Filomat 31:6 (2017), 1773–1779 DOI 10.2298/FIL1706773M

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Existence and Structure of the Common Fixed Points Based on TVS

Issa Mohamadi^a, Shahram Saeidi^a

^aDepartment of Mathematics, University of Kurdistan, Sanandaj 416, Kurdistan, Iran

Abstract. In this paper, we investigate the common fixed point property for commutative nonexpansive mappings on τ -compact convex sets in normed and Banach spaces, where τ is a Hausdorff topological vector space topology that is weaker than the norm topology. As a consequence of our main results, we obtain that the set of common fixed points of any commutative family of nonexpansive self-mappings of a nonempty *clm*-compact (resp. weak* compact) convex subset *C* of $L_1(\mu)$ with a σ -finite μ (resp. the James space J_0) is a nonempty nonexpansive retract of *C*.

1. Introduction

Let *E* be a normed space and τ be a Hausdorff topological vector space topology on *E* that is weaker than the norm topology. *E* is said to have the fixed point property with respect to τ (τ -fpp) if the following holds: For each nonempty, norm bounded, τ -compact, convex subset *C* of *E*, every nonexpansive mapping $T : C \to C$ (i.e., $||Tx - Ty|| \le ||x - y||$, $x, y \in C$) has a fixed point. We say that a nonempty closed and convex subset *C* of *E* has the fpp if every nonexpansive mapping $T : C \to C$ has a fixed point, and also *C* is said to have the τ -fpp, if each nonempty, norm bounded, τ -compact, convex subset of *C* has the fpp. It is not clear that a set having the fpp must be bounded. It is known that the norm boundedness assumption for τ -compact, convex sets is redundant (see, for example, [12]). An standard example of such a τ is where τ is the weak topology on *E*. Another example is where *E* is a dual Banach space and τ is the weak* topology. Yet another example is when *E* is $L_1(\mu)$ and τ is the topology *clm* of convergence locally in measure (see, e.g., [18]).

Determining conditions on a Banach space *E* so that it has the fixed point property has been of considerable interest for many years. Kirk [13] proved that a weakly compact convex subset of a Banach space with weak normal structure has the fpp. It is known that every compact convex subset of a Banach space has normal structure. Kirk's proof of his result also yields that a weak* compact convex subset of a Banach space with weak* normal structure has the fixed point property (see [19]). The condition above that *C* has normal structure can not be dropped. In fact, Alspach [2] showed that $L_1[0, 1]$ fails the weak fpp.

We say that *E* has the (common) τ -fpp for commutative semigroups if whenever $S = \{T_s : s \in S\}$ is a commutative semigroup of nonexpansive self-mappings on a nonempty, τ -compact, convex subset of *E*, then the common fixed point set of *S*, *Fix*(*S*), is nonempty. Bruck [4] showed that a Banach space *E* having the weak fpp has the weak fpp for commutative semigroups. We refer to [23] for a simple proof

²⁰¹⁰ Mathematics Subject Classification. Primary 47H20; Secondary 47H10

Keywords. Retraction, nonexpansive mapping, clm-topology, τ -fixed point property, τ -Opial condition

Received: 07 April 2015; Accepted: 03 March 2016

Communicated by Dragan S. Djordjević

Corresponding author: Shahram Saeidi

Email addresses: ararat1976@yahoo.com (Issa Mohamadi), shahram_saeidi@yahoo.com (Shahram Saeidi)

to a more general version of Bruck's result. For a dual Banach space *E* satisfying the weak* fpp, it is still unknown whether *E* has the weak* fpp for commutative semigroups. Very recently, Borzdynski and Wisnicki [3] proved that if *S* is a commuting family of weak* continuous nonexpansive mappings acting on a weak* compact convex subset *C* of the dual Banach space *E*, then the set of common fixed points of *S* is a nonempty nonexpansive retract of *C*. This partially answers a long-standing open problem posed by Lau in [15] (see also [17]). Examples of Banach spaces with the weak* fpp for commutative semigroups include ℓ_1 , trace class operators on a Hilbert space, Hardy space H^1 and the Fourier algebra of a compact group (see [16, 19–22]).

In this paper, by using the retraction tool, we study the common fixed point property for commutative nonexpansive mappings on τ -compact convex sets in *E*, where τ is a Hausdorff topological vector space topology that is weaker than the norm topology. In Section 2, we shall prove the following: Let *E* be a Banach space, τ a Hausdorff topological vector space topology on *E* that is weaker than the norm topology and the norm of *E* is lsc with respect to τ , and *C* be a nonempty, τ -compact, separable, convex subset of *E* which has the τ -fpp. Then any commutative family of nonexpansive self-mappings of *C* has a common fixed point and the set of common fixed points is a nonexpansive retract of *C*. In Section 4, we obtain the same result by replacing the separability with the τ -Opial condition. As a consequence, we shall show that the set of common fixed points of any commutative family of nonexpansive self-mappings of a nonempty *clm*-compact (resp. weak* compact) convex subset *C* of $L_1(\mu)$ with a σ -finite μ (resp. the James space J_0) is a nonempty nonexpansive retract of *C*.

2. The τ -fpp for Commutative Mappings on Separable Subsets

Recall some general concepts and definitions. Let *E* be a normed space and *C* be a nonempty subset of *E*. A mapping *T* on *C* is said to be a retraction if $T^2 = T$. A subset *F* of *C* is called a nonexpansive retract of *C* if either $F = \emptyset$ or there exists a retraction of *C* onto *F* which is a nonexpansive mapping. Nonexpansive retract plays an important role in the study of the structure of fixed point sets of nonexpansive mappings. We refer the reader to [4–7] for more information concerning nonexpansive retracts.

Let *E* be a normed space, and τ be a Hausdorff topological vector space topology on *E* that is weaker than the norm topology. The purpose of this section is to study the τ -fpp (which implies the weak* fpp) for commutative semigroups of nonexpansive mappings. In fact, we give some partial answers to the following question:

If a dual Banach space *E* has the τ -fpp, does *E* have the τ -fpp for commuting semigroups?

The following theorem is essential to get the main results.

Theorem 2.1. Let *E* be a normed space and τ be a Hausdorff topological vector space topology on *E* that is weaker than the norm topology. Suppose that the norm of *E* is lsc with respect to τ . Let *C* be a nonempty, τ -compact, convex subset of *E* with the τ -fpp. If $\{T_1, \ldots, T_n\}$ is a commutative family of nonexpansive mappings on *C*, then $\bigcap_{i=1}^n Fix(T_i)$ is a nonempty nonexpansive retract of *C*.

Proof. First, we prove that for each nonexpansive mapping $T : C \to C$, Fix(T) is a nonempty nonexpansive retract of *C*. To this purpose, consider C^C with the product topology induced by the topology τ on *C*. Then by Tychonoff's theorem C^C is compact. Now, consider a nonexpansive mapping $T : C \to C$ and define

$$\mathfrak{R} := \{S \in C^{\mathbb{C}} : S \text{ is nonexpansive, } Fix(T) \subset Fix(S)\}$$

We show that \mathfrak{R} is closed in $\mathbb{C}^{\mathbb{C}}$. Suppose that $\{U_{\lambda} : \lambda \in \Lambda\}$ is a net in \mathfrak{R} which converges to U in $\mathbb{C}^{\mathbb{C}}$. Then for $z \in Fix(T)$, $U_{\lambda}(z) = z$ so $U(z) = \tau - \lim_{\lambda} U_{\lambda}(z) = z$. By the lower semi-continuity of the norm with respect to τ , for any x, y in \mathbb{C} , $||Ux - Uy|| \le \liminf_{\lambda} ||U_{\lambda}x - U_{\lambda}(y)|| \le ||x - y||$. So we have shown that $U \in \mathfrak{R}$, hence that \mathfrak{R} is closed in $\mathbb{C}^{\mathbb{C}}$. Since $\mathbb{C}^{\mathbb{C}}$ is compact, therefore \mathfrak{R} is compact (the topology on \mathfrak{R} is that of τ -pointwise convergence). Define a preorder $\le \inf_{\lambda} \mathbb{B} y \le U$ if $||Sx - Sy|| \le ||Ux - Uy||$ for all $x, y \in \mathbb{C}$ and using the Bruck's method [7] we obtain a minimal element $R \in \mathfrak{R}$. Indeed, by considering Zorn's lemma it suffices to show every linearly ordered subset of \mathfrak{R} has a lower bound in \mathfrak{R} . If $\{U_{\lambda}\}$ is a linearly ordered subset of \mathfrak{R} by \le , the family of sets $\{S \in \mathfrak{R} : S \le U_{\lambda}\}$ is linearly ordered by inclusion. The proof that \mathfrak{R} is closed in C^C can be repeated to show that these sets are closed in \mathfrak{R} , and hence compact. So there exists $U \in \bigcap_{\lambda} \{S \in \mathfrak{R} : S \leq U_{\lambda}\}$ with $U \leq U_{\lambda}$ for each λ . Now, we have shown the existence of a minimal element $P \in \mathfrak{R}$ in the following sense:

if
$$S \in \mathfrak{R}$$
 and $||S(x) - S(y)|| \le ||P(x) - P(y)||, \forall x, y \in C$,

then
$$||S(x) - S(y)|| = ||P(x) - P(y)||$$
. (*)

We shall prove that $P(x) \in Fix(T)$ for all $x \in C$. For a given $x \in C$, consider the set $K = \{S(P(x)) : S \in \Re\}$. Then K is a nonempty τ -compact convex subset of C, because \Re is convex and compact. On the other hand, $TS \in \Re$, $\forall S \in \Re$. Therefore, we have $T(K) \subseteq K$, and then, by the τ -fpp, there exists $h \in \Re$ with $h(P(x)) \in Fix(T)$. Let y = h(P(x)). Then P(y) = h(y) = y, and by using the minimality of P, we have ||P(x) - y|| = ||P(x) - P(y)|| = ||h(P(x)) - h(P(y))|| = ||h(P(x)) - y|| = 0. So $P(x) = y \in Fix(T)$. Since this is so for each $x \in C$ and P belongs to \Re , it follows that $P^2 = P$. So, we have shown that Fix(T) is a nonexpansive retract of C. Now, let $\{T_1, \ldots, T_n\}$ be a commuting family of nonexpansive mappings on C. We prove that $\bigcap_{i=1}^n Fix(T_i)$ is a nonempty nonexpansive retract of C by the above discussion. Now suppose that $\bigcap_{j=1}^n Fix(T_j)$ is a nonempty nonexpansive retract of C and $R : C \to \bigcap_{j=1}^n Fix(T_j)$ a nonexpansive retraction. Then, it is easy to check that $Fix(T_{n+1}R) = \bigcap_{j=1}^{n+1} Fix(T_j)$ (see, e.g., [4] for the details). Another application of the first part of the proof implies that $Fix(T_{n+1}R) = \bigcap_{j=1}^{n+1} Fix(T_j)$ is a nonempty nonexpansive retract of C, which completes the induction. \Box

We will also need the following lemma, due to Bruck [4], as an intermediary step.

Lemma 2.2. If *C* is a bounded closed convex subset of a Banach space *E* and $\{F_n\}$ is a descending sequence of nonempty nonexpansive retracts of *C*, then $\bigcap_{n=1}^{\infty} F_n$ is the fixed point set of some nonexpansive $r : C \to C$.

Theorem 2.3. Let *E* be a Banach space and τ be a Hausdorff topological vector space topology on *E* that is weaker than the norm topology. Suppose the norm of *E* is lsc with respect to τ , and *C* be a nonempty, τ -compact, separable, convex subset of *E* which has the τ -fpp. Then any commutative family of nonexpansive self-mappings of *C* has a common fixed point and the set of common fixed points is a nonexpansive retract of *C*.

Proof. Let $S = \{T_i\}_{i \in I}$ be a commutative family of nonexpansive mappings on *C*, and let \mathcal{F} be the family of the finite intersections of fixed point sets of mappings in the commutative family *S*. We have shown, in Theorem 2.1, that \mathcal{F} is a family of nonempty nonexpansive retracts of *C*, and \mathcal{F} is obviously directed by \supset . Now, since *C* is separable, there is a countable subfamily \mathcal{F}' of \mathcal{F} such that

$$Fix(\mathcal{S}) = \bigcap \{F : F \in \mathcal{F}\} = \bigcap \{F : F \in \mathcal{F}'\}.$$

Using the fact that \mathcal{F} is directed by \supset we can therefore find a descending sequence $\{F_n\}$ in \mathcal{F} with $Fix(S) = \bigcap_n F_n$. But, by Lemma 2.2, $Fix(S) = \bigcap_n F_n = Fix(r)$, for some nonexpansive $r : C \rightarrow C$. Since C has the τ -fpp, Theorem 2.1 implies Fix(S) is a nonempty nonexpansive retract of C. This completes the proof. \Box

An standard example of such a pair (E, τ) is where E is a dual Banach space and τ is the weak* topology. Thus, Theorem 2.3 yields the following result:

Theorem 2.4. Let E be a dual Banach space and suppose C is a nonempty, weak* compact, separable, convex subset of E which has the weak*-fpp. Then the set of common fixed points of any commutative family of nonexpansive self-mappings of C is a nonempty nonexpansive retract of C.

Example 2.5. The James space J_0 , ℓ_1 and L_1 over a separable measure space are separable [1]. Moreover, it is well known that in ℓ_1 , and in the James space J_0 , a nonexpansive self-mapping of a weak* compact convex subset has a fixed point [11]. Thus, by Theorem 2.4, we deduce that for any nonempty, weak* compact, convex subset C of ℓ_1 , or the James space J_0 , the set of common fixed points of any commutative family of nonexpansive self-mappings of C is a nonempty nonexpansive retract of C.

For commutative sequences of nonexpansive self-mappings it is possible to say even more (cf. [24]).

Theorem 2.6. Let *E* be a Banach space and τ be a Hausdorff topological vector space topology on *E* that is weaker than the norm topology. Suppose the norm of *E* is lsc with respect to τ , and *C* be a nonempty, τ -compact, convex subset of *E* which has the τ -fpp. Then the set of common fixed points of any commutative sequence of nonexpansive self-mappings of *C* is a nonempty nonexpansive retract of *C*.

Proof. Let $\{T_n\}$ be a commutative sequence of nonexpansive mappings on *C*. Then, by Theorem 2.1, for each natural number n, $F_n = \bigcap_{j=1}^n Fix(T_j)$ is a nonempty nonexpansive retract of *C*. Thus, applying Lemma 2.2, we deduce that $\bigcap_{n=1}^{\infty} F_n = \bigcap_{n=1}^{\infty} Fix(T_n)$ is the fixed point set of some nonexpansive mapping $r : C \to C$. Therefore, by Theorem 2.1, $Fix(r) = \bigcap_{n=1}^{\infty} Fix(T_n)$ is a nonempty nonexpansive retract of *C*. \Box

3. Fixed Point Property with Respect to *clm*-Topology in $L_1(\mu)$

In this section, we will use the topology of convergence in measure which we now recall for the convenience of the reader. Let (Ω, Σ, μ) be a positive σ -finite measure space and $L_0(\mu)$ be the set of all scalar-valued Σ -measurable functions on Ω . The topological vector space topology *clm*, of convergence locally in measure on $L_0(\mu)$, is generated by the following translation-invariant metric: Let $(A_n)_{n=1}^{\infty}$ be a $\widetilde{\Sigma}$ -partition of Ω , where $\widetilde{\Sigma} := \{A \in \Sigma : \mu(A) \in (0, \infty)\}$. Define d_0 by

$$d_0(f,g) := \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{1}{\mu(A_n)} \int_{A_n} \frac{|f-g|}{1+|f-g|} d\mu, \text{ for all } f,g \in L_0(\mu).$$

If $\mu(\Omega) < \infty$, then the simpler metric

$$d_0(f,g) = \int_{\Omega} \frac{|f-g|}{1+|f-g|} d\mu, \text{ for all } f,g \in L_0(\mu),$$

generates the *clm* topology. In this case, we simply refer to *clm* as the topology of convergence in measure, denoted by *cm*. $L_0(\mu)$ is complete with respect to the above metric. For sequences, the *clm*-topology reduces, in a sense, to almost everywhere convergence. Indeed, any sequence in $L_0(\mu)$ that converges almost everywhere to $f \in L_0(\mu)$ must converge to f locally in measure. On the other hand, every *clm*-convergent sequence of scalar-valued measurable functions has a subsequence that converges almost everywhere to the same limit function. Note that when we discuss $L_1(\mu)$, *clm* or *cm* will denote the topologies introduced above, restricted to $L_1(\mu)$. Further, the $L_1(\mu)$ -norm is *clm*-lower semicontinuous. This follows from Fatou's lemma and the fact that *clm* is a metric topology. Thus, an example of the pair (E, τ) in Section 2 is where E is $L_1(\mu)$ and τ is the topology *clm* of convergence locally in measure.

We remark that one can show that in every $L_1(\mu)$, μ σ -finite, *clm*-compact sets must be norm separable. Besides, Lami Dozo and Turpin [14] showed that $L_1(\mu)$ has the fpp with respect to the topology *clm* of convergence locally in measure. Combining the above discussion with Theorem 2.3 yields the following result:

Theorem 3.1. Let C be a nonempty, clm-compact, convex subset of $L_1(\mu)$, where μ is σ -finite. Then the set of common fixed points of any commutative family of nonexpansive self-mappings of C is a nonempty nonexpansive retract of C.

In the particular case that μ is finite, Theorem 3.1 is a consequence of a result in [22] (see also [21]).

4. The τ -fpp for Commutative Mappings Under the τ -Opial Condition

In this section, we study the common fpp for commutative semigroups by considering conditions under which the fixed point sets of nonexpansive mappings are τ -closed. For our purposes it will be convenient to prove the following result:

Theorem 4.1. Let *E* be a normed space and τ be a Hausdorff topological vector space topology on *E* that is weaker than the norm topology. Suppose that the norm of *E* is lsc with respect to τ . Let *C* be a nonempty, τ -compact, convex subset of *E* with the τ -fpp. Then any commutative family of nonexpansive self-mappings of *C* such that their fixed point sets are τ -closed has a common fixed point and the set of common fixed points is a nonexpansive retract of *C*.

Proof. Let $S = \{T_i\}_{i \in I}$ be a commutative family of nonexpansive mappings on *C*, and let \mathcal{F} be the family of the finite intersections of fixed point sets of mappings in the commutative family *S*. Since, by assumption, the fixed point sets are τ -closed, Theorem 2.1 implies that \mathcal{F} is a family of nonempty τ -compact subsets of *C* that is directed by \supset . Hence,

$$Fix(\mathcal{S}) = \bigcap \{F : F \in \mathcal{F}\} \neq \emptyset.$$

Now, defining

 $\mathfrak{R} := \{T \in C^{\mathbb{C}} : T \text{ is nonexpansive, } Fix(\mathcal{S}) \subset Fix(T)\},\$

and using an argument quite similar to the one used in the proof of Theorem 2.1, it is easy to show that \Re contains a nonexpansive retraction *P* from *C* onto *Fix*(*S*).

Let *E* be a normed space and τ be a Hausdorff topological vector space topology on *E* that is weaker than the norm topology. We say that a nonempty set $C \subset E$ satisfies the τ -Opial condition if whenever the bounded sequence $\{x_n\}$ of elements of *C* converges to $x \in C$, with respect to τ , we have

$$\liminf_{n} ||x_n - x|| < \liminf_{n} ||x_n - y||$$

for $y \in C \setminus \{x\}$. We say that *C* satisfies the τ -Opial condition for nets, if whenever the bounded net $\{x_{\alpha}\}_{\alpha \in I}$ of elements of *C* converges to $x \in C$, with respect to τ , we have

$$\liminf_{\alpha \in I} ||x_{\alpha} - x|| < \liminf_{\alpha \in I} ||x_{\alpha} - y||,$$

for $y \in C \setminus \{x\}$.

Spaces with the weak Opial condition have weak normal structure [10] and hence the weak fpp. Similarly dual spaces with the weak* Opial condition can contain no nontrivial separable weak* sequentially compact convex diameteral sets; in particular, separable duals with the weak* Opial condition have weak* normal structure [18], and hence the weak* fpp. Using the following argument, it is possible to say more:

Suppose *T* is a nonexpansive self mapping of a nonempty bounded closed convex subset *C* of a Banach space *E*. It is well known that *T* admits an approximate fixed point sequence; that is, a sequence (x_n) in *C* with $||Tx_n - x_n|| \rightarrow 0$. Now suppose *C* is, in addition, τ -compact, where τ is a Hausdorff topological vector space topology on *E* that is weaker than the norm topology. If the norm of *E* satisfies τ -Opial condition for nets (for sequences), then the fixed point set of *T* is nonempty and τ -compact (provided *C* is metrizable with respect to τ). In fact, if (x_i) is net (sequence) in *C* such that converges to *x*, with respect to τ , and $||Tx_i - x_i|| \rightarrow 0$, then

$$\limsup_{i} ||Tx - x_i|| = \liminf_{i} ||Tx - Tx_i|| \le \liminf_{i} ||x - x_i||,$$

contradicting the τ -Opial condition unless Tx = x. Moreover, if $\{z_i\}$ is a net (sequence) in Fix(T) converging in τ to some $z \in C$, then

$$\liminf ||z_i - Tz|| = \liminf ||Tz_i - Tz|| \le \liminf ||z_i - z||,$$

contradicting the τ -Opial condition for nets (for sequences) unless Tz = z. This implies that if either the norm of *E* satisfies τ -Opial condition for nets, or the norm of *E* satisfies τ -Opial condition for sequences and *C* is metrizable with respect to τ , then Fix(T) is nonempty and τ -closed. Thus, Banach spaces with the τ -Opial condition for nets (for sequences) have the τ -fpp (provided τ is metrizable), and in this case the fixed point sets of nonexpansive mappings are τ -compact.

Combining the above facts with Theorem 4.1, we obtain the following results:

Theorem 4.2. Let *E* be a Banach space and τ be a Hausdorff topological vector space topology on *E* that is weaker than the norm topology. Suppose that the norm of *E* is lsc with respect to τ and satisfies τ -Opial condition. Let *C* be a nonempty, τ -compact, convex subset of *E* and let *C* be metrizable with respect to τ . Then any commuting family of nonexpansive self-mappings of *C* has a common fixed point and the set of common fixed points is a nonexpansive retract of *C*.

Let (Ω, Σ, μ) be a finite measure space. It follows from Proposition 5.2 in [21] (see also Lemma 2.6 in [22]) that $L_1(\mu)$ satisfies *cm*-Opial condition. Further, *cm*-topology is metrizable and the norm of $L_1(\mu)$ is lsc with respect to the topology of convergence in measure. Thus, $L_1(\mu)$ is an example that satisfies the assumptions of Theorem 4.2.

Theorem 4.3. Let *E* be a Banach space and τ be a Hausdorff topological vector space topology on *E* that is weaker than the norm topology. Suppose that the norm of *E* is lsc with respect to τ and satisfies τ -Opial condition for nets. Let *C* be a nonempty, τ -compact, convex subset of *E*. Then the set of common fixed points of any commutative family of nonexpansive self-mappings of *C* is a nonempty nonexpansive retract of *C*.

Corollary 4.4. *Let* C *be a nonempty, weak* compact and convex subset of a dual Banach space* E. *Suppose that* C *satisfies weak*-Opial condition for nets. Then the set of common fixed points of any commutative family of nonexpansive self-mappings of* C *is a nonempty nonexpansive retract of* C.

Let *E* be a Banach space and let Γ be a nonempty subspace of its dual *E*^{*}. If

$$\sup\{x^*(x): x^* \in \Gamma, ||x^*|| = 1\} = ||x||,$$

for each $x \in E$, then we say that Γ is a norming set for *E*. It is obvious that a norming set generates a Hausdorff linear topology $\sigma(E, \Gamma)$ which is weaker than the weak topology $\sigma(E, E^*)$. It is worth noting here that $n(E) \subseteq E^{**}$ is a norming set for E^* , where *n* is a natural embedding of *E* into E^{**} , and hence, for $\Gamma = n(E)$, $\sigma(E, \Gamma)$ is the weak* topology on E^* . Throughout, Γ denotes a norming set for *E*. It is easy to observe that the norm of *E* is lower semicontinuous with respect to the $\sigma(E, \Gamma)$ -topology [8]. It is shown in [8] that if *E* is a Banach space, Γ is a norming set for *E* and *C* is a nonempty, bounded and Γ -sequentially compact subset of *E*, then in *C* the Γ -Opial condition for nets is equivalent to the Γ -Opial condition. Thus, we obtain the following:

Corollary 4.5. Let *E* be a Banach space, Γ be a norming set for *E*, *C* be a nonempty, Γ -compact and Γ -sequentially compact convex subset of E. Suppose that C satisfies Γ -Opial condition. Then the set of common fixed points of any commutative family of nonexpansive self-mappings of *C* is a nonempty nonexpansive retract of *C*.

Corollary 4.6. Let *E* be a dual Banach space with a separable predual space, *C* be a nonempty, weak* compact and convex subset of *E*. Suppose that *C* satisfies weak*-Opial condition. Then the set of common fixed points of any commutative family of nonexpansive self-mappings of *C* is a nonempty nonexpansive retract of *C*.

Finally, it is worth mentioning that some of the well-known classical dual Banach spaces satisfy weak*-Opial condition.

Example 4.7. The following dual Banach spaces satisfy the weak*-Opial condition for nets:

(*i*) ℓ_1 ;

(*ii*) the James space J_0 ;

(iii) B(*G*)*, the Fourier-Stieltjes algebra of a compact group G;*

see [1, 9, 16, 19], for details. Hence, by Corollary 4.4 (or 4.6), the common fixed point set of any commutative family of nonexpansive self-mappings of a nonempty weak* compact convex subset C in the above spaces is a nonempty nonexpansive retract of C.

Problem: Can Theorems 4.2 and 4.3 be extended to left reversible or amenable semigroups?

Acknowledgments

The authors would like to thank Professor Anthony To-Ming Lau, for his helpful suggestions and interest. The authors are also very grateful to the anonymous referee.

References

- [1] F. Albiac and N.J. Kalton, Topics in Banach space theory, Graduate texts in mathematics, 233, Springer, New York, 2006.
- [2] D.E. Alspach, A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82 (1981) 423-424.
- [3] S. Borzdynski and A. Wisnicki, A common fixed point theorem for a commuting family of weak* continuous nonexpansive mappings, Studia Math. 225 (2014) 173-181.
- [4] R.E. Bruck, A common fixed point theorem for a commutative family of nonexpansive mappings, Pacific J. Math. 53 (1974) 59-71.
 [5] R.E. Bruck, Asymptotic behavior of nonexpansive mappings, Contemp. Math. 18 (1983) 1-47.
- [6] R.E. Bruck, Nonexpansive retracts of Banach spaces, Bull. Amer. Math. Soc. 76 (1970) 384-386.
- [7] R.E. Bruck, Properties of fixed-point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc. 179 (1973) 251-262.
- [8] M. Budzynska, T. Kuczumow and M. Michalska, The Γ-Opial property, Bull. Austral. Math. Soc. 73 (2006) 473-476.
- [9] G. Fendler, A.T.-M. Lau, M. Leinert, Weak* fixed point property and asymptotic centre for the Fourier-Stieltjes algebra of a locally compact group, J. Functional Anal. 264 (2013) 288-302.
- [10] J.P. Gossez and E. Lami Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40 (1972) 565-573.
- [11] L.A. Karlovitz, On nonexpansive mappings, Proc. Amer. Math. Soc. 55 (1976) 321-325.
- [12] M.A. Khamsi, Note on a fixed point theorem in Banach lattices, preprint (1990).
- [13] W.A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965) 1004-1006.
- [14] E. Lami Dozo, Ph. Turpin, Nonexpansive maps in generalized Orlicz spaces, Studia Math. 86 (1987) 155-188.
- [15] A.T.-M. Lau, Amenability and fixed point property for semigroup of nonexpansive mappings, in: Fixed Point Theory and Applications, M.A. Thera, J.B. Baillon (eds.), Longman Sci. Tech., Harlow, 1991, 303-313.
- [16] A.T.-M. Lau, P.F. Mah, Fixed point property for Banach algebras associated to locally compact groups, J. Functional Anal. 258 (2010) 357-372
- [17] A.T.-M. Lau, Y. Zhang, Fixed point properties for semigroups of nonlinear mappings and amenability, J. Funct. Anal. 263 (2012) 2949-2977.
- [18] C. Lennard, A new convexity property that implies a fixed point property for L_l , Studia Math. 100 (2) (1991) 95-108.
- [19] T.C. Lim, Asymptotic centers and nonexpansive mappings in conjugate Banach spaces, Pacific J. Math. 90 (1980) 135-143.
- [20] T.C. Lim, Characterization of normal structures, Proc. Amer. Math. Soc. 43 (1974) 313-319.
- [21] N. Randrianantoanina, Fixed point properties of semigroups of nonexpansive mappings, J. Functional Anal. 258 (2010) 3801-3817.
- [22] N. Randrianantoanina, Fixed point properties in Hardy spaces, J. Math. Anal. Appl. 371 (2010) 16-24.
- [23] S. Saeidi, Common fixed point property through analysis of retractions, J. Fixed Point Theory Appl. 17 (2015) 483-494.
- [24] S. Saeidi, Nonexpansive retractions and fixed point properties, J. Math. Anal. Appl. 391 (2012) 99-106.