
Filomat 31:6 (2017), 1827–1834
DOI 10.2298/FIL1706827M

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. The aim of paper is to define and study some ideal convergent sequence spaces with the help
of generalized difference matrix Bn

(m) and Orlicz functions. We also make an effort to study some algebraic
and topological properties of these difference sequence spaces.

1. Background and Preliminaries

The concept of statistical convergence is a generalization of the usual notion of convergence that, for real-
valued sequences, parallels the usual theory of convergence (see [9]). Kostyrko et al. [15] and Nuray and
Ruckle [21] independently studied in detalis about the notion of ideal convergence which is a generalization
of statistical convergence and is based on the structure of the admissible ideal I of subsets of natural numbers
N. Later on it was further investigated by Tripathy and Hazarika [25, 26], Hazarika and Mohiuddine [10],
Hazarika [12] and references therein. Hazarika [11] introduced the notion of generalized difference I-
convergence in random 2-normed spaces and proved some interesting results. Çakalli and Hazarika [5]
introduced the new concept ideal quasi Cauchy sequences and studied some results in analysis.

Let S be a non-empty set. Then a non empty class I ⊆ P(S) is said to be an ideal on S iff φ ∈ I, I is additive
and hereditary. An ideal I ⊆ P(S) is said to be non trivial if S < I. A non-empty family of sets F ⊆ P(S) is
said to be a filter on S iff φ < F, for each A,B ∈ F we have A ∩ B ∈ F and for each A ∈ F and B ⊃ A, implies
B ∈ F. For each ideal I, there is a filter F(I) corresponding to I i.e. F(I) = {K ⊆ S : Kc

∈ I}, where Kc = S − K. A
non-trivial ideal I ⊆ P(S) is said to be (a) an admissible ideal on S if and only if it contains all singletons, i.e., if
it contains {{x} : x ∈ S} (b) maximal, if there cannot exists any non-trivial ideal J , I containing I as a subset.
Recall that a sequence x = (xk) of real numbers is said to be I-convergent to the number ` if for every ε > 0,
the set {k ∈N : |xk − `| ≥ ε} ∈ I.

We denote w for the set of all real sequences x = (xk). The difference sequence space was introduced by
Kızmaz [14] as follows:

Z(∆) = {(xk) ∈ w : ∆xk ∈ Z}, (1.1)

for Z = `∞, c, c0 and ∆xk = ∆1xk = xk − xk+1 for all k ∈N, where the standard notations `∞, c and c0 are used
to denote the set of bounded, convergent and null sequences, respectively. Later this idea was generalized
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by Et and Çolak [8] by considering ∆n instead of ∆ where (∆nxk) = ∆1(∆n−1xk) for n ≥ 2 (see also Et and
Başarir [7]). In case of n = 0 we obtain xk. The author of [24] generalized these spaces by taking ∆m in (1.1)
where the operator ∆m is defined by ∆mx = (∆mxk) = (xk − xk+m). By combining the above two operators
∆n and ∆m, Tripathy et al. [27] defined and studied Kızmaz spaces for the operator ∆n

m and it is given by
∆n

mx = (∆n
mxk) = (∆n−1

m xk − ∆n−1
m xk+m). In [6], Dutta considered ∆n

(m)x = (∆n
(m)xk) = (∆n−1

(m) xk − ∆n−1
(m) xk−m) and

introduced difference sequences spaces for the sets of bounded, statistically convergent and statistically null
sequences, respectively. Başar and Altay [2] introduced the generalized difference matrix B(r, s) = (bnk(r, s))
which is a generalization of ∆1

(1)-difference operator as follows:

bnk(r, s) =


r, if k = n;
s, if k = n − 1;
0, if 0 ≤ k < n − 1 or k > n,

for all k,n ∈ N, r, s ∈ R − {0}. Başarir and Kayikci [3] have defined the generalized difference matrix Bn of
order n, and the binomial representation of this operator is

Bnxk =

n∑
ν=0

(
n
ν

)
rn−νsνxk−ν,

where r, s ∈ R − {0} and n ∈ N. Another generalization of above difference matrix was given by Başarir et
al. [4] as Bn

(m) by taking into account operator introduced by Dutta [6], where Bn
(m)x = (Bn

(m)xk) = (rBn−1
(m) xk +

sBn−1
(m) xk−m) and B0

(m)xk = xk for all k ∈N, which is equivalent to the following binomial representation:

Bn
(m)xk =

n∑
ν=0

(
n
ν

)
rn−νsνxk−mν.

An Orlicz function is a function M : [0,∞) → [0,∞), which is continuous, non-decreasing and convex
with M(0) = 0,M(0) > 0 as x > 0 and M(x) → ∞ as x → ∞. It is well known if M is a convex function
and M(0) = 0, then M(λx) ≤ λM(x) for all λ with 0 < λ < 1. An Orlicz function M is said to be satisfy
∆2-condition for all values of u, if there exists a constant K > 0 such that M(Lu) ≤ KLM(u) for all values of
L > 1(see Krasnoselskii and Rutitsky [16]).

Lindenstrauss and Tzafriri [17] used the idea of Orlicz function to construct the sequence space

`M =

(xk) ∈ w :
∞∑

k=1

M
(
|xk|

ρ

)
< ∞, for someρ > 0

 .
The space `M with the norm

||x|| = inf

ρ > 0 :
∞∑

k=1

M
(
|xk|

ρ

)
≤ 1


becomes a Banach space which is called an Orlicz sequence space. The space `M is closely related to the
space `p which is an Orlicz sequence space with M(t) = |t|p for 1 ≤ p < ∞.

For some recent work related to Orlicz sequence spaces, we refer to Alotaibi et al. [1], Mohiuddine et
al. [18, 19], Savaş [23] and references therein.

If X is a linear space and 1 : X→ R is such that (i) 1(x) ≥ 0, (ii) x = 0⇒ 1(x) = 0, (iii) 1(x+ y) ≤ 1(x)+1(y),
(iv) 1(−x) = 1(x) and (v) 1(tkxk − tx) → 0 as k → ∞ whenever tk → t and xk → x as k → ∞ for scalars tk, t
and the vectors xk, x, then 1 is said to be a paranorm on X and the pair (X, 1) is called a paranormed space. A
paranorm 1which satifies 1(x) = 0⇒ x = 0 is called a total paranorm.

A sequence space E is said to be (i) normal (or solid) if (αkxk) ∈ E whenever (xk) ∈ E and for all sequence
(αk) of scalars with |αk| ≤ 1 for all k ∈ N, (ii) symmetric if (xπ(k)) ∈ E, whenever (xk) ∈ E, where π is a
permutation ofN.



S. A. Mohiuddine, B. Hazarika / Filomat 31:6 (2017), 1827–1834 1829

Let K = {k1 < k2 < ...} ⊆ N and E be a sequence space. A K-step space of E is a sequence space
λE

K = {(xkn ) ∈ w : (kn) ∈ E}. A canonical preimage of a sequence {(xkn )} ∈ λE
K is a sequence {yk} ∈ w defined as

yk =

{
xk, if k ∈ K
0, otherwise.

A canonical preimage of a step space λE
K is a set of canonical preimages of all elements in λE

K. A sequence
space E is said to be monotone if E contains the cannical pre-image of all its step spaces. Note that every
normal space is monotone (see [13], page 53).

The following well-known inequality will be used throughout the article. Let p = (pk) be a sequence of
positive real numbers with 0 < pk ≤ supk pk = H,D = max{1, 2H−1

} then

|ak + bk|
pk ≤ D(|ak|

pk + |bk|
pk ) for all k ∈N and ak, bk ∈ C.

Also |a|pk ≤ max{1, |a|H} for all a ∈ C.

2. Main Results

We introduce the following new type of ideal convergent sequence spaces using the generalized differ-
ence matrix Bn

(m) and Orlicz functions. Let M be an Orlicz function, and p = (pk) be a sequence of positive
real numbers and m,n be nonnegative integers. Let λ = (λi) be a non-decreasing sequence of positive
numbers tending to infinity such that λi+1 ≤ λi + 1, λ1 = 1 (such type of sequence also used in [20] to define
summability methods). For ρ > 0, we define the following new sequence spaces:

cI
0(λ,M,Bn

(m), p) =

{
(uk) ∈ w :

{
i ∈N : 1

λi

∑
k∈Ji

[
M

(
|Bn

(m)uk |

ρ

)]pk

≥ ε

}
∈ I

}
,

cI(λ,M,Bn
(m), p) =

{
(uk) ∈ w :

{
i ∈N : 1

λi

∑
k∈Ji

[
M

(
|Bn

(m)uk−u0 |

ρ

)]pk

≥ ε

}
∈ I, for some u0 ∈ R

}
,

`∞(λ,M,Bn
(m), p) =

{
(uk) ∈ w : supi

1
λi

∑
k∈Ji

[
M

(
|Bn

(m)uk |

ρ

)]pk

< ∞

}
,

where Ji = [i − λi + 1, i]. It is easy to see that the inclusions cI
0(λ,M,Bn

(m), p) ⊂ cI(λ,M,Bn
(m), p) ⊂ `∞(λ,M,Bn

(m), p)
are proper. We can write the following spaces by using the above spaces

mI(λ,M,Bn
(m), p) = cI(λ,M,Bn

(m), p) ∩ `∞(λ,M,Bn
(m), p)

and

mI
0(λ,M,Bn

(m), p) = cI
0(λ,M,Bn

(m), p) ∩ `∞(λ,M,Bn
(m), p).

Particular cases: For n = 0, the spaces cI(λ,M,Bn
(m), p), cI

0(λ,M,Bn
(m), p), `∞(λ,M,Bn

(m), p), mI(λ,M,Bn
(m), p)

and mI
0(λ,M,Bn

(m), p) becomes cI(λ,M, p), cI
0(λ,M, p), `∞(λ,M, , p), mI(λ,M, p) and mI

0(λ,M, p) respectively.

The following is easy to prove.

Theorem 2.1. Let p = (pk) be a bounded sequence of positive real numbers. The spaces cI
0(λ,M,Bn

(m), p), cI(λ,M,Bn
(m), p),

`∞(λ,M,Bn
(m), p), mI(λ,M,Bn

(m), p) and mI
0(λ,M,Bn

(m), p) are linear.

Theorem 2.2. Let p = (pk) ∈ `∞. Then mI(λ,M,Bn
(m), p) and mI

0(λ,M,Bn
(m), p) are paranormed spaces with the

paranorm 1Bn
(m)

defined by

1Bn
(m)

(u) = inf

ρ pk
G > 0 : sup

i

1
λi

∑
k∈Ji

M  |Bn
(m)uk|

ρ

 ≤ 1, for ρ > 0

 ,
where G = max{1, supk pk}.
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Proof. Clearly 1Bn
(m)

(−u) = 1Bn
(m)

(u) and 1Bn
(m)

(0) = 0.Let u = (uk) and v = (vk) be two elements in mI
0(λ,M,Bn

(m), p).
Now for ρ1, ρ2 > 0 we put

A1 =

ρ1 > 0 : sup
i

1
λi

∑
k∈Ji

M  |Bn
(m)uk|

ρ1

 ≤ 1

 and A2 =

ρ2 > 0 : sup
i

1
λi

∑
k∈Ji

M  |Bn
(m)vk|

ρ2

 ≤ 1

 .
Let us take ρ = ρ1 + ρ2. Then using the convexity of Orlicz function M, we obtain

M

 |Bn
(m)(uk + vk)|

ρ

 ≤ ρ1

ρ1 + ρ2
M

 |Bn
(m)uk|

ρ1

 +
ρ2

ρ1 + ρ2
M

 |Bn
(m)vk|

ρ2


which in turn gives us

sup
i

1
λi

∑
k∈Ji

M  |Bn
(m)(uk + vk)|

ρ

pk

≤ 1

and

1Bn
(m)

(u + v) = inf
{
(ρ1 + ρ2)

pk
G : ρ1 ∈ A1, ρ2 ∈ A2

}
≤ inf

{
ρ

pk
G

1 : ρ1 ∈ A1

}
+ inf

{
ρ

pk
G

2 : ρ2 ∈ A2

}
= 1Bn

(m)
(u) + 1Bn

(m)
(v).

Let αi
→ α, where αi, α ∈ R and let 1Bn

(m)
(ui
− u)→∞ as i→∞. To prove that 1Bn

(m)
(αiui

− αu)→∞ as i→∞.
We put

A3 =

ρm > 0 : sup
i

1
λi

∑
k∈Ji

M
 |Bn

(m)u
i
|

ρm




pk

≤ 1

 and A4 =

ρl > 0 : sup
i

1
λi

∑
k∈Ji

M
 |Bn

(m)(u
i
− u)|

ρl




pk

≤ 1

 .
By the continuity of M we observe that

M

 |Bn
(m)(α

iui
− αu)|

|αi − α|ρm + |α|ρl

 ≤ M

 |Bn
(m)(α

iui
− αui)|

|αi − α|ρm + |α|ρl

 + M

 |Bn
(m)(αui

− αu)|

|αi − α|ρm + |α|ρl


≤

|αi
− α|ρm

|αi − α|ρm + |α|ρl
M

 |Bn
(m)u

i
|

ρm

 +
|α|ρl

|αi − α|ρm + |α|ρl
M

 |Bn
(m)(u

i
− u)|

ρl

 .
From the last inequality it follows that

sup
i

1
λi

∑
k∈Ji

M
 |Bn

(m)(α
iui
− αu)|

|αi − α|ρm + |α|ρl


 ≤ 1

and consequently

1Bn
(m)

(αiui
− αu) = inf

{(
|αi
− α|ρm + |α|ρl

) pk
G : ρm ∈ A3, ρl ∈ A4

}
≤ |αi

− α|
pk
G inf

{
(ρm)

pk
G : ρm ∈ A3

}
+ |α|

pk
G inf

{
(ρl)

pk
G : ρl ∈ A4

}
≤ max

{
1, |αi

− α|
pk
G

}
1Bn

(m)
(ui) + max

{
1, |α|

pk
G

}
1Bn

(m)
(ui
− u). (1)

Hence by our assumption the right hand side of (1) tends to 0 as i → ∞. This completes the proof of the
theorem.
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Theorem 2.3. Let M1 and M2 be two Orlicz functions. Then
(i) Z(λ,M2,Bn

(m), p) ⊆ Z(λ,M1 ◦M2,Bn
(m), p),

(ii) Z(λ,M1,Bn
(m), p) ∩ Z(λ,M2,Bn

(m), p) ⊆ Z(λ,M1 + M2,Bn
(m), p),

for Z = cI
0, c

I,mI
0,m

I, `∞.

Proof. (i) Let u = (uk) ∈ cI(λ,M2,Bn
(m), p). For ρ > 0 we havei ∈N :

1
λi

∑
k∈Ji

M2

 |Bn
(m)uk − u0|

ρ

pk

≥ ε

 ∈ I for every ε > 0. (2)

Let ε > 0 and choose α with 0 < α < 1 such that M1(t) < ε for 0 ≤ t ≤ α. We define

vk = M2

 |Bn
(m)uk − u0|

ρ


and consider

lim
k∈N;0≤vk≤α

[M1(vk)]pk = lim
k∈N;vk≤α

[M1(vk)]pk + lim
k∈N;vk>α

[M1(vk)]pk .

We have

lim
k∈N;vk≤α

[M1(vk)]pk ≤ [M1(2)]H lim
k∈N;vk≤α

[vk]pk ,H = sup
k

pk. (3)

For the second summation (i.e.vk > α), we go through the following procedure. We have

vk <
vk

α
< 1 +

vk

α
.

Since M1 is non-decreasing and convex, it follows that

M1(vk) < M1

(
1 +

vk

α

)
≤

1
2

M1(2) +
1
2

M1

(2vk

α

)
.

Since M1 satisfies ∆2-condition, we can write

M1(vk) <
1
2

K
vk

α
M1(2) +

1
2

K
vk

α
M1(2) = K

vk

α
M1(2).

We get the following estimates:

lim
k∈N;vk>α

[M1(vk)]pk ≤ max
{
1, (Kα−1M1(2))H

}
lim

k∈N;vk>α
[vk]pk . (4)

From (2), (3) and (4), it follows that (uk) ∈ cI(λ,M1.M2,Bn
(m), p). Hence cI(λ,M2,Bn

(m), p) ⊆ cI(λ,M1◦M2,Bn
(m), p).

(ii) Let (uk) ∈ cI(λ,M1,Bn
(m), p) ∩ cI(λ,M2,Bn

(m), p). Let ε > 0 be given. Then there exists ρ > 0 such thati ∈N :
1
λi

∑
k∈Ji

M1

 |Bn
(m)uk − u0|

ρ

pk

≥ ε

 ∈ I and

i ∈N :
1
λi

∑
k∈Ji

M2

 |Bn
(m)uk − u0|

ρ

pk

≥ ε

 ∈ I.

The rest of the proof follows from the following relation:i ∈N :
1
λi

∑
k∈Ji

(M1 + M2)

 |Bn
(m)uk − u0|

ρ

pk

≥ ε


⊆

i ∈N :
1
λi

∑
k∈Ji

M1

 |Bn
(m)uk − u0|

ρ

pk

≥ ε

⋃i ∈N :
1
λi

∑
k∈Ji

M2

 |Bn
(m)uk − u0|

ρ

pk

≥ ε

 .
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We remark that if M2(x) = x and M1(x) = M(x) for all x ∈ [0,∞) in the above theorem then Z(λ,Bn
(m), p) ⊆

Z(λ,M,Bn
(m), p) for Z = cI

0, c
I,mI

0,m
I, `∞, where I is an admissible ideal.

Theorem 2.4. The spaces mI
0(λ,M,Bn

(m), p) and mI(λ,M,Bn
(m), p) are nowhere dense subsets of `∞(λ,M,Bn

(m), p).

Proof. From Theorem 3 [25] it follows that mI
0(λ,M,Bn

(m), p) and mI(λ,M,Bn
(m), p) are closed subspaces of

`∞(λ,M,Bn
(m), p). Since the inclusion relations mI

0(λ,M,Bn
(m), p) ⊂ `∞(λ,M,Bn

(m), p) and mI(λ,M,Bn
(m), p) ⊂

`∞(λ,M,Bn
(m), p) are strict, then the spaces mI

0(λ,M,Bn
(m), p) and mI(λ,M,Bn

(m), p) are nowhere dense subsets of
`∞(λ,M,Bn

(m), p).

Theorem 2.5. The inclusions Z(λ,M,Bn−1
(m) , p) ⊆ Z(λ,M,Bn

(m), p) are strict for n ≥ 1. In general Z(λ,M,Bi
(m), p) ⊆

Z(λ,M,Bn
(m), p) for i = 1, 2, ...,n − 1 and the inclusion is strict, for Z = cI

0, c
I,mI

0,m
I, `∞.

Proof. Let u = (uk) ∈ cI
0(λ,M,Bn−1

(m) , p). Let ε > 0 be given. Then there exists ρ > 0 such thati ∈N :
1
λi

∑
k∈Ji

M
 |Bn−1

(m) uk|

ρ




pk

≥ ε

 ∈ I.

Since M is non-decreasing and convex it follows thatM  |Bn
(m)uk|

2ρ

pk

≤ D

1
2

M

 |Bn−1
(m) uk|

ρ




pk

+ D

1
2

M

 |Bn−1
(m) uk+1|

ρ




pk

≤ DK

M
 |Bn−1

(m) uk|

ρ




pk

+ DK

M
 |Bn−1

(m) uk+1|

ρ




pk

,

where K = max{1,
(

1
2

)H
}. Therefore, we obtaini ∈N :

1
λi

∑
k∈Ji

M  |Bn
(m)uk|

2ρ

pk

≥ ε


⊆

i ∈N : DK
1
λi

∑
k∈Ji

M
 |Bn−1

(m) uk|

ρ




pk

≥ ε

⋃i ∈N : DK
1
λi

∑
k∈Ji

M
 |Bn−1

(m) uk+1|

ρ




pk

≥ ε

 ∈ I.

Hence (uk) ∈ cI
0(λ,M,Bn

(m), p). The inclusion is strict follows from the following example.

Example 2.6. Let M(x) = x for all x ∈ [0,∞) and (λi) = i for all i ∈ N. Suppose also that n = 5, m = 2, r = 1,
s = −1 and pk = 1 for all k ∈N. Let us define the sequence (uk) by

uk =

{
k3 + 2k + 1 , if k is even;
0 , otherwise.

Thus we have

B4
(2)uk =

4∑
ν=0

(
4
ν

)
r4−νsνuk−2ν,

which gives B4
(2)uk = −64. So, we have B5

(2)uk = 0. Therefore (uk) ∈ cI
0(M,B5

(2), p) but (uk) < cI
0(M,B4

(2), p).

This completes the proof of the result.
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Theorem 2.7. Let (pk) and (qk) be two sequences of positive real numbers. Then mI
0(λ,M,Bn

(m), p) ⊆ mI
0(λ,M,Bn

(m), q)
if and only if lim infk∈K

pk
qk

where K ⊆N such that K < I.

Proof. If we take (vk) = M
(
|Bn

(m)uk |

ρ

)
for all k ∈N. Then the result follows from the Theorem 6, [25].

Corollary 2.8. Let (pk) and (qk) be two sequences of positive real numbers. Then mI
0(λ,M,Bn

(m), p) = mI
0(λ,M,Bn

(m), q)
if and only if lim infk∈K

pk
qk

and lim infk∈K
qk
pk
> 0 where K ⊆N such that K < I.

The proof of the above result follows from the Corollary 7 in [25].

Theorem 2.9. If I is not a maximal ideal and I , I f , then the sequence spaces cI(λ,M,Bn
(m), p) and mI(λ,M,Bn

(m), p)
are neither normal nor monotone, where I f denotes the class of all finite subsets ofN.

We prove this result with the help of following example.

Example 2.10. Let M(x) = x for all x ∈ [0,∞) and (λi) = i for all i ∈N. Suppose also that r = 1, s = −1,n = 1,m =
1 and pk = 1 for all k ∈ N. Taking I = Iδ, where Iδ = {A ⊂ N : asymptotic density of A (in symbol, δ(A)) = 0} and
note that Iδ is an ideal ofN. Define the sequence (uk) by uk = k for all k ∈N. Let

αk =

{
−1 , if k is even;
1 , if k is odd.

Then we see that (uk) ∈ Z(λ,M,Bn
(m), p) for Z = cI. But (αkuk) < Z(λ,M,Bn

(m), p) for Z = cI. Therefore cI(λ,M,Bn
(m), p)

is not normal and hence not monotone. Similarly, we can show that cI
0(λ,M,Bn

(m), p) and mI
0(λ,M,Bn

(m), p) are neither
normal nor monotone by considering uk = 3 for all k ∈N.

Theorem 2.11. If I is an admissible ideal and I , I f , then the sequence spaces Z(λ,M,Bn
(m), p) are not symmetric,

where Z = cI
0, c

I,mI
0,m

I.

We prove this result only for cI(λ,M,Bn
(m), p) with the help of following example. The rest of the results

follow similar way.

Example 2.12. Let M(x) = x for all x ∈ [0,∞) and (λi) = i for all i ∈N. Suppose that r = 1, s = −1, n = 1, m = 1.
Taking I = Iδ and pk = 1 for all k ∈N. Let us define a sequence (uk) by

uk =

{
−2k + 1 , if k = i2, i ∈N
0 , otherwise.

Thus, we obtain (uk) ∈ cI(λ,M,Bn
(m), p). The rearrangement (vk) of (uk) defined as

vk = {u1,u4,u2,u9,u3,u16,u5,u25,u6, ...}.

This implies that (vk) < cI(λ,M,Bn
(m), p). Hence cI(λ,M,Bn

(m), p) is not symmetric.

Theorem 2.13. If I is an admissible ideal, then cI
0(λ,M,Bn

(m), p), cI(λ,M,Bn
(m), p) and `∞(λ,M,Bn

(m), p) are convex
sets.

The proof of the above theorem follows directly by using the convexity of Orlicz function.

Theorem 2.14. If I is an admissible ideal, then the spaces cI
0(λ,M,Bn

(m), p), cI(λ,M,Bn
(m), p) and `∞(λ,M,Bn

(m), p) are
topologically isomorphic with the spaces cI

0(λ,M, p), cI(λ,M, p) and `∞(λ,M, p), respectively.
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Proof. Let us consider the mapping T : Z(λ,M,Bn
(m), p)→ Z(λ,M, p) defined by

Tu = v = (Bn
(m)uk) for every u = (uk) ∈ Z(λ,M,Bn

(m), p),

where Z = cI, cI
0, `∞. Clearly T is linear homeomorphism.
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[15] P. Kostyrko, T. S̆alát, W. Wilczyśki, On I-convergence, Real Analysis Exchange 26(2) (2000-2001) 669-686.
[16] M. A. Krasnoselskii, Y. B. Rutitsky, Convex functions and Orlicz spaces, Netherlands, Groningen, 1961.
[17] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971) 379-390.
[18] S. A. Mohiuddine, K. Raj, A. Alotaibi, Some paranormed double difference sequence spaces for Orlicz functions and bounded-

regular matrices, Abstr. Appl. Anal. Vol. 2014, Article ID419064, 10 pages (2014).
[19] S. A. Mohiuddine, K. Raj, A. Alotaibi, Generalized spaces of double sequencesfor Orlicz functions and bounded-regular matrices

over n-normed spaces, J. Inequa. Appl. Vol. 2014 (2014), Article 332.
[20] M. Mursaleen, λ-Statistical convergence, Math. Slovaca 50 (2000) 111-115.
[21] F. Nuray, W. H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000) 513-527.
[22] T. S̆alát, B. C. Tripathy, M. Ziman, On some properties of I-convergence, Tatra Mt. Math. Publ. 28 (2004) 279-286.
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