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Abstract. A new hybrid conjugate gradient algorithm is considered. The conjugate gradient parameter βk

is computed as a convex combination of βCD
k and βLS

k . The parameter θk is computed in such a way that the
conjugacy condition is satisfied.

The strong Wolfe line search conditions are used.
Numerical comparisons show that the present hybrid conjugate gradient algorithm often behaves better

than some known algorithms.

1. Introduction

We consider the nonlinear unconstrained optimization problem

min{ f (x) : x ∈ Rn
}, (1.1)

where f : Rn
→ R is a continuously differentiable function, bounded from below.

There exist many different methods for solving the problem (1.1).
Here we are interested in conjugate gradient methods, which have low memory requirements and strong

local and global convergence properties [8].
To solve the problem (1.1), starting from an initial point x0 ∈ Rn, the conjugate gradient method generates

a sequence {xk} ⊂ R
n such that

xk+1 = xk + tkdk, (1.2)

where tk > 0 is a step size, received from the line search, and the directions dk are given by [3], [4]

d0 = −10, dk+1 = −1k+1 + βksk. (1.3)

In the last relation, βk is the conjugate gradient parameter, sk = xk+1 − xk, 1k = ∇ f (xk).
Let the norm ‖ · ‖ be the Euclidean norm.
Now, we denote

yk = 1k+1 − 1k. (1.4)
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An excellent survey of conjugate gradient methods is given by Hager and Zhang [14]. Different conjugate
gradient methods correspond to different values of the scalar parameter βk.

A hybrid conjugate gradient method is a certain combination of different conjugate gradient methods;
it is made to improve the behavior of these methods and to avoid the jamming phenomenon.

In order to choose the parameter βk for the method in the present paper, we mention the following
choices of βk [2]:

Fletcher and Reeves: [12] βFR
k =

‖1k+1‖
2

‖1k‖
2 ; (1.5)

Dai and Yuan: [7] βDY
k =

‖1k+1‖
2

yT
k sk

; (1.6)

Conjugate Descent, proposed by Fletcher: [11] βCD
k =

‖1k+1‖
2

−1T
k sk

. (1.7)

The conjugate gradient methods with the choice of βk taken in (1.5), (1.6) and (1.7), have strong conver-
gence properties, but they may have the modest practical performance, due to jamming [2], [3].

From the other side, methods of Polak-Ribiére [19] and Polyak [20], Hestenes and Stiefel [15] and also
Liu and Storey [17] in general may not be convergent, but usually they have better computer performances
[3]. The choices of βk in these methods are, respectively [2]:

βPRP
k =

1T
k+1yk

‖1k‖
2 , (1.8)

βHS
k =

1T
k+1yk

yT
k sk

, (1.9)

βLS
k =

1T
k+1yk

−1T
k sk

. (1.10)

One important difference between FR and CD is that with CD, the sufficient descent holds for a strong

Wolfe line search (the constraint σ ≤
1
2

that arose with FR, is not needed for CD) [14].

Moreover, for a line search that satisfies the generalized Wolfe conditions with σ1 < 1 and σ2 = 0, it can
be shown that CD method is globally convergent [14].

On the other hand, not much research has been done on the choice βLS
k for the update parameter, except

for the paper [17], but we expect that the techniques developed for the analysis of the PRP method should
apply to the LS method [14].

2. Convex combination

The parameter βk is chosen here such that it presents the convex combination of (1.7) and (1.10).

Now we define the next conjugate gradient parameter

βhyb
k = (1 − θk) · βLS

k + θk · β
CD
k . (2.1)

So, we can write

d0 = −10, dk+1 = −1k+1 + βhyb
k sk. (2.2)
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The parameter θk is a scalar parameter which we have to determine. We use here the strong Wolfe line
search, i.e., we are going to find a step length tk, such that:

f (xk + tkdk) − f (xk) ≤ δtk1
T
k dk, (2.3)

and

|1(xk + tkdk)Tdk| ≤ −σ1
T
k dk. (2.4)

It is obvious that, if θk = 0, then βhyb
k = βLS

k , and if θk = 1, then βhyb
k = βCD

k .

On the other side, if 0 < θk < 1, then βhyb
k is a proper convex combination of the parameters βCD

k and βLS
k .

Having in view the relations (1.7) and (1.10), the relation (2.1) becomes

βhyb
k = (1 − θk) ·

1T
k+1yk

−1T
k sk

+ θk ·
1T

k+11k+1

−1T
k sk

, (2.5)

so the relation (2.2) becomes

d0 = −10, dk+1 = −1k+1 + (1 − θk)
1T

k+1yk

−1T
k sk
· sk + θk ·

1T
k+11k+1

−1T
k sk

· sk. (2.6)

We shall find the value of the parameter θk in such a way that the conjugacy condition

yT
k dk+1 = 0 (2.7)

holds.

Firstly, we multiply both sides of the relation (2.6) by yT
k from the left:

yT
k dk+1 = −yT

k 1k+1 + (1 − θk)
1T

k+1yk

−1T
k sk
· yT

k sk + θk
‖1k+1‖

2

−1T
k sk
· yT

k sk.

Using (2.7), we get

θk =
−(1T

k+1yk)(1T
k+1sk)

(1T
k+11k)(yT

k sk)
. (2.8)

Finally, having in view the relation (2.8), we define:

θk =



−(1T
k+1yk)(1T

k+1sk)

(1T
k+11k)(yT

k sk)
, 0 ≤

−(1T
k+1yk)(1T

k+1sk)

(1T
k+11k)(yT

k sk)
≤ 1;

0,
−(1T

k+1yk)(1T
k+1sk)

(1T
k+11k)(yT

k sk)
< 0;

1,
−(1T

k+1yk)(1T
k+1sk)

(1T
k+11k)(yT

k sk)
> 1.

(2.9)

For some later considerations, we remind to the next lemma.

Lemma 2.1. [18] Let f ∈ C(Rn). Let dk be a descent direction in the point xk, and suppose that the function f is
bounded from below along the direction {xk + tdk|t > 0}. Then if 0 < δ < σ < 1, there exist the intervals inside which
the step size satisfies Wolfe conditions and strong Wolfe conditions.
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3. Algorithm and the Sufficient Descent Condition

Algorithm LSCDCC
Input parameters: ε > 0, x0, k := 0, 0 < δ ≤ σ < 1, β < 1, t0 = 1.

Step 1. If ‖1k‖ ≤ ε, STOP.

Step 2. Determine the biggest jk, such that for tk = β jk it holds

f (xk + tkdk) − f (xk) ≤ δtk1
T
k dk,

|1T
k+1dk| ≤ −σ1

T
k dk.

Set xk+1 = xk + tkdk.

Step 3. If (1T
k+11k)(yT

k sk) = 0, then θk = 0, else find θk from (2.9).

Step 4.

βhyb
k = (1 − θk) ·

1T
k+1yk

−1T
k sk

+ θk ·
1T

k+11k+1

−1T
k sk

. (3.1)

Step 5. If

|1T
k+11k| > a‖1k+1‖

2, (3.2)

then dk+1 = −1k+1, else dk+1 = −1k+1 + βhyb
k · sk.

Step 6. k := k + 1, go to Step 1.

For further considerations we need the next assumptions.

Assumption 3.1. The level set S = {x ∈ Rn : f (x) ≤ f (x0)} is bounded.

Assumption 3.2. In a neighborhoodN of S, the function f is continuously differentiable and its gradient is Lipschitz
continuous, i.e. there exists a constant L > 0, such that ‖∇ f (x) − ∇ f (y)‖ ≤ L‖x − y‖, for all x, y ∈ N .

Under Assumption 3.1 and Assumption 3.2 on f , there exists a constant Γ ≥ 0, such that

‖∇ f (x)‖ ≤ Γ, (3.3)

for all x ∈ S [2].

Theorem 3.1. Let Assumptions 3.1 and 3.2 hold. Let the constant a in the algorithm LSCDCC be such that

0 < a <
1
σ
− 1. (3.4)

Then algorithm LSCDCC is well defined and dk satisfies the sufficient descent condition for all k.
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Proof. From Lemma 2.1 we know that Step 2 of the algorithm LSCDCC is well defined if dk is a descent
direction. We shall show that dk satisfies the sufficient descent condition, and that will yield that dk is a
descent direction.

For k = 0, it holds d0 = −10, so 1T
0 d0 = −‖10‖

2, and we conclude that sufficient descent condition holds
for k = 0.

Next it holds
dk+1 = −1k+1 + βhyb

k sk,

i.e.
dk+1 = −1k+1 + ((1 − θk)βLS

k + θkβ
CD
k )sk.

We can write
dk+1 = −(θk1k+1 + (1 − θ)1k+1) + ((1 − θk)βLS

k + θkβ
CD
k )sk.

It follows that
dk+1 = θk(−1k+1 + βCD

k sk) + (1 − θk)(−1k+1 + βLS
k sk),

wherefrom

dk+1 = θkdCD
k+1 + (1 − θk)dLS

k+1. (3.5)

Multiplying (3.5) by 1T
k+1 from the left, we get

1T
k+1dk+1 = θk1

T
k+1dCD

k+1 + (1 − θk)1T
k+1dLS

k+1. (3.6)

Firstly, let θk = 0. Then dk+1 = dLS
k+1. Remind that

dLS
k+1 = −1k+1 + βLS

k sk

⇒ 1T
k+1dLS

k+1 ≤ −‖1k+1‖
2 +

(1T
k+1yk)(1T

k+1sk)

−1T
k sk

. (3.7)

We shall prove that

∣∣∣∣∣∣ (1T
k+1yk)(1T

k+1sk)

−1T
k sk

∣∣∣∣∣∣ ≤ µ‖1k+1‖
2, where 0 < µ < 1.

Consider the absolute value of the expression

T :=
(1T

k+1yk)(1T
k+1sk)

−1T
k sk

.

So,

|T| =

∣∣∣∣∣∣ (1T
k+1yk)(1T

k+1sk)

−1T
k sk

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣1T

k+1sk

−1T
k sk

∣∣∣∣∣∣ |1T
k+1yk|.

From the second strong Wolfe line search condition, it holds∣∣∣∣∣∣1T
k+1sk

−1T
k sk

∣∣∣∣∣∣ ≤ σ.
Now it holds

|T| ≤ σ|1T
k+1yk|. (3.8)

If (3.2) holds, then dk+1 = −1k+1, so 1T
k+1dk+1 = −‖1k+1‖

2, and so it is proved that dk+1 satisfies the sufficient
descent condition.
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If the relation (3.2) doesn’t hold, then it holds

|1T
k+11k| ≤ a‖1k+1‖

2. (3.9)

Because of yk = 1k+1 − 1k, from (3.8) we get

|T| ≤ σ|1T
k+1yk| (3.10)

= σ|1T
k+1(1k+1 − 1k)| (3.11)

≤ σ‖1k+1‖
2 + σ|1T

k+11k|, (3.12)

wherefrom, applying the relation (3.9), we get

|T| ≤ σ‖1k+1‖
2 + σa‖1k+1‖

2,

and having in view the relation (3.4), we can write

|T| ≤ µ‖1k+1‖
2, where 0 < µ = σ(1 + a) < 1.

Now, using the relation (3.7), we get

1T
k+1dLS

k+1 ≤ −‖1k+1‖
2 + µ‖1k+1‖

2,

and
1T

k+1dLS
k+1 ≤ −(1 − µ)‖1k+1‖

2.

Let’s denote K1 = (1 − µ); then we can write

1T
k+1dLS

k+1 ≤ −K1‖1k+1‖
2. (3.13)

Now let θk = 1. Then dk+1 = dCD
k+1.

Further, we are going to prove that the sufficient decent condition holds for CD method in the presence
of the strong Wolfe conditions, and this fact is mentioned in [14].

For k = 0 the proof is trivial one, having in view that dCD
0 = −10 and so 1T

0 dCD
0 = −‖10‖

2.
Having in view that

dCD
k+1 = −1k+1 + βCD

k sk, (3.14)

multiplying the relation (3.14) by 1T
k+1 from the left and using the expression (1.7), we get 1T

k+1dCD
k+1 =

−‖1k+1‖
2 +
‖1k+1‖

2

−1T
k sk
· (1T

k+1sk), wherefrom

1T
k+1dCD

k+1 = −‖1k+1‖
2(1 −

1T
k+1sk

−1T
k sk

) = −‖1k+1‖
2
·
−1T

k sk − 1
T
k+1sk

−1T
k sk

.

Using the strong Wolfe line search, now it holds

−1T
k sk − 1

T
k+1sk

−1T
k sk

≥
(σ − 1)1T

k sk

−1T
k sk

= 1 − σ > 0.

Now we have
1T

k+1dCD
k+1 ≤ −(1 − σ)‖1k+1‖

2.

Let’s denote 1 − σ = K2 > 0.
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So,

1T
k+1dCD

k+1 ≤ −K2‖1k+1‖
2. (3.15)

Now suppose that 0 < θk < 1, i.e., 0 < a1 ≤ θk ≤ a2 < 1.
From the relation (3.6), now we conclude

1T
k+1dk+1 ≤ a11

T
k+1dCD

k+1 + (1 − a2)1T
k+1dLS

k+1. (3.16)

Denote K = a1K1 + (1 − a2)K2; then we finally get

1T
k+1dk+1 ≤ −K‖1k+1‖

2. (3.17)

4. Convergence Analysis

Let Assumptions 3.1 and 3.2 hold.

In [7] it is proved that for any conjugate gradient method with the strong Wolfe line search, it holds:

Lemma 4.1. [7] Let Assumptions 3.1 and 3.2 hold. Consider the method (1.2), (1.3), where dk is a descent direction,
and tk is received from the strong Wolfe line search. If∑

k≥1

1
‖dk‖

2 = ∞, (4.1)

then

lim inf
k→∞

‖1k‖ = 0. (4.2)

Theorem 4.1. Consider the iterative method, defined by algorithm LSCDCC. Let all conditions of Theorem 3.1 hold.
Then either 1k = 0, for some k, or

lim inf
k→∞

‖1k‖ = 0. (4.3)

Proof. Suppose that 1k , 0, for all k. Then we have to prove (4.3).
Suppose, on the contrary, that (4.3) doesn’t hold. Then there exists a constant c > 0, such that

‖1k‖ ≥ c. (4.4)

Let D be the diameter of the level set S.
From (3.1), we get

‖βhyb
k ‖ ≤ |β

LS
k | + |β

CD
k |. (4.5)

It holds

|βLS
k | =

∣∣∣∣∣∣1T
k+1yk

−1T
k sk

∣∣∣∣∣∣ ≤ ‖1k+1‖‖yk‖

| − 1T
k sk|

≤
Γ‖yk‖

| − 1T
k sk|

,
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where we have used (3.3). Applying the Lipschitz assumption, we get

|βLS
k | ≤

ΓL‖sk‖

| − 1T
k sk|

.

Because of ‖sk‖ ≤ D, it yields that

|βLS
k | ≤

ΓLD
| − 1T

k sk|
.

Using Theorem 3.1, we know that for LS method the sufficient descent condition holds, so it is possible
to satisfy strong Wolfe conditions.

Now we are going to prove that there exists t∗ > 0, such that tk ≥ t∗ > 0, for all k.
Suppose, on the contrary, that there doesn’t exist any t∗, such that tk ≥ t∗ > 0. Then there exists an infinite

subsequence tk = β jk , k ∈ K1 such that

lim
k∈K1

tk = 0. (4.6)

Then
lim
k∈K1

β jk−1 = 0,

i.e.
lim
k∈K1

( jk − 1) = ∞.

But, now we get

f (xk + β jk dk) − f (xk) ≤ δβ jk1T
k dk, (4.7)

f (xk + β jk−1dk) − f (xk) > δβ jk−11T
k dk. (4.8)

Remind that δ < 1. From (4.8), we have

f (xk + β jk−1dk) − f (xk)
β jk−1

> δ1T
k dk. (4.9)

But, using the relation (4.6), from (4.9), we conclude that

1T
k dk ≥ δ1

T
k dk. (4.10)

But, LS method satisfies the sufficient descent condition, so 1T
k dk ≤ 0. Also, δ < 1. So, the relation (4.10) is

correct only if 1T
k dk = 0. Then, from the second strong Wolfe condition, we get that 1T

k+1dk = 0, and then it is
the exact line search. So, we have a contradiction.

Now we can write
| − 1T

k sk| = | − tk1
T
k dk| ≥ t∗| − 1T

k dk|.

So, from the sufficient descent condition we can get

|βLS
k | ≤

ΓLD
K′‖1k+1‖

2 , K′ > 0. (4.11)

Now we use (4.4) and we get

|βLS
k | ≤

ΓLD
K′c2 . (4.12)

Using the relation (4.12), we get

‖dLS
k+1‖ ≤ ‖1k+1‖ +

ΓLD
K′c2 D ≤ Γ +

ΓLD2

K′c2 . (4.13)
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On the other side,

‖dCD
k+1‖ ≤ ‖1k+1‖ + |βCD

k |‖sk‖ ≤ Γ + |βCD
k |D. (4.14)

It also holds that

|βCD
k | =

‖1k+1‖
2

| − 1T
k sk|
≤

Γ2

| − 1T
k sk|

. (4.15)

The sufficient descent condition holds for CD method too, so, analogically, we can get

|βCD
k | ≤

Γ2

K′′‖1k‖
2 ≤

Γ2

K′′c2 , K′′ > 0,

so

‖dCD
k+1‖ ≤ Γ +

Γ2D
K′′c2 . (4.16)

Applying (3.5), we find that

‖dk+1‖ ≤ Γ +
ΓLD2

K′c2 + Γ +
Γ2D
K′′c2 ,

wherefrom

∑
k≥1

1
‖dk‖

2 = ∞, (4.17)

so, applying Lemma 4.1, we conclude that

lim inf
k→∞

‖1k‖ = 0.

This is a contradiction with (4.4), so we have proved (4.3).

5. Numerical Experiments

In this section we present the computational performance of a Mathematica implementation of LSCDCC
algorithm on a set of unconstrained optimization test problems from [5]. Each problem is tested for a number
of variables: n = 50, n = 70, n = 80, n = 90, n = 110, n = 120. The criterion used here is CPU time.

We present comparisons with CCOMB from [2], HYBRID from [3], LSCD from [23], the algorithm from
[13], which we call GN here, the algorithm from [16], which we call HuS here, the algorithm from [22],
which we call TAS here, using the performance profiles of Dolan and Moré [10]. The stopping criterion
of all algorithms is ε < 10−6. From the pictures below, we can conclude that LSCDCC algorithm behaves
similar to or better than CCOMB, LSCD, GN, HuS, HYBRID and TAS.
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Further, these methods are compared for n = 1000, n = 5000 and n = 10000 where the criterion is CPU
time again, and the corresponding results (the average CPU times of these methods) are given in the next
table.

Table 1.

n 1000 5000 10000

LSCDCC 4.2 · 103 109, 1 · 103 438, 1 · 103

LSCD 5.2 · 103 139.9 · 103 564.7 · 103

HSDY 5 · 103 128.7 · 103 516.4 · 103

CCOMB 4.9 · 103 124.2 · 103 498.2 · 103

HuS 5 · 103 129.2 · 103 518.3 · 103

TAS 4.9 · 103 126, 7 · 103 508.4 · 103

GN 5 · 103 127.2 · 103 510, 4 · 103

From Table 1, we see that our method LSCDCC is comparable with the mentioned methods.
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