
Filomat 31:6 (2017), 1781–1789
DOI 10.2298/FIL1706781W

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. A strongly direct sum decomposition given by a strongly nil-clean endomorphism motivates us
to introduce a class of new Drazin inverses, which is called strong Drazin inverse. In this paper, some basic
properties of the strong Drazin inverse are obtained. We show the Cline’s Formula and Jacobson’s Lemma
for the strong Drazin inverse. Further, some additive results for the strong Drazin inverse are presented
under additional conditions that ab = 0 or ab = ba.

1. Introduction

Throughout this paper, R denotes an associative ring with identity. N(R) will denote the set of all
nilpotent elements in R. For any element a ∈ R, we define the commutant and double commutant of a
by comm(a) = {x ∈ R : ax = xa}, comm2(a) = {x ∈ R : xy = yx for any y ∈ comm(a)}, respectively. Other
standard notations in ring theory follow those in [18].

An element a in a ring R is called strongly π-regular if an
∈ Ran+1

∩ an+1R for some n ≥ 1. The strongly
π-regularity plays an important role in ring theory and C∗-algebras (see [1, 4, 12, 15]). Azumaya [3] proved
that a ∈ R is strongly π-regular if and only if there exists x ∈ R such that ax = xa and an = an+1x for some
n ≥ 1. Further, we may choose x here to satisfy x2a = x. As it turned out, the notion of a strongly π-regular
element is identical to the notion of a Drazin invertible element, which was first introduced by M. P. Drazin
[11] in 1958. The theory of Drazin inverses is very useful in linear algebra, functional analysis, matrix
computations, differential equations and in various applications of matrices (see [6, 20, 25, 27, 28]).

Given a right R-module MR, and let ϕ ∈ End(MR). Then ϕ is Drazin invertible if and only if there exists
a direct sum decomposition M = A ⊕ B such that A and B are ϕ-invariant and such that ϕ|A ∈ End(AR)
is an isomorphism and ϕ|B ∈ End(BR) is nilpotent [21]. Moreover, Disel [10] introduced the notion of a
strongly nil-clean element and gave a characterization of the strongly nil-clean endomorphism as follows:
ϕ ∈ End(MR) is strongly nil-clean if and only if there exists a direct sum decomposition M = A ⊕ B such
that A and B are ϕ-invariant and such that (1 − ϕ)|A ∈ End(AR) and ϕ|B ∈ End(BR) are both nilpotent. By
straightforward observing of the direct sum decompositions, the strong nil-cleanness is Drazin invertible.
This motivates us to introduce a class of new Drazin inverses corresponding to the strong nil-cleanness. An
element a in a ring R is said to be strongly Drazin invertible (s-Drazin invertible, for short) if there exists
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an element x ∈ R such that x2a = x, ax = xa and a − ax is nilpotent. Here, x is unique (denoted by a′), and is
called a strong Drazin inverse for a ∈ R.

In Section 3, we show Cline’s Formula and Jacobson’s Lemma for the s-Drazin inverse. Further, some
additive results for the strong Drazin inverse are presented under additional conditions in Section 4. For
example, we prove that if a, b are s-Drazin invertible and ab = 0, then a + b is s-Drazin invertible and the
s-Drazin inverse can be expressed by a, b, a′ and b′. Moreover, let a, b ∈ R be s-Drazin invertible and ab = ba.
Then a + b is Drazin invertible if and only if 1 + a′b is Drazin invertible.

2. Strong Drazin Inverses in Rings

In the ring-theoretic setting, the notion of a Drazin invertible element is identical to the notion of a
strongly π-regular element by Azumaya’s Lemma [3]. The following important result about strongly
π-regular endomorphisms is proved in [2, 21].

Lemma 2.1. Let R be a ring, and let MR be a right R-module. Then the following are equivalent:
(1) ϕ ∈ End(MR) is Drazin invertible.
(2) ϕ ∈ End(MR)is strongly π-regular.
(3) M = Im(ϕn) ⊕ Ker(ϕn) for some n ≥ 1.
(4) there exists a direct sum decomposition M = A ⊕ B such that A and B are ϕ-invariant and such that

ϕ|A ∈ End(AR) is an isomorphism and ϕ|B ∈ End(BR) is nilpotent.

We express Lemma 2.1(4) with the following diagram:

M = A
⊕

ϕ|A �

��

B

ϕ|B nilpotent

��
M = A

⊕
B

An element a in a ring R is said to be strongly nil-clean if there exits an idempotent p ∈ comm(a) such
that a − p is nilpotent. Replacing the automorphism ϕ|A as above by a nilpotent endomorphism (1 − ϕ)|A,
A.J. Diesl [10] gave a characterization of the strongly nil-clean endomorphism.

Lemma 2.2. Let R be a ring, and let MR be a right R-module. Then the following are equivalent:
(1) ϕ ∈ End(MR) is strongly nil-clean.
(2) there exists χ ∈ End(MR) such that χ2ϕ = χ, ϕχ = χϕ and ϕ − ϕχ is nilpotent.
(3) M = Ker((1 − ϕ)n) ⊕ Ker(ϕn) for some n ≥ 1.
(4) there exists a direct sum decomposition M = A ⊕ B such that A and B are ϕ-invariant and such that

(1 − ϕ)|A ∈ End(AR) and ϕ|B ∈ End(BR) are both nilpotent.
In this case, ϕ is also Drazin invertible in End(MR).

Before giving the proof of Lemma 2.2, we first include a diagram corresponding to Lemma 2.2(4) which
may be compared with the diagram following Lemma 2.1.

M = A
⊕

(1−ϕ)|A nilpotent
��

B

ϕ|B nilpotent

��
M = A

⊕
B

Proof of Lemma 2.2. (1)⇔ (4) is due to A.J. Diesl (see [10]).
(1) ⇒ (2). Suppose that ϕ is strongly nil-clean. Then there exists ρ2 = ρ ∈ End(MR) such that ϕρ = ρϕ

and ϕ − ρ is nilpotent. Set
χ = (ϕ + 1 − ρ)−1ρ.
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The hypothesis ϕρ = ρϕ implies that ϕ, ρ and (ϕ + 1 − ρ)−1 commute with each other. Then, in terms of
ρ2 = ρ,

ϕχ = χϕ = (ϕ + 1 − ρ)−1ρ(ϕ + 1 − ρ) = ρ.

Hence, we have χ2ϕ = χ(ϕχ) = χρ = χ and ϕ − ϕχ = ϕ − ρ is nilpotent.
(2)⇒ (3). Suppose that (ϕ − ϕχ)n = 0 for some n ≥ 1, and let

(1 − ϕ)n = 1 − a1ϕ − · · · − anϕ
n,

where ai ∈ R for i = 1, 2, · · · ,n. Let m ∈ Ker((1 − ϕ)n) ∩ Ker(ϕn). Then (1 − ϕ)n(m) = 0 = ϕn(m). This implies
that

m = a1ϕ(m) + · · · + an−1ϕ
n−1(m).

Again by ϕn(m) = 0, we have ϕn−1(m) = a1ϕn(m) + · · · + an−1ϕ2n−2(m) = 0. Similarly, we can get ϕi(m) =
0, (i = n − 2, · · · , 2, 1), and so m = 0.

Next, we will show that, for any m ∈ M, m = ϕχ(m) + (1 − ϕχ)(m) where ϕχ(m) ∈ Ker((1 − ϕ)n) and
(1 − ϕχ)(m) ∈ Ker(ϕn). Note that ϕχ = χϕ, (ϕ − ϕχ)n = 0 and ϕχ is an idempotent endomorphism. Then

(1 − ϕ)nϕχ(m) = (ϕχ − ϕ2χ)n(m) = (ϕ2χ2
− ϕ2χ)n(m) = (ϕχ − ϕ)nϕχ(m) = 0,

and
ϕn(1 − ϕχ)(m) = [(ϕ − ϕχ)(1 − ϕχ)]n(m) = (ϕ − ϕχ)n(1 − ϕχ)(m) = 0,

as required.
(3)⇒ (1) is completed easily by taking A = Ker((1 − ϕ)n) and B = Ker(ϕn).
Finally, note that (1 − ϕ)|A being nilpotent implies ϕ|A to be isomorphic on A. Comparing the diagrams

corresponding Lemma 2.1(4) and Lemma 2.2(4), one can give a straightforward proof for the remaining
part.

Definition 2.3. An element a in a ring R is said to be strongly Drazin invertible (s-Drazin invertible, for short)
if there exists an element x ∈ R such that

x2a = x, ax = xa and a − ax is nilpotent.

In this case, x is called a strong Drazin inverse of a. The set of all strongly Drazin invertible elements in R will be
denoted by RsD.

Next, we will prove the s-Drazin inverse to be unique. The initial idea of the following result was given
in [11] by M. P. Drazin.

Theorem 2.4. Let R be a ring and a ∈ R. Then a has at most one s-Drazin inverse in R, and, if the s-Drazin inverse
of a exists, it commutes with every element of R which commutes with a.

Proof. Let x be the s-Drazin inverses of a. Note that ax = xa and x2a = x. Then we have (ax)2 = ax. Since
a− ax is nilpotent, it follows that a(1− ax) = (a− ax)(1− ax) is also nilpotent. So, x is the Drazin inverse of a.
Since the Drazin inverse of a is unique and double commutes with a, we conclude that the s-Drazin inverse
x of a is unique and double commutes with a.

Given any s-Drazin invertible element a of a ring R. We will denote the s-Drazin inverse of a by a′ ∈ R.
The least positive integer n for (a − aa′)n = 0 is called the strong Drazin index of a, denoted by ind(a).

Example 2.5. (1) All nilpotent elements and idempotent elements of a ring R are s-Drazin invertible. In fact, let
e2 = e ∈ R and let an = 0 for n ≥ 1. It is verified directly that e′ = e with ind(e) = 1 and a′ = 0 with ind(a) = n.
However, for an integral domain ring R, we can get RsD = {0, 1}. In particular, 2 is invertible but not s-Drazin
invertible in complex number field C.
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(2) LetZ2 be the ring of integers modulo 2. Then every element of the 2 × 2 upper triangular matrix ring T2(Z2)
is s-Drazin invertible. We will show a general result about the s-Drazin invertiblity of the supper triangular matrix
in the Section 4 (see Lemma 4.1).

(3) Let Mn(C) be a n × n matrix ring over the complex number field C. Note that Mn(C) � End(Cn). Then, by
Lemma 2.2, A ∈ Mn(C) is s-Drazin invertible if and only if there exists a direct sum decomposition Cn = V1 ⊕ V2
such that V1 and V2 are A-invariant and such that A|V1 and (I − A)|V2 are both nilpotent if and only if eigenvalues
of A are only 0 or 1 if and only if A is similar to the Jordan matrix J = dia1(J1, J2, · · · , Js), where J1, · · · , Jt and
It+1 − Jt+1, · · · , Is − Js are all nilpotent Jordan block for 1 ≤ t ≤ s. In this case, there exists an invertible matrix P such
that the s-Drazin inverse A′ = P−1dia1(O, · · · ,O, J−1

t+1, · · · , J
−1
s )P.More examples of s-Drazin invertible matrices over

some special rings can be found in [7].

A generalized Drazin inverse was defined and investigated by Koliha [16] in complex Banach algebra.
Koliha and Patrı́cio [17] studied further quasipolar elements and generalized Drazin inverses of rings. We
show the relations of various type of inverses by the following diagram. As we see in the Example 2.5(1),
invertible elements or group invertible elements may not be s-Drazin invertible in general.

                                                    Rings 

Fig. 1. Various types of inverses 

g-Drazin invertible elements

Drazin invertible elements

Group  invertible elements 

I nvertible

elements 

s-Drazin

invertible

elements 

Proposition 2.6. Let R be a ring and let a ∈ R. If a is s-Drazin invertible, then an is s-Drazin invertible for n ≥ 2.
In this case, (an)′ = (a′)n and ind(an) ≤ ind(a).

Proof. Suppose that a is s-Drazin invertible. Note that

an
− an(a′)n = (a − aa′)[an−1 + · · · + (aa′)n−1].

Then we can check directly that (a′)n is a s-Drazin inverse of an and ind(an) ≤ ind(a).

Proposition 2.7. Let a ∈ R be s-Drazin invertible. Then the s-Drazin inverse a′ is also s-Drazin invertible. In this
case, (a′)′ = a2a′ and ind(a′) ≤ ind(a).

Proof. Let a′ be a s-Drazin inverse of a. Set x = a2a′. It follows that a′x = xa′ from aa′ = a′a. Note that a − aa′

is nilpotent and (a′)2a = a′. Then we get a′ − a′x = a′ − (a′)2a2 = (a′)2a − a′a = −a′(a − aa′) is nilpotent, and
x2a′ = a4(a′)3 = a2a′ = x. Thus, we prove that a′ is s-Drazin invertible and (a′)′ = x. Suppose that ind(a) = n.
Then (a′ − a′x)n = (−a′)n(a − aa′)n = 0. This shows that ind(a′) ≤ n, as required.

Remark 2.8. Let a ∈ R be s-Drazin invertible. Then an (n > 1) and a′ are both s-Drazin invertible. However, ind(an)

or ind(a′) need not be same as ind(a) in general. Take A =

(
0 1
0 0

)
∈ M2(C). Note that A2 = O. Then A is s-Drazin

invertible with A′ = O and ind(A) = 2. But ind(A2) = ind(A′) = 1.
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Proposition 2.9. Let R be a ring with involution. Then a is s-Drazin invertible if and only if a∗ is s-Drazin invertible.
In this case, (a∗)′ = (a′)∗ and ind(a) = ind(a∗).

Proof. Suppose that a is s-Drazin invertible with ind(a) = n. Then we have a∗ − a∗(a′)∗ ∈ N(R), a∗(a′)∗ = (a′)∗a∗

and [(a′)∗]2a∗ = (a′)∗ by applying the properties of the involution. Here, ind(a) = ind(a∗) is clear since (x∗)∗ = x
for any x ∈ R.

3. Cline’s Formula and Jacobson’s Lemma for the s-Drazin inverse

Cline [9] proved that if ab is Drazin invertible, then so is ba, and (ba)D = b((ab)D)2a. This equality is
called Cline’s formula. It provides a technique to present the Drazin inverse of the sum of two elements
(see [14, 23, 26, 29]). In this section, we also show Cline’s formula for the s-Drazin inverse.

Theorem 3.1. Let a, b ∈ R. If ab is s-Drazin invertible in R with ind(ab) = n, then ba is also s-Drazin invertible. In
this case, (ba)′ = b[(ab)′]2a and ind(ba) ≤ n + 1.

Proof. Set α = ab and β = ba. Then we have aβ = αa and βb = bα. Suppose that there exists α′ ∈ R such that
α(1 − α′) ∈ N(R), αα′ = α′α and (α′)2α = α′. Clearly, α′ is also a Drazin inverse of α. Take x = b(α′)2a. By
[9], we know that x is a Drazin inverse of β. This implies that βx = xβ and x2β = x. So it is sufficient to show
β − βx is nilpotent.

Observing that
β − βx = β − (βb)(α′)2a = β − bα(α′)2a = β − bα′a = b(1 − α′)a,

we derive
[b(1 − α′)a]n+1 = b(1 − α′)(α − αα′)na = 0.

Thus, β − βx is nilpotent. This shows that β is s-Drazin invertible and β′ = b(α′)2a with ind(β) ≤ n + 1.

Using the technique of block matrices, we obtain the following result.

Proposition 3.2. Let A ∈ Mm×n(R) and B ∈ Mn×m(R). If AB has a s-Drazin inverse in Mm(R), then so does BA in
Mn(R) and (BA)′ = B[(AB)′]2A.

In 2009, Patrı́cio and Costa [22] asked if the Drazin invertibility of 1 − ab implies that of 1 − ba. Patrı́cio-
Hartwig [24] and Cvetković-Ilić-Harte [8] answered independently this question affirmatively. Lam and
Nielsen [19] investigated further Jacobson’s Lemma for Drazin inverses, π-regular elements and unit π-
regular elements in arbitrary rings. Now, we can prove that Jacobson’s Lemma also holds for the s-Drazin
inverse.

Lemma 3.3. If a is s-Drazin invertible in R with ind(a) = n, then 1 − a is also s-Drazin invertible. In this case,
(1 − a)′ = Σn−1

i=0 ai(1 − aa′) and ind(1 − a) = n.

Proof. Suppose that a is s-Drazin invertible in R with the s-Drazin inverse a′. Since a − aa′ is nilpotent, we
have 1 − a + aa′ = 1 − (a − aa′) is a unit in R. Set

x = (1 − a + aa′)−1(1 − aa′).

Note that aa′ is an idempotent. Then

(1 − a)(1 − aa′) = (1 − a + aa′)(1 − aa′).

Thus, we have

(1 − a) − (1 − a)x = (1 − a) − (1 − a + aa′)(1 − a + aa′)−1(1 − aa′)
= aa′ − a ∈ N(R).
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We can show by a routine way that x2(1 − a) = x and (1 − a)x = x(1 − a). This shows that x is a s-Drazin
inverse of the element 1− a and ind(1− a) ≤ ind(a). Similarly, ind(a) ≤ ind(1− a) since a = 1− (1− a). Thus,
we get ind(1 − a) = n. Next, we will show that x = Σn−1

i=0 ai(1 − aa′). From (a − aa′)n = 0, we know

(1 − a + aa′)−1 = Σn−1
i=0 (a − aa′)i.

Note that aa′ = a′a and 1 − aa′ is an idempotent. Then

x = (1 − a + aa′)−1(1 − aa′)

= Σn−1
i=0 (a − aa′)i(1 − aa′)

= Σn−1
i=0 ai(1 − aa′),

as required.

Theorem 3.4. Let a, b ∈ R. If 1 − ab is s-Drazin invertible with ind(1 − ab) = n, then so is 1 − ba and the s-Drazin
inverse

(1 − ba)′ = Σn
i=0(ba)i

− b[Σn
i=0Σ

n−1
j=0 (ab)i(1 − ab) j][1 − (1 − ab)(1 − ab)′]a.

Proof. Note that ab = 1 − (1 − ab). Then one can show that, by Lemma 3.3, ab is s-Drazin invertible in R and

(ab)′ = [Σn−1
j=0 (1 − ab) j][1 − (1 − ab)(1 − ab)′].

So ba is also s-Drazin invertible and (ba)′ = b[(ab)′]2a with ind(ba) ≤ n + 1 by Theorem 3.1. Again by Lemma
3.3, we can prove that 1 − ba is s-Drazin invertible and

(1 − ba)′ = [Σn
i=0(ba)i][1 − (ba)(ba)′]

= [Σn
i=0(ba)i][1 − (ba)b[(ab)′]2a]

= [Σn
i=0(ba)i][1 − b(ab)[(ab)′]2a]

= [Σn
i=0(ba)i][1 − b(ab)′a]

= [Σn
i=0(ba)i][1 − b[Σn−1

j=0 (1 − ab) j][1 − (1 − ab)(1 − ab)′]a]

= Σn
i=0(ba)i

− b[Σn
i=0Σ

n−1
j=0 (ab)i(1 − ab) j][1 − (1 − ab)(1 − ab)′]a.

The proof is completed.

4. Additive Results for s-Drazin Inverse

The problem of Drazin inverse of the sum of two Drazin invertible elements was first considered by
Drazin in [11], it was proved that (a + b)D = aD + bD under the condition that ab = ba = 0 in associative rings.
Recently, the representations of the Drazin inverse have been studied by many authors. Hartwig, Wang
and Wei [14] presented the formula for (a + b)D when ab = 0. Zhuang, Chen et al [30] showed that, under
the condition ab = ba, a + b is Drazin invertible if and only if 1 + aDb is Drazin invertible. More additive
results for Drazin inverse can be found in [23, 26, 27, 29]. We will present some additive results for s-Drazin
inverse under the conditions that ab = 0 or ab = ba.

Lemma 4.1. Let R be a ring. If a and b are both s-Drazin invertible with ind(a) = r and ind(b) = s, then A =

(
b c
0 a

)
is s-Drazin invertible in M2(R) and the s-Drazin inverse

A′ =

(
b′ z
0 a′

)
,

where z = (b′)2[Σr−1
i=0 (b′)icai](1 − aa′) + (1 − bb′)[Σs−1

i=0 bic(a′)i](a′)2
− b′ca′.
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Proof. Suppose that a and b have s-Drazin inverses a′ and b′ in R, respectively. By Lemma 2.2, a′ and b′ are

also Drazin inverses for a and b, respectively. This implies that X =

(
b′ z
0 a′

)
is a Drazin inverse of A by [13],

where z = (b′)2[Σr−1
i=0 (b′)icai](1− aa′) + (1− bb′)[Σs−1

i=0 bic(a′)i](a′)2
− b′ca′. Thus, we have AX = XA and X2A = X.

It is sufficient to show that A − AX is nilpotent. Note that a − aa′ and b − bb′ are both nilpotent in R. Then

A − AX =

(
b − bb′ c − bz − ca′

0 a − aa′

)
is also nilpotent, as required.

Theorem 4.2. Let R be a ring. If a, b are both s-Drazin invertible and ab = 0, then a + b is s-Drazin invertible and
the s-Drazin inverse

(a + b)′ = (1 − bb′)[Σs−1
i=0 bi(a′)i+1] + [Σr−1

i=0 (b′)i+1ai](1 − aa′),

where ind(a) = r and ind(b) = s.

Proof. Let A =

(
1
a

)
and B = (b, 1). Then AB =

(
b 1
0 a

)
since ab = 0, and BA = a + b. Note that a and b are

both s-Drazin invertible in R. Thus, by Lemma 4.1, AB is s-Drazin invertible in M2(R), and (AB)′ =

(
b′ z
0 a′

)
where z = (b′)2[Σr−1

i=0 (b′)iai](1 − aa′) + (1 − bb′)[Σs−1
i=0 bi(a′)i](a′)2

− b′a′. By Proposition 3.2, BA = a + b has a
s-Drazin inverse in R and

(a + b)′ = (BA)′ = B((AB)′)2A

= (b, 1)
(
b′ z
0 a′

)2 (
1
a

)
= b′ + bb′za + bza′a + a′

= (1 − bb′)[Σs
i=0bi(a′)i+1] + [Σr

i=0(b′)i+1ai](1 − aa′)

= (1 − bb′)[Σs−1
i=0 bi(a′)i+1] + [Σr−1

i=0 (b′)i+1ai](1 − aa′).

The proof is completed.

The following lemma is well known (also see [30, Lemma 1]).

Lemma 4.3. Let a, b ∈ R be nilpotent and ab = ba. Then a + b is also nilpotent.

Lemma 4.4. Let a, b ∈ R be s-Drazin invertible and ab = ba. Then
(1) a, b, a′ and b′ commute each other.
(2) ab is s-Drazin invertible and (ab)′ = b′a′.

Proof. (1). Note that a′ and b′ are also Drazin inverses for a and b, respectively. Then it follows from [30,
Lemma 2(1)].

(2). By [30, Lemma 2(2)], the element ab is Drazin invertible with the Drazin inverse b′a′. This implies
that (ab)(b′a′) = (b′a′)(ab) and (b′a′)2ab = b′a′. Next, it is sufficient to show that ab − abb′a′ is nilpotent in R.
Since a− aa′ and b− bb′ are both nilpotent, it follows that ab− abb′a′ = b(a− aa′) + aa′(b− bb′) is nilpotent by
Lemma 4.3.

Theorem 4.5. Let a, b ∈ R be s-Drazin invertible and ab = ba. Then a + b is s-Drazin invertible if and only if 1 + a′b
is s-Drazin invertible. Moreover, we have

(a + b)′ = (1 + a′b)′a′ + b′[1 + (a − aa′)b′]−1(1 − aa′),

and
(1 + a′b)′ = 1 − aa′ + a2a′(a + b)′.
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Proof. Suppose that 1+a′b is s-Drazin invertible. Then, by Lemma 4.4(1), a, a′, b, b′ and (1+a′b)′ commute each
other. Note that a−aa′ is nilpotent. Then 1+(a−aa′)b′ is a unit in R and commutes with a, a′, b, b′. Since (a′)2a =
a′ and aa′ = a′a, we get 1−aa′ is an idempotent and aa′(1−aa′) = 0. Set x = (1+a′b)′a′+b′[1+(a−aa′)b′]−1(1−aa′).
Next, we will show that

(i) (a + b)x = x(a + b), (ii) x2(a + b) = x, (iii) (a + b) − (a + b)x is nilpotent.

(i). It follows from Lemma 4.4(1).
(ii). Note that a′(1 − aa′) = 0. Then

x2 = [(1 + a′b)′]2(a′)2 + (b′)2[1 + (a − aa′)b′]−2(1 − aa′).

From (a′)2a = a′, we have

[(1 + a′b)′]2(a′)2(a + b) = [(1 + a′b)′]2(1 + a′b)a′ = (1 + a′b)′a′.

Since (b′)2b = b′ and 1 − aa′ is an idempotent, we can calculate directly

(∗) (1 − aa′)(b′)2(a + b) = (1 − aa′)(1 + ab′)b′ = [1 + (a − aa′)b′](1 − aa′)b′.

Thus, we can simplify

x2(a + b) = [(1 + a′b)′]2(a′)2(a + b) + [1 + (a − aa′)b′]−2(1 − aa′)(b′)2(a + b)

= (1 + a′b)′a′ + [1 + (a − aa′)b′]−1(1 − aa′)b′

= x.

(iii). Note that
(1 + a′b)′a′(a + b) = (1 + a′b)′(a′)2a(a + b) = (1 + a′b)′(1 + a′b)aa′.

And from (∗) and (b′)2b = b′, we have

b′[1 + (a − aa′)b′]−1(1 − aa′)(a + b) = (b′)2b[1 + (a − aa′)b′]−1(1 − aa′)(a + b)

= b[1 + (a − aa′)b′]−1[1 + (a − aa′)b′](1 − aa′)b′

= (1 − aa′)bb′.

Hence,

(a + b) − (a + b)x = (a + b) − (1 + a′b)′(1 + a′b)aa′ − (1 − aa′)bb′

= [(1 + a′b) − (1 + a′b)′(1 + a′b)]aa′ + (a − aa′)(1 + a′b) + (b − bb′)(1 − aa′).

Note that a − aa′, b − bb′ and (1 + a′b) − (1 + a′b)′(1 + a′b) are all nilpotent. According to Lemma 4.3, it is
enough to prove that (a + b) − (a + b)x is nilpotent. This shows that a + b is s-Drazin invertible with the
s-Drazin inverse x.

Conversely, suppose that a + b is s-Drazin invertible. Set a1 = 1 − aa′ and b1 = a′(a + b). Then we may
rewrite 1 + a′b = a1 + b1. Note that a1 is an idempotent and a′ is s-Drazin invertible with (a′)′ = a2a′ by
Proposition 2.7. Then by Lemma 4.4(2), we know that b1 is s-Drazin invertible and

(b1)′ = [a′(a + b)]′ = (a + b)′a2a′.

Observing
1 + a′1b1 = 1 + a1b1 = 1.

This is enough to show that a1 + b1 is s-Drazin invertible and

(1 + a′b)′ = (a1 + b1)′ = 1 − aa′ + a2a′(a + b)′.
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Corollary 4.6. Let a, b ∈ R be s-Drazin invertible with ind(a) = k, and let ab = ba. If 1 + a′b is s-Drazin invertible,
then a + b is s-Drazin invertible and

(a + b)′ = (1 + a′b)′a′ + Σk−1
i=0 (−a)i(b′)i+1(1 − aa′).

Proof. It follows that [(a − aa′)b′]k = 0 from ind(a) = k. This implies that

[1 + (a − aa′)b′]−1 = Σk−1
i=0 (aa′ − a)i(b′)i.

Note that 1 − aa′ is an idempotent. Then (aa′ − a)i(1 − aa′) = (−a)i(1 − aa′). Thus, we get

(a + b)′ = (1 + a′b)′a′ + b′[1 + (a − aa′)b′]−1(1 − aa′)

= (1 + a′b)′a′ + Σk−1
i=0 (−a)i(b′)i+1(1 − aa′).

The proof is completed.
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