k)}$ satisfy the system of nonlinear differential equations

$$\langle \ddot{u}_{m}^{(k)}(t), w_{j} \rangle + \left\langle u_{mx}^{(k)}(t), w_{jx} \right\rangle = \langle F_{m}^{(k)}(t), w_{j} \rangle, 1 \le j \le k,$$

$$u_{m}^{(k)}(0) = \tilde{u}_{0k}, \ \dot{u}_{m}^{(k)}(0) = \tilde{u}_{1k},$$

$$(2.7)$$

in which

$$\begin{cases} \tilde{u}_{0k} = \sum_{j=1}^{k} \alpha_j^{(k)} w_j \to \tilde{u}_0 \text{ strongly in } H_0^1 \cap H^2, \\ \tilde{u}_{1k} = \sum_{j=1}^{k} \beta_j^{(k)} w_j \to \tilde{u}_1 \text{ strongly in } H_0^1, \end{cases}$$
(2.8)

$$F_m^{(k)}(x,t) = \sum_{i+j \le N-1} D^{ij} f[u_{m-1}] (u_m^{(k)} - u_{m-1})^i \left(\left\| u_m^{(k)}(t) \right\|^2 - \left\| u_{m-1}(t) \right\|^2 \right)^j,$$
(2.9)

with the notations $D^{ij}f = \frac{1}{i!j!}D_3^i D_4^j f = \frac{1}{i!j!}\frac{\partial^{i+j}f}{\partial u^i \partial z^j}$, $i + j \le N$, $D^{00}f = f$.

Let us suppose that u_{m-1} satisfies (2.2). Then we have the following lemma.

Lemma 2.3. Let (H_1) , (H_2) hold. For fixed M > 0 and T > 0, then, the system (2.7) - (2.9) has a unique solution $u_m^{(k)}(t)$ on an interval $[0, T_m^{(k)}] \subset [0, T]$.

Proof of Lemma 2.3. The system of Eqs. (2.7) - (2.9) is rewritten in the form

$$\begin{pmatrix} \ddot{c}_{mj}^{(k)}(t) + \lambda_j^2 c_{mi}^{(k)}(t) = \left\langle F_m^{(k)}(t), w_j \right\rangle, \ 1 \le j \le k, \\ c_{mj}^{(k)}(0) = \alpha_j^{(k)}, \ \dot{c}_{mj}^{(k)}(0) = \beta_j^{(k)}.$$

$$(2.10)$$

and it is equivalent to the system of integral equations

$$c_{mj}^{(k)}(t) = \alpha_j^{(k)} \cos(\lambda_j t) + \frac{1}{\lambda_j} \beta_j^{(k)} \sin(\lambda_j t) + \frac{1}{\lambda_j} \int_0^t \sin(\lambda_j (t-s)) \left\langle F_m^{(k)}(s), w_j \right\rangle ds,$$
(2.11)

for $1 \le j \le k$. Omitting the indexs *m*, *k*, it is written as follows

$$c = L[c], \tag{2.12}$$

1758

where $L[c] = (L_1[c], ..., L_k[c]), c = (c_1, ..., c_k),$

$$\begin{split} L_{j}[c](t) &= q_{j}(t) + N_{j}[c](t), \\ q_{j}(t) &= \alpha_{j} \cos(\lambda_{j}t) + \frac{1}{\lambda_{j}}\beta_{j} \sin(\lambda_{j}t), \\ N_{j}[c](t) &= \frac{1}{\lambda_{j}} \int_{0}^{t} \sin(\lambda_{j}(t-s)) \left\langle F[c](s), w_{j} \right\rangle ds, \ 1 \leq j \leq k, \\ F[c](t) &= \sum_{i+j \leq N-1} D^{ij} f[u_{m-1}](u(t) - u_{m-1})^{i} \left(||u(t)||^{2} - ||u_{m-1}(t)||^{2} \right)^{j}, \\ u(t) &= \sum_{j=1}^{k} c_{j}(t) w_{j}. \end{split}$$

For every $T_m^{(k)} \in (0, T]$ and $\rho > 0$ that will be chosen later, we put $X = C^0([0, T_m^{(k)}]; \mathbb{R}^k)$, $S = \{c \in X : ||c||_X \le \rho\}$, where $||c||_X = \sup_{0 \le t \le T_m^{(k)}} |c(t)|_1$, $|c(t)|_1 = \sum_{j=1}^k |c_j(t)|$, for each $c = (c_1, ..., c_k) \in Y$. Clearly *S* is a closed nonempty

subset in *X* and we have the operator $L : X \to X$. In what follows, we shall choose $\rho > 0$ and $T_m^{(k)} > 0$ such that $L : S \to S$ is contractive.

(*i*) First we note that, for all $c = (c_1, ..., c_k) \in S$,

$$\|u(t)\| \le |c(t)|_1 \le \|c\|_X \le \rho, \ \|u(t)\|_{C^0(\overline{\Omega})} \le \sqrt{2} |c(t)|_1 \le \sqrt{2}\rho,$$
(2.13)

so

$$|N[c](t)|_1 \le \frac{k}{\lambda_1} \int_0^t ||F(s)|| \, ds.$$

On the other hand, by

$$\begin{split} |F[c](x,t)| &\leq K_M(f) \sum_{i+j \leq N-1} \frac{1}{i!j!} |u(t) - u_{m-1}|^i \left| ||u(t)||^2 - ||u_{m-1}(t)||^2 \right|^j \\ &\leq K_M(f) \sum_{i+j \leq N-1} \frac{1}{i!j!} \left(||u(t)||_{C^0(\overline{\Omega})} + M \right)^i (||u(t)|| + ||u_{m-1}(t)||)^{2j} \\ &\leq K_M(f) \sum_{i+j \leq N-1} \frac{1}{i!j!} \left(\sqrt{2}\rho + M \right)^i (\rho + M)^{2j} \\ &\leq K_M(f) \sum_{i+j \leq N-1} \frac{1}{i!j!} \left(\sqrt{2}\rho + M \right)^{i+2j}, \end{split}$$

we have

$$\|N[c]\|_{X} \leq \frac{k}{\lambda_{1}} T_{m}^{(k)} K_{M}(f) \sum_{i+j \leq N-1} \frac{1}{i! j!} \left(\sqrt{2}\rho + M\right)^{i+2j}$$

Hence, we obtain

$$\|L[c]\|_{X} \le |\alpha|_{1} + \frac{1}{\lambda_{1}} \left|\beta\right|_{1} + T_{m}^{(k)} \overline{D}_{\rho}^{(1)}(\rho, M).$$
(2.14)

where

$$\overline{D}_{\rho}^{(1)}(\rho, M) = \frac{k}{\lambda_1} K_M(f) \sum_{i+j \le N-1} \frac{1}{i!j!} \left(\sqrt{2}\rho + M\right)^{i+2j}.$$
(2.15)

(*ii*) We now prove that

$$\|L[c](t) - L[d](t)\|_{X} \le \frac{k}{\lambda_{1}} T_{m}^{(k)} \overline{D}_{\rho}^{(2)}(\rho, M) \|c - d\|_{X}, \forall c, d \in S,$$
(2.16)

1759

1760

where

$$\overline{D}_{\rho}^{(2)}(\rho,M) = K_M(f) \sum_{1 \le i+j \le N-1} \frac{1}{i!j!} \left(\sqrt{2}\rho + M\right)^{i+2j-2} \left(\sqrt{2}iM + 2(i+j)\rho\right).$$
(2.17)

Proof of (2.16) is as follows. Let $c, d \in S$, put $u(t) = \sum_{j=1}^{k} c_j(t)w_j$, $u(t) = \sum_{j=1}^{k} c_j(t)w_j$. For all $t \in [0, T_m^{(k)}]$, we have

$$|L[c](t) - L[d](t)|_{1} = |N[c](t) - N[d](t)|_{1} \le \frac{k}{\lambda_{1}} \int_{0}^{t} ||F[c](s) - F[d](s)|| \, ds.$$
(2.18)

On the other hand

$$F[c](x,t) - F[d](x,t)$$

$$= \sum_{1 \le i+j \le N-1} D^{ij} f[u_{m-1}](u(t) - u_{m-1})^{i} (||u(t)||^{2} - ||u_{m-1}(t)||^{2})^{j}$$

$$- \sum_{1 \le i+j \le N-1} D^{ij} f[u_{m-1}](v(t) - u_{m-1})^{i} (||v(t)||^{2} - ||u_{m-1}(t)||^{2})^{j}$$

$$= \sum_{1 \le i+j \le N-1} D^{ij} f[u_{m-1}] [(u(t) - u_{m-1})^{i} - (v(t) - u_{m-1})^{i}] (||u(t)||^{2} - ||u_{m-1}(t)||^{2})^{j}$$

$$+ \sum_{1 \le i+j \le N-1} D^{ij} f[u_{m-1}](v(t) - u_{m-1})^{i} [(||u(t)||^{2} - ||u_{m-1}(t)||^{2})^{j} - (||v(t)||^{2} - ||u_{m-1}(t)||^{2})^{j}].$$
(2.19)

We also note that $a^i - b^i = (a - b) \sum_{\nu=0}^{i-1} a^{\nu} b^{i-1-\nu}$ for all $a, b \in \mathbb{R}$, i = 1, 2, ..., we deduce from (2.13) that

$$\begin{aligned} \left| (u(t) - u_{m-1})^{i} - (v(t) - u_{m-1})^{i} \right| &= \left| u(t) - v(t) \right| \left| \sum_{\nu=0}^{i-1} (u(t) - u_{m-1})^{\nu} (v(t) - u_{m-1})^{i-1-\nu} \right| \\ &\leq \left| u(t) - v(t) \right| \sum_{\nu=0}^{i-1} \left| u(t) - u_{m-1} \right|^{\nu} \left| v(t) - u_{m-1} \right|^{i-1-\nu} \\ &\leq \sqrt{2} \left| \left| c - d \right| \right|_{X} \sum_{\nu=0}^{i-1} \left(\sqrt{2}\rho + M \right)^{\nu} \left(\sqrt{2}\rho + M \right)^{i-1-\nu} \\ &= \sqrt{2} i \left(\sqrt{2}\rho + M \right)^{i-1} \left\| c - d \right\|_{X}. \end{aligned}$$

$$(2.20)$$

Similarly

$$\begin{aligned} \left| \left(||u(t)||^{2} - ||u_{m-1}(t)||^{2} \right)^{j} - \left(||v(t)||^{2} - ||u_{m-1}(t)||^{2} \right)^{j} \right| \\ &= \left| ||u(t)||^{2} - ||v(t)||^{2} \right| \sum_{\nu=0}^{j-1} \left(||u(t)||^{2} - ||u_{m-1}(t)||^{2} \right)^{\nu} \left(||v(t)||^{2} - ||u_{m-1}(t)||^{2} \right)^{j-1-\nu} \\ &\leq \left| ||u(t)||^{2} - ||v(t)||^{2} \right| \sum_{\nu=0}^{j-1} \left| ||u(t)||^{2} - ||u_{m-1}(t)||^{2} \right|^{\nu} \left| ||v(t)||^{2} - ||u_{m-1}(t)||^{2} \right|^{j-1-\nu} \\ &\leq 2\rho \, ||c - d||_{X} \sum_{\nu=0}^{j-1} \left(\rho + M \right)^{2\nu} \left(\rho + M \right)^{2(j-1-\nu)} \\ &= 2j\rho \left(\rho + M \right)^{2j-2} ||c - d||_{X} \,. \end{aligned}$$

$$(2.21)$$

It implies that

$$\begin{split} |F[c](x,t) - F[d](x,t)| \\ &\leq K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} \left| (u(t) - u_{m-1})^{i} - (v(t) - u_{m-1})^{i} \right| \left| ||u(t)||^{2} - ||u_{m-1}(t)||^{2} \right|^{i} \\ &+ K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} \left| v(t) - u_{m-1} \right|^{i} \left| \left(||u(t)||^{2} - ||u_{m-1}(t)||^{2} \right)^{j} - \left(||v(t)||^{2} - ||u_{m-1}(t)||^{2} \right)^{j} \right| \\ &\leq K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} \sqrt{2}i \left(\sqrt{2}\rho + M \right)^{i-1} ||c - d||_{X} \left(\rho + M \right)^{2j} \\ &+ K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} \left(\sqrt{2}\rho + M \right)^{i} 2j\rho \left(\rho + M \right)^{2j-2} ||c - d||_{X} \\ &\leq K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} \left(\sqrt{2}\rho + M \right)^{i+2j-2} 2j\rho ||c - d||_{X} \\ &+ K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} \left(\sqrt{2}\rho + M \right)^{i+2j-2} 2j\rho ||c - d||_{X} \\ &\leq K_{M}(f) ||c - d||_{X} \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} \left(\sqrt{2}\rho + M \right)^{i+2j-2} \left(\sqrt{2}iM + 2(i+j)\rho \right) \\ &= \overline{D}_{\rho}^{(2)} \left(\rho, M \right) ||c - d||_{X}, \end{split}$$

where $\overline{D}_{\rho}^{(2)}(\rho, M)$ defined as in (2.17). It follows from (2.18), (2.22), that (2.16) holds. Choosing $\rho > |\alpha|_1 + \frac{1}{\lambda_1} |\beta|_1$ and $T_m^{(k)} \in (0, T]$ such that

$$0 < T_m^{(k)} \overline{D}_{\rho}^{(1)}(\rho, M) \le \rho - |\alpha|_1 - \frac{1}{\lambda_1} |\beta|_1 \text{ and } \frac{k}{\lambda_1} T_m^{(k)} \overline{D}_{\rho}^{(2)}(\rho, M) < 1.$$
(2.23)

Therefore, it follows from (2.14), (2.16) and (2.23) that $L : S \to S$ is contractive. We deduce that L has a unique fixed point in S, i.e., the system (2.7) – (2.9) has a unique solution $u_m^{(k)}(t)$ on an interval $[0, T_m^{(k)}]$. The proof of Lemma 2.3 is complete. \Box

The following estimates allow one to take $T_m^{(k)} = T$ independent of *m* and *k*. **Step 2:** *A priori estimates*. Put

$$\begin{cases} S_m^{(k)}(t) = p_m^{(k)}(t) + q_m^{(k)}(t) + \int_0^t \left\| \ddot{u}_m^{(k)}(s) \right\|^2 ds, \\ p_m^{(k)}(t) = \left\| \dot{u}_m^{(k)}(t) \right\|^2 + \left\| u_{mx}^{(k)}(t) \right\|^2, \\ q_m^{(k)}(t) = \left\| \dot{u}_{mx}^{(k)}(t) \right\|^2 + \left\| \Delta u_m^{(k)}(t) \right\|^2, \end{cases}$$
(2.24)

Then, it follows from (2.7) and (2.24) that

$$S_m^{(k)}(t) = S_m^{(k)}(0) + 2\int_0^t \left\langle F_m^{(k)}(s), \dot{u}_m^{(k)}(s) \right\rangle ds + 2\int_0^t \left\langle F_{mx}^{(k)}(s), \dot{u}_{mx}^{(k)}(s) \right\rangle ds + \int_0^t \left\| \ddot{u}_m^{(k)}(s) \right\|^2 ds = S_m^{(k)}(0) + \sum_{j=1}^3 J_j.$$
(2.25)

We shall estimate step by step all the terms J_1 , J_2 , J_3 and $S_m^{(k)}(0)$. *The term* J_1 . Using the inequalities $(a + b)^p \le 2^{p-1}(a^p + b^p)$, for all $a, b \ge 0$, $p \ge 1$ and

$$s^{q} \le 1 + s^{p}, \ \forall s \ge 0, \ \forall q \in (0, p],$$
(2.26)

we get from (2.9) that

$$\begin{aligned} |F_m^{(k)}(x,t)| &\leq K_M(f) \sum_{i+j \leq N-1} \frac{1}{i!j!} |u_m^{(k)} - u_{m-1}|^i |||u_m^{(k)}(t)||^2 - ||u_{m-1}(t)||^2|^i \\ &\leq K_M(f) \sum_{i+j \leq N-1} \frac{1}{i!j!} \left(|u_m^{(k)}| + |u_{m-1}| \right)^i \left(||u_m^{(k)}(t)|| + ||u_{m-1}(t)|| \right)^{2j} \\ &\leq K_M(f) \sum_{i+j \leq N-1} \frac{1}{i!j!} \left(\sqrt{S_m^{(k)}(t)} + M \right)^i \left(\sqrt{S_m^{(k)}(t)} + M \right)^{2j} \\ &\leq K_M(f) \sum_{i+j \leq N-1} \frac{1}{i!j!} \left(\sqrt{S_m^{(k)}(t)} + M \right)^{i+2j} \\ &\leq K_M(f) \sum_{i+j \leq N-1} \frac{1}{i!j!} 2^{i+2j-1} \left[\left(\sqrt{S_m^{(k)}(t)} \right)^{i+2j} + M^{i+2j} \right] \\ &\leq K_M(f) \sum_{i+j \leq N-1} \frac{1}{i!j!} 2^{i+2j-1} \left[1 + \left(S_m^{(k)}(t) \right)^{N-\frac{3}{2}} + 1 + M^{2N-3} \right] \\ &\leq K_M(f) \left(1 + M^{2N-3} \right) \sum_{i+j \leq N-1} \frac{1}{i!j!} 2^{i+2j} \left[1 + \left(S_m^{(k)}(t) \right)^{N-\frac{3}{2}} \right]. \end{aligned}$$

Hence

$$\begin{split} \left\| F_m^{(k)}(t) \right\| &\leq K_M(f) \left(1 + M^{2N-3} \right) \sum_{i+j \leq N-1} \frac{1}{i!j!} 2^{i+2j} \left[1 + \left(S_m^{(k)}(t) \right)^{N-\frac{3}{2}} \right] \\ &\equiv \xi_1(M) \left[1 + \left(S_m^{(k)}(t) \right)^{N-\frac{3}{2}} \right], \end{split}$$
(2.28)

where

$$\xi_1(M) = K_M(f) \left(1 + M^{2N-3} \right) \sum_{i+j \le N-1} \frac{1}{i!j!} 2^{i+2j}.$$
(2.29)

Using the inequality

$$s^q \le 1 + s^{N_0}, \ \forall s \ge 0, \ \forall q \in (0, N_0], \ N_0 = \max\{N, 2N - 3\}, \ N \ge 2,$$
(2.30)

we get from (2.28), (2.30) that

$$J_{1} = 2 \int_{0}^{t} \left\langle F_{m}^{(k)}(s), \dot{u}_{m}^{(k)}(s) \right\rangle ds \leq 2 \int_{0}^{t} \left\| F_{m}^{(k)}(s) \right\| \left\| \dot{u}_{m}^{(k)}(s) \right\| ds$$

$$\leq 2\xi_{1}(M) \int_{0}^{t} \left[1 + \left(S_{m}^{(k)}(s) \right)^{N-\frac{3}{2}} \right] \sqrt{S_{m}^{(k)}(s)} ds$$

$$= 2\xi_{1}(M) \int_{0}^{t} \left[\sqrt{S_{m}^{(k)}(s)} + \left(S_{m}^{(k)}(s) \right)^{N-1} \right] ds$$

$$\leq 4\xi_{1}(M) \int_{0}^{t} \left[1 + \left(S_{m}^{(k)}(s) \right)^{N_{0}} \right] ds$$

$$\leq \bar{\xi}_{1}(M) \int_{0}^{t} \left[1 + \left(S_{m}^{(k)}(s) \right)^{N_{0}} \right] ds,$$

(2.31)

where $\overline{\xi}_1(M) = 4\xi_1(M)$.

The term J_2 . By (2.9), we have

$$F_{mx}^{(k)}(t) = D_{1}f[u_{m-1}] + D_{3}f[u_{m-1}]\nabla u_{m-1} + \sum_{1 \le i+j \le N-1} \left[D_{1}D^{ij}f[u_{m-1}] + D_{3}D^{ij}f[u_{m-1}]\nabla u_{m-1} \right] (u_{m}^{(k)} - u_{m-1})^{i} \times \left(\left\| u_{m}^{(k)}(t) \right\|^{2} - \left\| u_{m-1}(t) \right\|^{2} \right)^{j} + \sum_{1 \le i+j \le N-1} D^{ij}f[u_{m-1}]i(u_{m}^{(k)} - u_{m-1})^{i-1}(u_{mx}^{(k)} - \nabla u_{m-1}) \times \left(\left\| u_{m}^{(k)}(t) \right\|^{2} - \left\| u_{m-1}(t) \right\|^{2} \right)^{j}.$$

$$(2.32)$$

Hence

$$\begin{split} \|F_{mx}^{(k)}(t)\| &\leq K_{M}(f)(1+M) + K_{M}(f)(1+M) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} \left(M + \sqrt{S_{m}^{(k)}(t)}\right)^{i+2j} \\ &+ K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} i \left(M + \sqrt{S_{m}^{(k)}(t)}\right)^{i-1} \left(M + \sqrt{S_{m}^{(k)}(t)}\right) \left(M + \sqrt{S_{m}^{(k)}(t)}\right)^{2j} \\ &\leq K_{M}(f)(1+M) + K_{M}(f)(1+M) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} \left(M + \sqrt{S_{m}^{(k)}(t)}\right)^{i+2j} \\ &+ K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} i \left(M + \sqrt{S_{m}^{(k)}(t)}\right)^{i+2j} \\ &\leq K_{M}(f)(1+M) + K_{M}(f)(1+M) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} 2^{i+2j-1} \left[M^{i+2j} + \left(\sqrt{S_{m}^{(k)}(t)}\right)^{i+2j}\right] \\ &+ (N-1)K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} 2^{i+2j-1} \left[M^{i+2j} + \left(\sqrt{S_{m}^{(k)}(t)}\right)^{i+2j}\right] \\ &\leq K_{M}(f)(1+M) \sum_{i+j \leq N-1} \frac{1}{i!j!} 2^{i+2j-1} \left[M^{i+2j} + \left(\sqrt{S_{m}^{(k)}(t)}\right)^{i+2j}\right] \\ &+ (N-1)K_{M}(f)(1+M) \sum_{i+j \leq N-1} \frac{1}{i!j!} 2^{i+2j-1} \left[M^{i+2j} + \left(\sqrt{S_{m}^{(k)}(t)}\right)^{i+2j}\right] \\ &= N(1+M)K_{M}(f) \sum_{i+j \leq N-1} \frac{1}{i!j!} 2^{i+2j-1} \left[M^{i+2j} + \left(\sqrt{S_{m}^{(k)}(t)}\right)^{i+2j}\right] \\ &\leq N(1+M)K_{M}(f) (1+M^{2N-2}) \sum_{i+j \leq N-1} \frac{1}{i!j!} 2^{i+2j-1} \left[1 + (S_{m}^{(k)}(t))^{N-1}\right] \\ &\leq N(1+M)K_{M}(f) \left(1 + M^{2N-2}\right) \sum_{i+j \leq N-1} \frac{1}{i!j!} 2^{i+2j} \left[1 + (S_{m}^{(k)}(t))^{N-1}\right] \\ &= \xi_{2}(M) \left[1 + (S_{m}^{(k)}(t))^{N-1}\right], \end{split}$$

where

$$\xi_2(M) = N(1+M)K_M(f)\left(1+M^{2N-2}\right)\sum_{i+j\le N-1}\frac{1}{i!j!}2^{i+2j}.$$
(2.34)

Using the inequality (2.30) we get from (2.33) that

$$J_{2} = 2 \int_{0}^{t} \left\langle F_{mx}^{(k)}(s), \dot{u}_{mx}^{(k)}(s) \right\rangle ds \leq 2 \int_{0}^{t} \left\| F_{mx}^{(k)}(s) \right\| \left\| \dot{u}_{mx}^{(k)}(s) \right\| ds$$

$$\leq 2\xi_{2}(M) \int_{0}^{t} \left[1 + \left(S_{m}^{(k)}(s) \right)^{N-1} \right] \sqrt{S_{m}^{(k)}(s)} ds$$

$$= 2\xi_{2}(M) \int_{0}^{t} \left[\sqrt{S_{m}^{(k)}(s)} + \left(S_{m}^{(k)}(s) \right)^{N-\frac{1}{2}} \right] ds$$

$$\leq 4\xi_{2}(M) \int_{0}^{t} \left[1 + \left(S_{m}^{(k)}(s) \right)^{N_{0}} \right] ds$$

$$\equiv \bar{\xi}_{2}(M) \int_{0}^{t} \left[1 + \left(S_{m}^{(k)}(s) \right)^{N_{0}} \right] ds,$$

(2.35)

where $\bar{\xi}_2(M) = 4\xi_2(M)$.

The term J_3 . Equation (2.7)₁ can be rewritten as follows

$$\langle \ddot{u}_m^{(k)}(t), w_j \rangle - \left\langle \Delta u_m^{(k)}(t), w_j \right\rangle = \langle F_m^{(k)}(t), w_j \rangle, 1 \le j \le k.$$
(2.36)

Hence, it follows after replacing w_i with $\ddot{u}_m^{(k)}(t)$ and integrating that

$$J_{3} = \int_{0}^{t} \left\| \ddot{u}_{m}^{(k)}(s) \right\|^{2} ds \leq 2 \int_{0}^{t} \|\Delta u_{m}^{(k)}(s)\|^{2} ds + 2 \int_{0}^{t} \|F_{m}^{(k)}(s)\|^{2} ds$$

$$\leq 2 \int_{0}^{t} S_{m}^{(k)}(s) ds + 2\xi_{1}^{2}(M) \int_{0}^{t} \left[1 + \left(S_{m}^{(k)}(s) \right)^{N-\frac{3}{2}} \right]^{2} ds$$

$$\leq 2 \int_{0}^{t} S_{m}^{(k)}(s) ds + 4\xi_{1}^{2}(M) \int_{0}^{t} \left[1 + \left(S_{m}^{(k)}(s) \right)^{2N-3} \right] ds$$

$$\leq 2 \int_{0}^{t} S_{m}^{(k)}(s) ds + 4\xi_{1}^{2}(M) \int_{0}^{t} \left[1 + \left(S_{m}^{(k)}(s) \right)^{2N-3} \right] ds$$

$$\leq 2 (1 + 2\xi_{1}^{2}(M)) \int_{0}^{t} \left[1 + \left(S_{m}^{(k)}(s) \right)^{N_{0}} \right] ds$$

$$\equiv \bar{\xi}_{3}(M) \int_{0}^{t} \left[1 + \left(S_{m}^{(k)}(s) \right)^{N_{0}} \right] ds,$$
(2.37)

with $\bar{\xi}_3(M) = 2(1 + 2\xi_1^2(M)).$

Now, we need an estimate on the term $S_m^{(k)}(0)$. We have

$$S_m^{(k)}(0) = \|\tilde{u}_{1k}\|^2 + \|\tilde{u}_{1kx}\|^2 + \|\tilde{u}_{0kx}\|^2 + \|\Delta\tilde{u}_{k0}\|^2.$$
(2.38)

By means of the convergences in (2.8), we can deduce the existence of a constant M > 0 independent of k and m such that

$$S_m^{(k)}(0) \le M^2/2.$$
 (2.39)

Finally, it follows from (2.25), (2.31), (2.35), (2.37), (2.39) that

$$S_m^{(k)}(t) \le \frac{M^2}{2} + T\bar{\xi}(M) + \bar{\xi}(M) \int_0^t \left(S_m^{(k)}(s)\right)^{N_0} ds, \text{ for } 0 \le t \le T_m^{(k)} \le T,$$
(2.40)

where

$$\bar{\xi}(M) = \bar{\xi}_1(M) + \bar{\xi}_2(M) + \bar{\xi}_3(M).$$

Then, by solving a nonlinear Volterra integral inequality (2.40) (based on the methods in [6]), the following lemma is proved.

1764

Lemma 2.4. There exists a constant T > 0 independent of k and m such that

$$S_{k}^{(k)}(t) \le M^2 \ \forall t \in [0, T], \text{ for all } k \text{ and } m.$$
 (2.41)

By Lemma 2.4, we can take constant $T_m^{(k)} = T$ for all *k* and *m*. Therefore, we have

$$u_m^{(k)} \in W(M,T), \text{ for all } k \text{ and } m.$$
(2.42)

Step 3: *Convergence*. From (2.42), we can extract from $\{u_m^{(k)}\}$ a subsequence $\{u_m^{(k_i)}\}$ such that

$$\begin{cases} u_{m}^{(k_{i})} \to u_{m} & \text{in } L^{\infty}(0,T;H_{0}^{1} \cap H^{2}) & \text{weak}^{*}, \\ \dot{u}_{m}^{(k_{i})} \to u_{m}^{\prime} & \text{in } L^{\infty}(0,T;H_{0}^{1}) & \text{weak}^{*}, \\ \ddot{u}_{m}^{(k_{i})} \to u_{m}^{\prime\prime} & \text{in } L^{2}(Q_{T}) & \text{weak}, \end{cases}$$

$$u_{m} \in W(M,T).$$
(2.44)

We can easily check from (2.7), (2.8), (2.43), (2.44) that u_m satisfies (2.3), (2.4) in $L^2(0, T)$, weak.

On the other hand, it follows from $(2.3)_1$ and $u_m \in W(M, T)$ that $u''_m = \Delta u_m + F_m \in L^{\infty}(0, T; L^2)$, hence $u_m \in W_1(M, T)$ and the proof of Theorem 2.2 is complete. \Box

Next, we put

(1)

$$W_1(T) = \{ v \in L^{\infty}(0, T; H_0^1) : v' \in L^{\infty}(0, T; L^2) \},\$$

then $W_1(T)$ is a Banach space with respect to the norm (see [7]):

 $||v||_{W_1(T)} = ||v||_{L^{\infty}(0,T;H^1_0)} + ||v'||_{L^{\infty}(0,T;L^2)}.$

Then, we have the following theorem.

Theorem 2.5. Let (H_1) , (H_2) hold. Then, there exist constants M > 0 and T > 0 such that

(i) Prob. (1.1) – (1.3) has a unique weak solution $u \in W_1(M, T)$.

(ii) The recurrent sequence $\{u_m\}$ defined by (2.3), (2.4) converges at a rate of order N to the solution u strongly in the space $W_1(T)$ in the sense

$$\|u_m - u\|_{W_1(T)} \le C \|u_{m-1} - u\|_{W_1(T)}^N$$
(2.45)

for all $m \ge 1$, where *C* is a suitable constant.

Furthermore, we have the estimation

.

$$\|u_m - u\|_{W_1(T)} \le C_T \beta^{N^m},\tag{2.46}$$

for all $m \ge 1$, where C_T and $0 < \beta < 1$ are positive constants depending only on *T*.

Proof.

Put $v_m = u_{m+1} - u_m$, it is clear that v_m satisfies the variational problem

$$\begin{cases} \langle v_m''(t), v \rangle + \langle v_{mx}(t), v_x \rangle = \langle F_{m+1}(t) - F_m(t), v \rangle \quad \forall v \in H_0^1, \\ v_m(0) = v_m'(0) = 0, \end{cases}$$

$$(2.47)$$

where

$$F_m(x,t) = \sum_{i+j \le N-1} D^{ij} f[u_{m-1}] (u_m - u_{m-1})^i \left(||u_m(t)||^2 - ||u_{m-1}(t)||^2 \right)^j.$$
(2.48)

Taking $v = v'_m$ in (2.47), after integrating in *t* we get

$$\sigma_m(t) = 2 \int_0^t \langle F_{m+1}(s) - F_m(s), v'_m(s) \rangle \, ds, \tag{2.49}$$

with

$$\sigma_m(t) = \|v'_m(t)\|^2 + \|v_{mx}(t)\|^2.$$
(2.50)

On the other hand, by using Taylor's expansion for the function $f(x, t, u_m, ||u_m(t)||^2)$ around the point $(x, t, u_{m-1}, ||u_{m-1}(t)||^2)$ up to order *N*, we obtain

$$f[u_{m}] - f[u_{m-1}] = f\left(x, t, u_{m}, ||u_{m}(t)||^{2}\right) - f\left(x, t, u_{m-1}, ||u_{m-1}(t)||^{2}\right)$$

$$= \sum_{1 \le i+j \le N-1} D^{ij} f[u_{m-1}] v_{m-1}^{i} \left(||u_{m}(t)||^{2} - ||u_{m-1}(t)||^{2}\right)^{j}$$

$$+ \sum_{i+j=N} D^{ij} f[\eta_{m}] v_{m-1}^{i} \left(||u_{m}(t)||^{2} - ||u_{m-1}(t)||^{2}\right)^{j},$$

(2.51)

where

$$[\eta_m] = \left(x, t, u_{m-1} + \theta v_{m-1}, \ \theta \|u_m(t)\|^2 + (1-\theta) \|u_{m-1}(t)\|^2\right), \ 0 < \theta < 1.$$

Hence, it follows from (2.4), (2.51) that

$$F_{m+1}(t) - F_m(t) = \sum_{1 \le i+j \le N-1} D^{ij} f[u_m] v_m^i \left(||u_{m+1}(t)||^2 - ||u_m(t)||^2 \right)^j + \sum_{i+j=N} D^{ij} f[\eta_m] v_{m-1}^i \left(||u_m(t)||^2 - ||u_{m-1}(t)||^2 \right)^j.$$
(2.52)

Then we deduce, from (2.52), that

$$\begin{split} \|F_{m+1}(t) - F_{m}(t)\| \\ &\leq K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} \|v_{mx}(t)\|^{i} \left(\|u_{m+1}(t)\| + \|u_{m}(t)\|\right)^{j} \|\|u_{m+1}(t)\| - \|u_{m}(t)\|\|^{j} \\ &+ K_{M}(f) \sum_{i+j = N} \frac{1}{i!j!} \|v_{m-1}\|^{i}_{W_{1}(T)} \left(\|u_{m}(t)\| + \|u_{m-1}(t)\|\right)^{j} \|\|u_{m}(t)\| - \|u_{m-1}(t)\|\|^{j} \\ &\leq K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} \|v_{mx}(t)\|^{i+j} \left(2M\right)^{j} \\ &+ K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} \|v_{m-1}\|^{i}_{W_{1}(T)} \left(2M\right)^{j} \|v_{m-1}(t)\|^{j} \\ &\leq K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} \|v_{mx}(t)\|^{i+j-1} \left(2M\right)^{j} \|v_{mx}(t)\| + K_{M}(f) \sum_{i+j = N} \frac{1}{i!j!} \left(2M\right)^{j} \|v_{m-1}\|^{i+j}_{W_{1}(T)} \\ &\leq K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} 2^{j} M^{i+2j-1} \|v_{mx}(t)\| + K_{M}(f) \sum_{i+j = N} \frac{1}{i!j!} \left(2M\right)^{j} \|v_{m-1}\|^{N}_{W_{1}(T)} \\ &\leq K_{M}(f) \sum_{1 \leq i+j \leq N-1} \frac{1}{i!j!} 2^{j} M^{i+2j-1} \|v_{mx}(t)\| + K_{M}(f) \sum_{i+j = N} \frac{1}{i!j!} \left(2M\right)^{j} \|v_{m-1}\|^{N}_{W_{1}(T)} \\ &\equiv \gamma_{T} \|v_{mx}(t)\| + \bar{\gamma}_{T} \|v_{m-1}\|^{N}_{W_{1}(T)}, \end{split}$$

where

$$\gamma_T = K_M(f) \sum_{1 \le i+j \le N-1} \frac{1}{i!j!} 2^j M^{i+2j-1}, \quad \bar{\gamma}_T = K_M(f) \sum_{i+j=N} \frac{1}{i!j!} (2M)^j.$$
(2.54)

Then we deduce, from (2.49), (2.50) and (2.53), that

$$\sigma_{m}(t) = 2 \int_{0}^{t} \langle F_{m+1}(s) - F_{m}(s), v'_{m}(s) \rangle ds \leq 2 \int_{0}^{t} ||F_{m+1}(s) - F_{m}(s)|| \left\| v'_{m}(s) \right\| ds$$

$$\leq 2 \int_{0}^{t} \left(\gamma_{T} ||v_{mx}(s)|| + \bar{\gamma}_{T} ||v_{m-1}||_{W_{1}(T)}^{N} \right) \left\| v'_{m}(s) \right\| ds$$

$$\leq 2 \gamma_{T} \int_{0}^{t} ||v_{mx}(s)|| \left\| v'_{m}(s) \right\| ds + 2 \bar{\gamma}_{T} \int_{0}^{t} ||v_{m-1}||_{W_{1}(T)}^{N} \left\| v'_{m}(s) \right\| ds$$

$$\leq T \bar{\gamma}_{T} ||v_{m-1}||_{W_{1}(T)}^{2N} + (\gamma_{T} + \bar{\gamma}_{T}) \int_{0}^{t} \sigma_{m}(s) ds.$$
(2.55)

1767

By using Gronwall's lemma, we obtain from (2.55) that

$$\|v_m\|_{W_1(T)} \le 2\sqrt{T\bar{\gamma}_T e^{T(\gamma_T + \bar{\gamma}_T)}} \|v_{m-1}\|_{W_1(T)}^N \equiv \mu_T \|v_{m-1}\|_{W_1(T)}^N,$$
(2.56)

where μ_T is the constant given by

$$\mu_T = 2\sqrt{T\bar{\gamma}_T e^{T(\gamma_T + \bar{\gamma}_T)}}.$$
(2.57)

Hence, we obtain from (2.56) that

$$\|u_m - u_{m+p}\|_{W_1(T)} \le (1 - \beta)^{-1} (\mu_T)^{\frac{-1}{N-1}} \beta^{N^m},$$
(2.58)

for all *m* and *p*.

We take T > 0 small enough, such that $\beta = (\mu_T)^{\frac{1}{N-1}} M < 1$. It follows that $\{u_m\}$ is a Cauchy sequence in $W_1(T)$. Then there exists $u \in W_1(T)$ such that $u_m \to u$ strongly in $W_1(T)$.

It is similar to argument used in the proof of Theorem 2.2, we obtain that $u \in W_1(M, T)$ is a unique weak solution of Prob. (1.1) – (1.3). Passing to the limit as $p \to +\infty$ for *m* fixed, we get the estimate (2.46) from (2.58). This completes the proof of Theorem 2.5. \Box

Remark. In order to construct a *N*-order iterative scheme, we need the condition $f \in C^N([0, 1] \times \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R}_+)$. Then, we get a convergent sequence at a rate of order *N* to a local unique weak solution of problem and the existence follows. This condition of *f* can be relaxed if we only consider the existence of solution, it is not necessary that $f \in C^1([0, 1] \times \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R}_+)$, see [10].

Acknowledgements. The authors wish to express their sincere thanks to the referees for the suggestions, remarks and valuable comments.

References

- [1] R. A. Adams, Sobolev Spaces, Academic Press, NewYork, 1975.
- [2] G.F. Carrier, On the nonlinear vibrations problem of elastic string, Quart. J. Appl. Math. 3 (1945) 157 165.
- [3] F. Ficken, B. Fleishman, Initial value problems and time periodic solutions for a nonlinear wave equation, Comm. Pure Appl. Math. 10 (1957) 331 - 356.
- [4] M. Hosoya, Y. Yamada, On some nonlinear wave equation I: Local existence and regularity of solutions, J. Fac. Sci. Univ. Tokyo. Sect. IA, Math. 38 (1991) 225 - 238.
- [5] G. R. Kirchhoff, Vorlesungen über Mathematiche Physik: Mechanik, Teuber, Leipzig, 1876, Section 29.7.
- [6] Lakshmikantham V, Leela S, Differential and Integral Inequalities, Vol.1. Academic Press, NewYork, 1969.
- [7] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non-linéaires, Dunod-Gauthier -Villars, Paris 1969.
- [8] N. T. Long, T. N. Diem, On the nonlinear wave equation $u_{tt} u_{xx} = f(x, t, u, u_x, u_t)$ associated with the mixed homogeneous conditions, Nonlinear Anal. TMA. 29 (11) (1997) 1217 1230.
- [9] N.T. Long, A. P. N. Dinh, T. N. Diem, Linear recursive schemes and asymptotic expansion associated with the Kirchhoff-Carrier operator, J. Math. Anal. Appl. 267 (1) (2002) 116 - 134.
- [10] N. T. Long, On the nonlinear wave equation $u_{tt} B(t, ||u||^2, ||u_x||^2)u_{xx} = f(x, t, u, u_x, u_t, ||u||^2, ||u_x||^2)$ associated with the mixed homogeneous conditions, J. Math. Anal. Appl. 306 (1) (2005) 243 268.
- [11] L. A. Medeiros, On some nonlinear perturbation of Kirchhoff-Carrier operator, Comp. Appl. Math. 13 (1994) 225 233.
- [12] L. T. P. Ngoc, L. X. Truong, N. T. Long, An N order iterative scheme for a nonlinear Kirchhoff-Carrier wave equation associated with mixed homogeneous conditions Acta Mathematica Vietnamica, 35 (2) (2010) 207 - 227.
- [13] E. L. Ortiz, A. P. N. Dinh, Linear recursive schemes associated with some nonlinear partial differential equations in one dimension and the Tau method, SIAM J. Math. Anal. 18 (1987) 452 - 464.
- [14] P. H. Rabinowitz, Periodic solutions of nonlinear hyperbolic differential equations, Comm. Pure. Appl. Math. 20 (1967) 145 205.
- [15] L. X. Truong, L. T. P. Ngoc, N. T. Long, High-order iterative schemes for a nonlinear Kirchhoff Carrier wave equation associated with the mixed homogeneous conditions, Nonlinear Anal. TMA. 71 (1 - 2) (2009) 467 - 484.