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Abstract. In this paper, we consider an initial - boundary value problem for a nonlinear wave equation
containing a nonlocal term. Using a high order iterative scheme, the existence of a unique weak solution is
proved. Furthermore, the sequence established here converges to a unique weak solution at a rate of order
N (N ≥ 2).

1. Introduction

In this paper, we consider the following initial - boundary value problem for a nonlinear wave equation

utt − uxx = f
(
x, t,u, ‖u(t)‖2

)
, x ∈ Ω = (0, 1), 0 < t < T, (1.1)

u(0, t) = u(1, t) = 0, (1.2)

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x), (1.3)

where µ, f , ũ0, ũ1 are given functions and the nonlinear term f
(
x, t,u, ‖u(t)‖2

)
contains a nonlocal term

||u(t)||2 =

∫ 1

0
u2(x, t)dx.

Eq. (1.1) constitutes a case, relatively simpler, of a more general equation, namely

utt −
∂
∂x

(
µ(x, t, ‖u‖2 , ‖ux‖

2)ux

)
= f (x, t,u,ux,ut, ‖u‖2 , ‖ux‖

2), x ∈ Ω = (0, 1), 0 < t < T, (1.4)

it has its origin in the nonlinear vibration of an elastic string (Kirchhoff [5]), for which the associated
equation is

ρhutt =

(
P0 +

Eh
2L

∫ L

0

∣∣∣∣∣∂u
∂y

(y, t)
∣∣∣∣∣2 dy

)
uxx,
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here u is the lateral deflection, ρ is the mass density, h is the cross section, L is the length, E is Young’s
modulus and P0 is the initial axial tension. In [2], Carrier also established a model of the type

utt =

(
P0 + P1

∫ L

0
u2(y, t)dy

)
uxx,

where P0 and P1 are constants.
In [11], Medeiros has studied Eq. (1.4) with f = f (u) = −bu2, where b is a given positive constant,

and Ω is a bounded open set of R3. In [4], Hosoya and Yamada also have considered Eq. (1.4) with
f = f (u) = −δ|u|αu, where δ > 0, α ≥ 0 are given constants.

In [3], Ficken and Fleishman established the unique global existence and stability of solutions for the
equation

uxx − utt − 2αut − βu = εu3 + γ, ε > 0.

Rabinowitz [14] proved the existence of periodic solutions for

uxx − utt − 2αut = f (x, t,u,ux,ut),

where ε is a small parameter and f is periodic in time.
In [8], Long and Diem have studied the linear recursive scheme associated with the nonlinear wave

equation

utt − uxx = f (x, t,u,ux,ut), 0 < x < 1, 0 < t < T,

associated with (1.3) and the following mixed conditions

ux(0, t) − h0u(0, t) = ux(1, t) + h1u(1, t) = 0,

where h0 > 0, h1 ≥ 0 are given constants. Afterwards, this result has been extended in [9], [10] to the
nonlinear wave equation with the Kirchhoff - Carrier operator. In [10], the following equation

utt − µ(t, ‖u‖2 , ‖ux‖
2)uxx = f (x, t,u,ux,ut, ‖u‖2 , ‖ux‖

2), 0 < x < 1, 0 < t < T,

associated with the mixed homogeneous conditions was studied. By the linear recursive scheme and by a
standard argument, existence of a local solution was proved. On the other hand, an asymptotic expansion
was established.

In [12], [15], a high order iterative scheme was established in order to get a convergent sequence at a
rate of order N (N ≥ 1) to a local unique weak solution of a nonlinear Kirchhoff – Carrier wave equation as
follows

utt − µ(t, ‖u(t)‖2 , ‖ux(t)‖2)
∂
∂x

(A(x)ux) = f (x, t,u), 0 < x < 1, 0 < t < T,

associated with the mixed homogeneous conditions.
Based on the above problems, we consider Prob. (1.1) – (1.3). With the assumption f ∈ CN([0, 1] ×

R+ ×R ×R+) and some other conditions, we shall establish a high order iterative scheme in order to get a
convergent sequence at a rate of order N to a local unique weak solution of Prob. (1.1) – (1.3). By the fact
that, we associate with Eq. (1.1) a recurrent sequence {um} defined by

∂2um
∂t2 −

∂2um
∂x2 =

∑
i+ j≤N−1

1
i! j! D

i
3D j

4 f
(
x, t,um−1, ‖um−1‖

2
)

(um − um−1)i
(
‖um‖

2
− ‖um−1‖

2
) j
,

0 < x < 1, 0 < t < T, where um satisfying (1.2), (1.3) for all m ≥ 1 and the first term u0 = 0. This result is a
relative generalization of [8] - [10], [12], [13], [15].
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2. The High Order Iterative Method

First, we denote the usual function spaces used in this paper by the notations Lp = Lp(0, 1), Hm =
Hm (0, 1) . Let 〈·, ·〉 be either the scalar product in L2 or the dual pairing of a continuous linear functional and
an element of a function space. The notation ‖·‖ stands for the norm in L2 and we denote by ‖·‖X the norm
in the Banach space X. We call X′ the dual space of X. We denote by Lp(0,T; X), 1 ≤ p ≤ ∞ for the Banach
space of real functions u : (0,T)→ X measurable, such that

‖u‖Lp(0,T;X) =
(∫ T

0 ‖u(t)‖pX dt
)1/p

< +∞ for 1 ≤ p < ∞,

and

‖u‖L∞(0,T;X) = ess sup
0<t<T

‖u(t)‖X for p = ∞.

Let u(t), u′(t) = ut(t) = u̇(t), u′′(t) = utt(t) = ü(t), ux(t) = 5u(t), uxx(t) = ∆u(t), denote u(x, t), ∂u
∂t (x, t),

∂2u
∂t2 (x, t), ∂u

∂x (x, t), ∂
2u
∂x2 (x, t), respectively. With f ∈ Ck([0, 1] × R+ × R × R+), f = f (x, t,u, z), we put D1 f =

∂ f
∂x ,

D2 f =
∂ f
∂t ,D3 f =

∂ f
∂u ,D4 f =

∂ f
∂z and Dα f = Dα1

1 ...D
α4
4 f , α = (α1, ..., α4) ∈ Z4

+, |α| = α1 + ...+α4 = k,D(0,0,0,0) f = f .
We then have the following lemma, the proof of which can be found in [1].
Lemma 2.1. The imbedding H1 ↪→ C0([0, 1]) is compact and

(i) ‖v‖C0([0,1]) ≤
√

2 ‖v‖H1 , for all v ∈ H1,

(ii) ‖v‖C0([0,1]) ≤ ‖vx‖ , for all v ∈ H1
0.

Now, we make the following assumptions:

(H1) ũ0 ∈ H2
∩H1

0 and ũ1 ∈ H1
0,

(H2) f ∈ CN([0, 1] ×R+ ×R ×R+) with f (0, t, 0, z) = f (1, t, 0, z) = 0, ∀t, z ≥ 0.

Fix T∗ > 0. For each M > 0 given, we define two constants K0(M, f ), KM( f ) as follows
K0( f ,M) = sup{

∣∣∣ f (x, t,u, z)
∣∣∣ : 0 ≤ x ≤ 1, 0 ≤ t ≤ T∗, |u| ≤M, 0 ≤ z ≤M2

},

KM( f ) =
∑
|α|≤N K0(Dα f ,M).

For every T ∈ (0,T∗] and M > 0, we put
W(M,T) = {v ∈ L∞(0,T; H1

0 ∩H2) : vt ∈ L∞(0,T; H1
0) and vtt ∈ L2(QT),

with ‖v‖L∞(0,T;H1
0∩H2) , ‖vt‖L∞(0,T;H1

0) , ‖vtt‖L2(QT) ≤M},

W1(M,T) = {v ∈W(M,T) : vtt ∈ L∞(0,T; L2)},

(2.1)

with QT = (0, 1) × (0,T). We shall choose as first term u0 ≡ 0, suppose that

um−1 ∈W1(M,T), (2.2)

and associate with problem (1.1) – (1.3) the following variational problem:
Find um ∈W1(M,T) (m ≥ 1) so that

〈
u′′m(t), v

〉
+ 〈umx(t), vx〉 = 〈Fm(t), v〉 ∀v ∈ H1

0,

um(0) = ũ0, u′m(0) = ũ1,
(2.3)
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where

Fm(x, t) =
∑

i+ j≤N−1

1
i! j! D

i
3D j

4 f [um−1](um − um−1)i
(
‖um(t)‖2 − ‖um−1(t)‖2

) j
, (2.4)

here we use the following notations f [u] = f
(
x, t,u, ‖u(t)‖2

)
, Di f [u] = Di f

(
x, t,u, ‖u(t)‖2

)
, i = 1, 2, 3, 4.

Then, we have the following theorem.

Theorem 2.2. Let (H1), (H2) hold. Then there exist a constant M > 0 depending on ũ0, ũ1 and a constant T > 0
depending on ũ0, ũ1, f such that, for u0 ≡ 0, there exists a recurrent sequence {um} ⊂W1(M,T) defined by (2.3), (2.4).

Proof. The proof consists of several steps.
Step 1: The Faedo - Galerkin approximation (introduced by Lions [7]).
Let us consider a special basis of H1

0, formed by the eigenfunctions w j of the operator −∆ = − ∂
2u
∂x2 :

−∆w j = λ2
j w j, w j ∈ H1

0 ∩H2, w j(x) =
√

2 sin( jπx), λ j = jπ, j = 1, 2, 3... (2.5)

Put

u(k)
m (t) =

∑k
j=1 c(k)

mj(t)w j, (2.6)

where the coefficients c(k)
mj satisfy the system of nonlinear differential equations 〈ü

(k)
m (t),w j〉 +

〈
u(k)

mx(t),w jx

〉
= 〈F(k)

m (t),w j〉, 1 ≤ j ≤ k,

u(k)
m (0) = ũ0k, u̇(k)

m (0) = ũ1k,
(2.7)

in which
ũ0k =

∑k
j=1 α

(k)
j w j → ũ0 strongly in H1

0 ∩H2,

ũ1k =
∑k

j=1 β
(k)
j w j → ũ1 strongly in H1

0,
(2.8)

F(k)
m (x, t) =

∑
i+ j≤N−1

Di j f [um−1](u(k)
m − um−1)i

(∥∥∥u(k)
m (t)

∥∥∥2
− ‖um−1(t)‖2

) j
, (2.9)

with the notations Di j f = 1
i! j! D

i
3D j

4 f = 1
i! j!

∂i+ j f
∂ui∂z j , i + j ≤ N, D00 f = f .

Let us suppose that um−1 satisfies (2.2). Then we have the following lemma.

Lemma 2.3. Let (H1), (H2) hold. For fixed M > 0 and T > 0, then, the system (2.7) - (2.9) has a unique solution
u(k)

m (t) on an interval [0,T(k)
m ] ⊂ [0,T].

Proof of Lemma 2.3. The system of Eqs. (2.7) - (2.9) is rewritten in the form
c̈(k)

mj(t) + λ2
j c

(k)
mi(t) =

〈
F(k)

m (t),w j

〉
, 1 ≤ j ≤ k,

c(k)
mj(0) = α(k)

j , ċ(k)
mj(0) = β(k)

j .
(2.10)

and it is equivalent to the system of integral equations

c(k)
mj(t) = α(k)

j cos(λ jt) + 1
λ j
β(k)

j sin(λ jt) + 1
λ j

∫ t

0 sin(λ j(t − s))
〈
F(k)

m (s),w j

〉
ds, (2.11)

for 1 ≤ j ≤ k. Omitting the indexs m, k, it is written as follows

c = L[c], (2.12)
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where L[c] = (L1[c], ...,Lk[c]) , c = (c1, ..., ck) ,

L j[c](t) = q j(t) + N j[c](t),

q j(t) = α j cos(λ jt) + 1
λ j
β j sin(λ jt),

N j[c](t) = 1
λ j

∫ t

0 sin(λ j(t − s))
〈
F[c](s),w j

〉
ds, 1 ≤ j ≤ k,

F[c](t) =
∑

i+ j≤N−1
Di j f [um−1](u(t) − um−1)i

(
‖u(t)‖2 − ‖um−1(t)‖2

) j
,

u(t) =
∑k

j=1 c j(t)w j.

For every T(k)
m ∈ (0,T] and ρ > 0 that will be chosen later, we put X = C0

(
[0,T(k)

m ];Rk
)
, S = {c ∈ X : ‖c‖X ≤

ρ}, where ‖c‖X = sup
0≤ t ≤T(k)

m

|c(t)|1 , |c(t)|1 =
∑k

j=1

∣∣∣c j(t)
∣∣∣ , for each c = (c1, ..., ck) ∈ Y. Clearly S is a closed nonempty

subset in X and we have the operator L : X → X. In what follows, we shall choose ρ > 0 and T(k)
m > 0 such

that L : S→ S is contractive.
(i) First we note that, for all c = (c1, ..., ck) ∈ S,

‖u(t)‖ ≤ |c(t)|1 ≤ ‖c‖X ≤ ρ, ‖u(t)‖C0(Ω) ≤
√

2 |c(t)|1 ≤
√

2ρ, (2.13)

so

|N[c](t)|1 ≤
k
λ1

∫ t

0
‖F(s)‖ ds.

On the other hand, by

|F[c](x, t)| ≤ KM( f )
∑

i+ j≤N−1

1
i! j! |u(t) − um−1|

i
∣∣∣‖u(t)‖2 − ‖um−1(t)‖2

∣∣∣ j
≤ KM( f )

∑
i+ j≤N−1

1
i! j!

(
‖u(t)‖C0(Ω) + M

)i
(‖u(t)‖ + ‖um−1(t)‖)2 j

≤ KM( f )
∑

i+ j≤N−1

1
i! j!

(√
2ρ + M

)i (
ρ + M

)2 j

≤ KM( f )
∑

i+ j≤N−1

1
i! j!

(√
2ρ + M

)i+2 j
,

we have

‖N[c]‖X ≤ k
λ1

T(k)
m KM( f )

∑
i+ j≤N−1

1
i! j!

(√
2ρ + M

)i+2 j
.

Hence, we obtain

‖L[c]‖X ≤ |α|1 +
1
λ1

∣∣∣β∣∣∣
1

+ T(k)
m D

(1)
ρ

(
ρ,M

)
. (2.14)

where

D
(1)
ρ

(
ρ,M

)
= k

λ1
KM( f )

∑
i+ j≤N−1

1
i! j!

(√
2ρ + M

)i+2 j
. (2.15)

(ii) We now prove that

‖L[c](t) − L[d](t)‖X ≤
k
λ1

T(k)
m D

(2)
ρ

(
ρ,M

)
‖c − d‖X , ∀c, d ∈ S, (2.16)
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where

D
(2)
ρ

(
ρ,M

)
= KM( f )

∑
1≤i+ j≤N−1

1
i! j!

(√
2ρ + M

)i+2 j−2 (√
2iM + 2(i + j)ρ

)
. (2.17)

Proof of (2.16) is as follows.
Let c, d ∈ S, put u(t) =

∑k
j=1 c j(t)w j, u(t) =

∑k
j=1 c j(t)w j.

For all t ∈ [0,T(k)
m ], we have

|L[c](t) − L[d](t)|1 = |N[c](t) −N[d](t)|1 ≤
k
λ1

∫ t

0 ‖F[c](s) − F[d](s)‖ ds. (2.18)

On the other hand

F[c](x, t) − F[d](x, t)

=
∑

1≤i+ j≤N−1
Di j f [um−1](u(t) − um−1)i

(
‖u(t)‖2 − ‖um−1(t)‖2

) j

−
∑

1≤i+ j≤N−1
Di j f [um−1](v(t) − um−1)i

(
‖v(t)‖2 − ‖um−1(t)‖2

) j

=
∑

1≤i+ j≤N−1
Di j f [um−1]

[
(u(t) − um−1)i

− (v(t) − um−1)i
] (
‖u(t)‖2 − ‖um−1(t)‖2

) j

+
∑

1≤i+ j≤N−1
Di j f [um−1](v(t) − um−1)i

[(
‖u(t)‖2 − ‖um−1(t)‖2

) j
−

(
‖v(t)‖2 − ‖um−1(t)‖2

) j
]
.

(2.19)

We also note that ai
− bi = (a − b)

∑i−1
ν=0 aνbi−1−ν for all a, b ∈ R, i = 1, 2, ..., we deduce from (2.13) that

∣∣∣(u(t) − um−1)i
− (v(t) − um−1)i

∣∣∣ = |u(t) − v(t)|

∣∣∣∣∣∣ i−1∑
ν=0

(u(t) − um−1)ν(v(t) − um−1)i−1−ν

∣∣∣∣∣∣
≤ |u(t) − v(t)|

i−1∑
ν=0
|u(t) − um−1|

ν
|v(t) − um−1|

i−1−ν

≤
√

2 ‖c − d‖X
i−1∑
ν=0

(√
2ρ + M

)ν (√
2ρ + M

)i−1−ν

=
√

2i
(√

2ρ + M
)i−1
‖c − d‖X .

(2.20)

Similarly∣∣∣∣(‖u(t)‖2 − ‖um−1(t)‖2
) j
−

(
‖v(t)‖2 − ‖um−1(t)‖2

) j∣∣∣∣
=

∣∣∣‖u(t)‖2 − ‖v(t)‖2
∣∣∣ ∣∣∣∣∣∣ j−1∑
ν=0

(
‖u(t)‖2 − ‖um−1(t)‖2

)ν (
‖v(t)‖2 − ‖um−1(t)‖2

) j−1−ν
∣∣∣∣∣∣

≤

∣∣∣‖u(t)‖2 − ‖v(t)‖2
∣∣∣ j−1∑
ν=0

∣∣∣‖u(t)‖2 − ‖um−1(t)‖2
∣∣∣ν ∣∣∣‖v(t)‖2 − ‖um−1(t)‖2

∣∣∣ j−1−ν

≤ 2ρ ‖c − d‖X
j−1∑
ν=0

(
ρ + M

)2ν (ρ + M
)2( j−1−ν)

= 2 jρ
(
ρ + M

)2 j−2
‖c − d‖X .

(2.21)
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It implies that

|F[c](x, t) − F[d](x, t)|

≤ KM( f )
∑

1≤i+ j≤N−1

1
i! j!

∣∣∣(u(t) − um−1)i
− (v(t) − um−1)i

∣∣∣ ∣∣∣‖u(t)‖2 − ‖um−1(t)‖2
∣∣∣ j

+KM( f )
∑

1≤i+ j≤N−1

1
i! j! |v(t) − um−1|

i
∣∣∣∣(‖u(t)‖2 − ‖um−1(t)‖2

) j
−

(
‖v(t)‖2 − ‖um−1(t)‖2

) j∣∣∣∣
≤ KM( f )

∑
1≤i+ j≤N−1

1
i! j!

√
2i

(√
2ρ + M

)i−1
‖c − d‖X (ρ + M)2 j

+KM( f )
∑

1≤i+ j≤N−1

1
i! j!

(√
2ρ + M

)i
2 jρ

(
ρ + M

)2 j−2
‖c − d‖X

≤ KM( f )
∑

1≤i+ j≤N−1

1
i! j!

√
2i

(√
2ρ + M

)i−1+2 j
‖c − d‖X

+KM( f )
∑

1≤i+ j≤N−1

1
i! j!

(√
2ρ + M

)i+2 j−2
2 jρ ‖c − d‖X

≤ KM( f ) ‖c − d‖X
∑

1≤i+ j≤N−1

1
i! j!

(√
2ρ + M

)i+2 j−2 (√
2iM + 2(i + j)ρ

)
= D

(2)
ρ

(
ρ,M

)
‖c − d‖X ,

(2.22)

where D
(2)
ρ

(
ρ,M

)
defined as in (2.17).

It follows from (2.18), (2.22), that (2.16) holds.
Choosing ρ > |α|1 + 1

λ1

∣∣∣β∣∣∣
1

and T(k)
m ∈ (0,T] such that

0 < T(k)
m D

(1)
ρ

(
ρ,M

)
≤ ρ − |α|1 −

1
λ1

∣∣∣β∣∣∣
1

and k
λ1

T(k)
m D

(2)
ρ

(
ρ,M

)
< 1. (2.23)

Therefore, it follows from (2.14), (2.16) and (2.23) that L : S → S is contractive. We deduce that L has a
unique fixed point in S, i.e., the system (2.7) – (2.9) has a unique solution u(k)

m (t) on an interval [0,T(k)
m ]. The

proof of Lemma 2.3 is complete. �
The following estimates allow one to take T(k)

m = T independent of m and k.
Step 2: A priori estimates. Put

S(k)
m (t) = p(k)

m (t) + q(k)
m (t) +

∫ t

0

∥∥∥ü(k)
m (s)

∥∥∥2
ds,

p(k)
m (t) =

∥∥∥u̇(k)
m (t)

∥∥∥2
+

∥∥∥u(k)
mx(t)

∥∥∥2
,

q(k)
m (t) =

∥∥∥u̇(k)
mx(t)

∥∥∥2
+

∥∥∥∆u(k)
m (t)

∥∥∥2
,

(2.24)

Then, it follows from (2.7) and (2.24) that

S(k)
m (t) = S(k)

m (0) + 2
∫ t

0

〈
F(k)

m (s), u̇(k)
m (s)

〉
ds + 2

∫ t

0

〈
F(k)

mx (s) , u̇(k)
mx(s)

〉
ds

+
∫ t

0

∥∥∥ü(k)
m (s)

∥∥∥2
ds = S(k)

m (0) +
∑3

j=1 J j.
(2.25)

We shall estimate step by step all the terms J1, J2, J3 and S(k)
m (0).

The term J1. Using the inequalities (a + b)p
≤ 2p−1(ap + bp), for all a, b ≥ 0, p ≥ 1 and

sq
≤ 1 + sp, ∀s ≥ 0, ∀q ∈ (0, p], (2.26)
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we get from (2.9) that

∣∣∣F(k)
m (x, t)

∣∣∣ ≤ KM( f )
∑

i+ j≤N−1

1
i! j!

∣∣∣u(k)
m − um−1

∣∣∣i ∣∣∣∣∥∥∥u(k)
m (t)

∥∥∥2
− ‖um−1(t)‖2

∣∣∣∣ j
≤ KM( f )

∑
i+ j≤N−1

1
i! j!

(∣∣∣u(k)
m

∣∣∣ + |um−1|
)i (∥∥∥u(k)

m (t)
∥∥∥ + ‖um−1(t)‖

)2 j

≤ KM( f )
∑

i+ j≤N−1

1
i! j!

(√
S(k)

m (t) + M
)i (√

S(k)
m (t) + M

)2 j

≤ KM( f )
∑

i+ j≤N−1

1
i! j!

(√
S(k)

m (t) + M
)i+2 j

≤ KM( f )
∑

i+ j≤N−1

1
i! j! 2

i+2 j−1

(√S(k)
m (t)

)i+2 j

+ Mi+2 j


≤ KM( f )

∑
i+ j≤N−1

1
i! j! 2

i+2 j−1
[
1 +

(
S(k)

m (t)
)N− 3

2
+ 1 + M2N−3

]
≤ KM( f )

(
1 + M2N−3

) ∑
i+ j≤N−1

1
i! j! 2

i+2 j
[
1 +

(
S(k)

m (t)
)N− 3

2
]
.

(2.27)

Hence∥∥∥F(k)
m (t)

∥∥∥ ≤ KM( f )
(
1 + M2N−3

) ∑
i+ j≤N−1

1
i! j! 2

i+2 j
[
1 +

(
S(k)

m (t)
)N− 3

2
]

≡ ξ1(M)
[
1 +

(
S(k)

m (t)
)N− 3

2
]
,

(2.28)

where

ξ1(M) = KM( f )
(
1 + M2N−3

) ∑
i+ j≤N−1

1
i! j!

2i+2 j. (2.29)

Using the inequality

sq
≤ 1 + sN0 , ∀s ≥ 0, ∀q ∈ (0,N0], N0 = max{N, 2N − 3}, N ≥ 2, (2.30)

we get from (2.28), (2.30) that

J1 = 2
∫ t

0

〈
F(k)

m (s), u̇(k)
m (s)

〉
ds ≤ 2

∫ t

0

∥∥∥F(k)
m (s)

∥∥∥ ∥∥∥u̇(k)
m (s)

∥∥∥ ds

≤ 2ξ1(M)
∫ t

0

[
1 +

(
S(k)

m (s)
)N− 3

2
] √

S(k)
m (s)ds

= 2ξ1(M)
∫ t

0

[√
S(k)

m (s) +
(
S(k)

m (s)
)N−1

]
ds

≤ 4ξ1(M)
∫ t

0

[
1 +

(
S(k)

m (s)
)N0

]
ds

≤ ξ̄1(M)
∫ t

0

[
1 +

(
S(k)

m (s)
)N0

]
ds,

(2.31)

where ξ̄1(M) = 4ξ1(M).
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The term J2. By (2.9), we have

F(k)
mx(t) = D1 f [um−1] + D3 f [um−1]∇um−1

+
∑

1≤i+ j≤N−1

[
D1Di j f [um−1] + D3Di j f [um−1]∇um−1

]
(u(k)

m − um−1)i

×

(∥∥∥u(k)
m (t)

∥∥∥2
− ‖um−1(t)‖2

) j

+
∑

1≤i+ j≤N−1
Di j f [um−1]i(u(k)

m − um−1)i−1(u(k)
mx − ∇um−1)

×

(∥∥∥u(k)
m (t)

∥∥∥2
− ‖um−1(t)‖2

) j
.

(2.32)

Hence∥∥∥F(k)
mx(t)

∥∥∥ ≤ KM( f )(1 + M) + KM( f )(1 + M)
∑

1≤i+ j≤N−1

1
i! j!

(
M +

√
S(k)

m (t)
)i+2 j

+KM( f )
∑

1≤i+ j≤N−1

1
i! j! i

(
M +

√
S(k)

m (t)
)i−1 (

M +

√
S(k)

m (t)
) (

M +

√
S(k)

m (t)
)2 j

≤ KM( f )(1 + M) + KM( f )(1 + M)
∑

1≤i+ j≤N−1

1
i! j!

(
M +

√
S(k)

m (t)
)i+2 j

+KM( f )
∑

1≤i+ j≤N−1

1
i! j! i

(
M +

√
S(k)

m (t)
)i+2 j

≤ KM( f )(1 + M) + KM( f )(1 + M)
∑

1≤i+ j≤N−1

1
i! j! 2

i+2 j−1

Mi+2 j +

(√
S(k)

m (t)
)i+2 j

+(N − 1)KM( f )
∑

1≤i+ j≤N−1

1
i! j! 2

i+2 j−1

Mi+2 j +

(√
S(k)

m (t)
)i+2 j

≤ KM( f )(1 + M)
∑

i+ j≤N−1

1
i! j! 2

i+2 j−1

Mi+2 j +

(√
S(k)

m (t)
)i+2 j

+(N − 1)KM( f )(1 + M)
∑

i+ j≤N−1

1
i! j! 2

i+2 j−1

Mi+2 j +

(√
S(k)

m (t)
)i+2 j

= N(1 + M)KM( f )
∑

i+ j≤N−1

1
i! j! 2

i+2 j−1

Mi+2 j +

(√
S(k)

m (t)
)i+2 j

≤ N(1 + M)KM( f )
∑

i+ j≤N−1

1
i! j! 2

i+2 j−1
[
1 + M2N−2 + 1 +

(
S(k)

m (t)
)N−1

]
≤ N(1 + M)KM( f )

(
1 + M2N−2

) ∑
i+ j≤N−1

1
i! j! 2

i+2 j
[
1 +

(
S(k)

m (t)
)N−1

]
≡ ξ2(M)

[
1 +

(
S(k)

m (t)
)N−1

]
,

(2.33)

where

ξ2(M) = N(1 + M)KM( f )
(
1 + M2N−2

) ∑
i+ j≤N−1

1
i! j!

2i+2 j. (2.34)
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Using the inequality (2.30) we get from (2.33) that

J2 = 2
∫ t

0

〈
F(k)

mx (s) , u̇(k)
mx(s)

〉
ds ≤ 2

∫ t

0

∥∥∥F(k)
mx (s)

∥∥∥ ∥∥∥u̇(k)
mx(s)

∥∥∥ ds

≤ 2ξ2(M)
∫ t

0

[
1 +

(
S(k)

m (s)
)N−1

] √
S(k)

m (s)ds

= 2ξ2(M)
∫ t

0

[√
S(k)

m (s) +
(
S(k)

m (s)
)N− 1

2

]
ds

≤ 4ξ2(M)
∫ t

0

[
1 +

(
S(k)

m (s)
)N0

]
ds

≡ ξ̄2(M)
∫ t

0

[
1 +

(
S(k)

m (s)
)N0

]
ds,

(2.35)

where ξ̄2(M) = 4ξ2(M).
The term J3. Equation (2.7)1 can be rewritten as follows

〈ü(k)
m (t),w j〉 −

〈
∆u(k)

m (t),w j

〉
= 〈F(k)

m (t),w j〉, 1 ≤ j ≤ k. (2.36)

Hence, it follows after replacing w j with ü(k)
m (t) and integrating that

J3 =
∫ t

0

∥∥∥ü(k)
m (s)

∥∥∥2
ds ≤ 2

∫ t

0 ||∆u(k)
m (s)||2ds + 2

∫ t

0 ||F
(k)
m (s)||2ds

≤ 2
∫ t

0 S(k)
m (s)ds + 2ξ2

1(M)
∫ t

0

[
1 +

(
S(k)

m (s)
)N− 3

2
]2

ds

≤ 2
∫ t

0 S(k)
m (s)ds + 4ξ2

1(M)
∫ t

0

[
1 +

(
S(k)

m (s)
)2N−3

]
ds

≤ 2
∫ t

0 S(k)
m (s)ds + 4ξ2

1(M)
∫ t

0

[
1 +

(
S(k)

m (s)
)2N−3

]
ds

≤ 2(1 + 2ξ2
1(M))

∫ t

0

[
1 +

(
S(k)

m (s)
)N0

]
ds

≡ ξ̄3(M)
∫ t

0

[
1 +

(
S(k)

m (s)
)N0

]
ds,

(2.37)

with ξ̄3(M) = 2(1 + 2ξ2
1(M)).

Now, we need an estimate on the term S(k)
m (0). We have

S(k)
m (0) = ||ũ1k||

2 + ||ũ1kx||
2 + ||ũ0kx||

2 + ||∆ũk0||
2. (2.38)

By means of the convergences in (2.8), we can deduce the existence of a constant M > 0 independent of
k and m such that

S(k)
m (0) ≤M2/2. (2.39)

Finally, it follows from (2.25), (2.31), (2.35), (2.37), (2.39) that

S(k)
m (t) ≤ M2

2 + Tξ̄(M) + ξ̄(M)
∫ t

0

(
S(k)

m (s)
)N0

ds, for 0 ≤ t ≤ T(k)
m ≤ T, (2.40)

where

ξ̄(M) = ξ̄1(M) + ξ̄2(M) + ξ̄3(M).

Then, by solving a nonlinear Volterra integral inequality (2.40) (based on the methods in [6]), the
following lemma is proved.
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Lemma 2.4. There exists a constant T > 0 independent of k and m such that

S(k)
m (t) ≤M2

∀t ∈ [0,T], for all k and m. (2.41)

By Lemma 2.4, we can take constant T(k)
m = T for all k and m. Therefore, we have

u(k)
m ∈W(M,T), for all k and m. (2.42)

Step 3: Convergence. From (2.42), we can extract from {u(k)
m } a subsequence {u(ki)

m } such that
u(ki)

m → um in L∞(0,T; H1
0 ∩H2) weak*,

u̇(ki)
m → u′m in L∞(0,T; H1

0) weak*,

ü(ki)
m → u′′m in L2(QT) weak,

(2.43)

um ∈W(M,T). (2.44)

We can easily check from (2.7), (2.8), (2.43), (2.44) that um satisfies (2.3), (2.4) in L2(0,T), weak.
On the other hand, it follows from (2.3)1 and um ∈ W(M,T) that u′′m = ∆um + Fm ∈ L∞(0,T; L2), hence

um ∈W1(M,T) and the proof of Theorem 2.2 is complete. �
Next, we put

W1(T) = {v ∈ L∞(0,T; H1
0) : v′ ∈ L∞(0,T; L2)},

then W1(T) is a Banach space with respect to the norm (see [7]):

||v||W1(T) = ||v||L∞(0,T;H1
0) + ||v′||L∞(0,T;L2).

Then, we have the following theorem.
Theorem 2.5. Let (H1), (H2) hold. Then, there exist constants M > 0 and T > 0 such that

(i) Prob. (1.1) – (1.3) has a unique weak solution u ∈W1(M,T).
(ii) The recurrent sequence {um} defined by (2.3), (2.4) converges at a rate of order N to the solution u strongly

in the space W1(T) in the sense

||um − u||W1(T) ≤ C||um−1 − u||NW1(T), (2.45)

for all m ≥ 1, where C is a suitable constant.
Furthermore, we have the estimation

||um − u||W1(T) ≤ CTβNm
, (2.46)

for all m ≥ 1, where CT and 0 < β < 1 are positive constants depending only on T.
Proof.
Put vm = um+1 − um, it is clear that vm satisfies the variational problem 〈v′′m(t), v〉 + 〈vmx(t), vx〉 = 〈Fm+1(t) − Fm(t), v〉 ∀v ∈ H1

0,

vm(0) = v′m(0) = 0,
(2.47)

where

Fm(x, t) =
∑

i+ j≤N−1
Di j f [um−1](um − um−1)i

(
‖um(t)‖2 − ‖um−1(t)‖2

) j
. (2.48)

Taking v = v′m in (2.47), after integrating in t we get

σm(t) = 2
∫ t

0

〈
Fm+1(s) − Fm(s), v′m(s)

〉
ds, (2.49)
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with

σm(t) = ||v′m(t)||2 + ||vmx(t)||2. (2.50)

On the other hand, by using Taylor’s expansion for the function f
(
x, t,um, ‖um(t)‖2

)
around the point(

x, t,um−1, ‖um−1(t)‖2
)

up to order N, we obtain

f [um] − f [um−1] = f
(
x, t,um, ‖um(t)‖2

)
− f

(
x, t,um−1, ‖um−1(t)‖2

)
=

∑
1≤i+ j≤N−1

Di j f [um−1]vi
m−1

(
‖um(t)‖2 − ‖um−1(t)‖2

) j

+
∑

i+ j=N
Di j f [ηm]vi

m−1

(
‖um(t)‖2 − ‖um−1(t)‖2

) j
,

(2.51)

where

[ηm] =
(
x, t,um−1 + θvm−1, θ ‖um(t)‖2 + (1 − θ) ‖um−1(t)‖2

)
, 0 < θ < 1.

Hence, it follows from (2.4), (2.51) that

Fm+1(t) − Fm(t) =
∑

1≤i+ j≤N−1
Di j f [um]vi

m

(
‖um+1(t)‖2 − ‖um(t)‖2

) j

+
∑

i+ j=N
Di j f [ηm]vi

m−1

(
‖um(t)‖2 − ‖um−1(t)‖2

) j
.

(2.52)

Then we deduce, from (2.52), that

‖Fm+1(t) − Fm(t)‖

≤ KM( f )
∑

1≤i+ j≤N−1

1
i! j! ‖vmx(t)‖i (‖um+1(t)‖ + ‖um(t)‖ ) j

|‖um+1(t)‖ − ‖um(t)‖ | j

+ KM( f )
∑

i+ j=N

1
i! j! ‖vm−1‖

i
W1(T) (‖um(t)‖ + ‖um−1(t)‖ ) j

|‖um(t)‖ − ‖um−1(t)‖ | j

≤ KM( f )
∑

1≤i+ j≤N−1

1
i! j! ‖vmx(t)‖i+ j (2M) j

+ KM( f )
∑

i+ j=N

1
i! j! ‖vm−1‖

i
W1(T) (2M) j

‖vm−1(t)‖ j

≤ KM( f )
∑

1≤i+ j≤N−1

1
i! j! ‖vmx(t)‖i+ j−1 (2M) j

‖vmx(t)‖ + KM( f )
∑

i+ j=N

1
i! j! (2M) j

‖vm−1‖
i+ j
W1(T)

≤ KM( f )
∑

1≤i+ j≤N−1

1
i! j! 2

jMi+2 j−1
‖vmx(t)‖ + KM( f )

∑
i+ j=N

1
i! j! (2M) j

‖vm−1‖
N
W1(T)

≡ γT ‖vmx(t)‖ + γ̄T ‖vm−1‖
N
W1(T) ,

(2.53)

where

γT = KM( f )
∑

1≤i+ j≤N−1

1
i! j! 2

jMi+2 j−1, γ̄T = KM( f )
∑

i+ j=N

1
i! j! (2M) j . (2.54)

Then we deduce, from (2.49), (2.50) and (2.53), that

σm(t) = 2
∫ t

0

〈
Fm+1(s) − Fm(s), v′m(s)

〉
ds ≤ 2

∫ t

0 ‖Fm+1(s) − Fm(s)‖
∥∥∥v′m(s)

∥∥∥ ds

≤ 2
∫ t

0

(
γT ‖vmx(s)‖ + γ̄T ‖vm−1‖

N
W1(T)

) ∥∥∥v′m(s)
∥∥∥ ds

≤ 2γT
∫ t

0 ‖vmx(s)‖
∥∥∥v′m(s)

∥∥∥ ds + 2γ̄T
∫ t

0 ‖vm−1‖
N
W1(T)

∥∥∥v′m(s)
∥∥∥ ds

≤ T γ̄T ‖vm−1‖
2N
W1(T) +

(
γT + γ̄T

) ∫ t

0 σm(s)ds.

(2.55)
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By using Gronwall’s lemma, we obtain from (2.55) that

‖vm‖W1(T) ≤ 2
√

Tγ̄TeT(γT+γ̄T) ‖vm−1‖
N
W1(T) ≡ µT ‖vm−1‖

N
W1(T) , (2.56)

where µT is the constant given by

µT = 2
√

Tγ̄TeT(γT+γ̄T). (2.57)

Hence, we obtain from (2.56) that

||um − um+p||W1(T) ≤ (1 − β)−1 (
µT

) −1
N−1 βNm

, (2.58)

for all m and p.
We take T > 0 small enough, such that β =

(
µT

) 1
N−1 M < 1. It follows that {um} is a Cauchy sequence in

W1(T). Then there exists u ∈W1(T) such that um → u strongly in W1(T).
It is similar to argument used in the proof of Theorem 2.2, we obtain that u ∈W1(M,T) is a unique weak

solution of Prob. (1.1) – (1.3). Passing to the limit as p → +∞ for m fixed, we get the estimate (2.46) from
(2.58). This completes the proof of Theorem 2.5. �

Remark. In order to construct a N−order iterative scheme, we need the condition f ∈ CN([0, 1] × R+ ×

R×R+). Then, we get a convergent sequence at a rate of order N to a local unique weak solution of problem
and the existence follows. This condition of f can be relaxed if we only consider the existence of solution,
it is not necessary that f ∈ C1([0, 1] ×R+ ×R ×R+), see [10].
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