Filomat 31:6 (2017), 1827–1834 DOI 10.2298/FIL1706827M

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some Classes of Ideal Convergent Sequences and Generalized Difference Matrix Operator

S. A. Mohiuddine^a, B. Hazarika^b

^aOperator Theory and Applications Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
^bDepartment of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh 791112, Arunachal Pradesh, India

Abstract. The aim of paper is to define and study some ideal convergent sequence spaces with the help of generalized difference matrix $B_{(m)}^n$ and Orlicz functions. We also make an effort to study some algebraic and topological properties of these difference sequence spaces.

1. Background and Preliminaries

The concept of statistical convergence is a generalization of the usual notion of convergence that, for realvalued sequences, parallels the usual theory of convergence (see [9]). Kostyrko et al. [15] and Nuray and Ruckle [21] independently studied in details about the notion of ideal convergence which is a generalization of statistical convergence and is based on the structure of the admissible ideal *I* of subsets of natural numbers \mathbb{N} . Later on it was further investigated by Tripathy and Hazarika [25, 26], Hazarika and Mohiuddine [10], Hazarika [12] and references therein. Hazarika [11] introduced the notion of generalized difference *I*convergence in random 2-normed spaces and proved some interesting results. Çakalli and Hazarika [5] introduced the new concept ideal quasi Cauchy sequences and studied some results in analysis.

Let *S* be a non-empty set. Then a non empty class $I \subseteq P(S)$ is said to be an *ideal* on *S* iff $\phi \in I$, *I* is additive and hereditary. An ideal $I \subseteq P(S)$ is said to be non trivial if $S \notin I$. A non-empty family of sets $F \subseteq P(S)$ is said to be a *filter* on *S* iff $\phi \notin F$, for each $A, B \in F$ we have $A \cap B \in F$ and for each $A \in F$ and $B \supset A$, implies $B \in F$. For each ideal *I*, there is a filter F(I) corresponding to *I* i.e. $F(I) = \{K \subseteq S : K^c \in I\}$, where $K^c = S - K$. A non-trivial ideal $I \subseteq P(S)$ is said to be (a) an *admissible ideal* on *S* if and only if it contains all singletons, i.e., if it contains $\{\{x\} : x \in S\}$ (b) *maximal*, if there cannot exists any non-trivial ideal $J \neq I$ containing *I* as a subset. Recall that a sequence $\mathbf{x} = (x_k)$ of real numbers is said to be *I*-convergent to the number ℓ if for every $\varepsilon > 0$, the set $\{k \in \mathbb{N} : |x_k - \ell| \ge \varepsilon\} \in I$.

We denote *w* for the set of all real sequences $x = (x_k)$. The difference sequence space was introduced by Kızmaz [14] as follows:

$$Z(\Delta) = \{(x_k) \in w : \Delta x_k \in Z\},\tag{1.1}$$

for $Z = \ell_{\infty}$, c, c_0 and $\Delta x_k = \Delta^1 x_k = x_k - x_{k+1}$ for all $k \in \mathbb{N}$, where the standard notations ℓ_{∞} , c and c_0 are used to denote the set of bounded, convergent and null sequences, respectively. Later this idea was generalized

²⁰¹⁰ Mathematics Subject Classification. 40A05; 40C05; 46A45

Keywords. Ideal convergence; difference sequence; Orlicz function

Received: 19 April 2015; Accepted: 28 February 2016

Communicated by Hari M. Srivastava

Email addresses: mohiuddine@gmail.com (S. A. Mohiuddine), bh_rgu@yahoo.co.in (B. Hazarika)

by Et and Çolak [8] by considering Δ^n instead of Δ where $(\Delta^n x_k) = \Delta^1(\Delta^{n-1}x_k)$ for $n \ge 2$ (see also Et and Başarir [7]). In case of n = 0 we obtain x_k . The author of [24] generalized these spaces by taking Δ_m in (1.1) where the operator Δ_m is defined by $\Delta_m x = (\Delta_m x_k) = (x_k - x_{k+m})$. By combining the above two operators Δ^n and Δ_m , Tripathy et al. [27] defined and studied Kızmaz spaces for the operator Δ_m^n and it is given by $\Delta_m^n x = (\Delta_m^n x_k) = (\Delta_m^{n-1} x_k - \Delta_m^{n-1} x_{k+m})$. In [6], Dutta considered $\Delta_{(m)}^n x = (\Delta_{(m)}^n x_k) = (\Delta_{(m)}^{n-1} x_k - \Delta_{(m)}^{n-1} x_{k-m})$ and introduced difference sequences spaces for the sets of bounded, statistically convergent and statistically null sequences, respectively. Başar and Altay [2] introduced the generalized difference matrix $B(r, s) = (b_{nk}(r, s))$ which is a generalization of $\Delta_{(1)}^1$ -difference operator as follows:

$$b_{nk}(r,s) = \begin{cases} r, & \text{if } k = n; \\ s, & \text{if } k = n-1; \\ 0, & \text{if } 0 \le k < n-1 \text{ or } k > n \end{cases}$$

for all $k, n \in \mathbb{N}, r, s \in \mathbb{R} - \{0\}$. Başarir and Kayikci [3] have defined the generalized difference matrix B^n of order n, and the binomial representation of this operator is

$$B^n x_k = \sum_{\nu=0}^n \binom{n}{\nu} r^{n-\nu} s^{\nu} x_{k-\nu},$$

where $r, s \in \mathbb{R} - \{0\}$ and $n \in \mathbb{N}$. Another generalization of above difference matrix was given by Başarir et al. [4] as $B_{(m)}^n$ by taking into account operator introduced by Dutta [6], where $B_{(m)}^n x = (B_{(m)}^n x_k) = (rB_{(m)}^{n-1}x_k + sB_{(m)}^{n-1}x_{k-m})$ and $B_{(m)}^0 x_k = x_k$ for all $k \in \mathbb{N}$, which is equivalent to the following binomial representation:

$$B_{(m)}^n x_k = \sum_{\nu=0}^n \binom{n}{\nu} r^{n-\nu} s^{\nu} x_{k-m\nu}.$$

An Orlicz function is a function $M : [0, \infty) \rightarrow [0, \infty)$, which is continuous, non-decreasing and convex with M(0) = 0, M(0) > 0 as x > 0 and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$. It is well known if M is a convex function and M(0) = 0, then $M(\lambda x) \le \lambda M(x)$ for all λ with $0 < \lambda < 1$. An Orlicz function M is said to be satisfy Δ_2 -condition for all values of u, if there exists a constant K > 0 such that $M(Lu) \le KLM(u)$ for all values of L > 1 (see Krasnoselskii and Rutitsky [16]).

Lindenstrauss and Tzafriri [17] used the idea of Orlicz function to construct the sequence space

$$\ell_M = \left\{ (x_k) \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some} \rho > 0 \right\}.$$

The space ℓ_M with the norm

$$||x|| = \inf\left\{\rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1\right\}$$

becomes a Banach space which is called an Orlicz sequence space. The space ℓ_M is closely related to the space ℓ_p which is an Orlicz sequence space with $M(t) = |t|^p$ for $1 \le p < \infty$.

For some recent work related to Orlicz sequence spaces, we refer to Alotaibi et al. [1], Mohiuddine et al. [18, 19], Savaş [23] and references therein.

If *X* is a linear space and $g : X \to \mathbb{R}$ is such that (i) $g(x) \ge 0$, (ii) $x = 0 \Rightarrow g(x) = 0$, (iii) $g(x+y) \le g(x) + g(y)$, (iv) g(-x) = g(x) and (v) $g(t_kx_k - tx) \to 0$ as $k \to \infty$ whenever $t_k \to t$ and $x_k \to x$ as $k \to \infty$ for scalars t_k , t and the vectors x_k , x, then g is said to be a *paranorm* on *X* and the pair (*X*, g) is called a *paranormed space*. A paranorm g which satifies $g(x) = 0 \Rightarrow x = 0$ is called a *total paranorm*.

A sequence space *E* is said to be (i) *normal* (or *solid*) if $(\alpha_k x_k) \in E$ whenever $(x_k) \in E$ and for all sequence (α_k) of scalars with $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$, (ii) *symmetric* if $(x_{\pi(k)}) \in E$, whenever $(x_k) \in E$, where π is a permutation of \mathbb{N} .

Let $K = \{k_1 < k_2 < ...\} \subseteq \mathbb{N}$ and E be a sequence space. A *K*-step space of E is a sequence space $\lambda_K^E = \{(x_{k_n}) \in w : (k_n) \in E\}$. A canonical preimage of a sequence $\{(x_{k_n})\} \in \lambda_K^E$ is a sequence $\{y_k\} \in w$ defined as

$$y_k = \begin{cases} x_k, & \text{if } k \in K \\ 0, & \text{otherwise.} \end{cases}$$

A canonical preimage of a step space λ_K^E is a set of canonical preimages of all elements in λ_K^E . A sequence space *E* is said to be *monotone* if *E* contains the cannical pre-image of all its step spaces. Note that every normal space is monotone (see [13], page 53).

The following well-known inequality will be used throughout the article. Let $p = (p_k)$ be a sequence of positive real numbers with $0 < p_k \le \sup_k p_k = H, D = \max\{1, 2^{H-1}\}$ then

$$|a_k + b_k|^{p_k} \le D(|a_k|^{p_k} + |b_k|^{p_k})$$
 for all $k \in \mathbb{N}$ and $a_k, b_k \in \mathbb{C}$.

Also $|a|^{p_k} \leq \max\{1, |a|^H\}$ for all $a \in \mathbb{C}$.

2. Main Results

We introduce the following new type of ideal convergent sequence spaces using the generalized difference matrix $B_{(m)}^n$ and Orlicz functions. Let M be an Orlicz function, and $p = (p_k)$ be a sequence of positive real numbers and m, n be nonnegative integers. Let $\lambda = (\lambda_i)$ be a non-decreasing sequence of positive numbers tending to infinity such that $\lambda_{i+1} \le \lambda_i + 1$, $\lambda_1 = 1$ (such type of sequence also used in [20] to define summability methods). For $\rho > 0$, we define the following new sequence spaces:

$$\begin{split} c_0^I(\lambda, M, B^n_{(m)}, p) &= \left\{ (u_k) \in w : \left\{ i \in \mathbb{N} : \frac{1}{\lambda_i} \sum_{k \in J_i} \left[M\left(\frac{|B^n_{(m)}u_k|}{\rho}\right) \right]^{p_k} \ge \varepsilon \right\} \in I \right\},\\ c^I(\lambda, M, B^n_{(m)}, p) &= \left\{ (u_k) \in w : \left\{ i \in \mathbb{N} : \frac{1}{\lambda_i} \sum_{k \in J_i} \left[M\left(\frac{|B^n_{(m)}u_k-u_0|}{\rho}\right) \right]^{p_k} \ge \varepsilon \right\} \in I, \text{ for some } u_0 \in \mathbb{R} \right\},\\ \ell_{\infty}(\lambda, M, B^n_{(m)}, p) &= \left\{ (u_k) \in w : \sup_i \frac{1}{\lambda_i} \sum_{k \in J_i} \left[M\left(\frac{|B^n_{(m)}u_k|}{\rho}\right) \right]^{p_k} < \infty \right\}, \end{split}$$

where $J_i = [i - \lambda_i + 1, i]$. It is easy to see that the inclusions $c_0^I(\lambda, M, B_{(m)}^n, p) \subset c^I(\lambda, M, B_{(m)}^n, p) \subset \ell_{\infty}(\lambda, M, B_{(m)}^n, p)$ are proper. We can write the following spaces by using the above spaces

$$m^{l}(\lambda, M, B^{n}_{(m)}, p) = c^{l}(\lambda, M, B^{n}_{(m)}, p) \cap \ell_{\infty}(\lambda, M, B^{n}_{(m)}, p)$$

and

$$m_0^l(\lambda, M, B_{(m)}^n, p) = c_0^l(\lambda, M, B_{(m)}^n, p) \cap \ell_\infty(\lambda, M, B_{(m)}^n, p).$$

Particular cases: For n = 0, the spaces $c^{I}(\lambda, M, B^{n}_{(m)}, p)$, $c^{I}_{0}(\lambda, M, B^{n}_{(m)}, p)$, $\ell_{\infty}(\lambda, M, B^{n}_{(m)}, p)$, $m^{I}(\lambda, M, B^{n}_{(m)}, p)$ and $m^{I}_{0}(\lambda, M, B^{n}_{(m)}, p)$ becomes $c^{I}(\lambda, M, p)$, $c^{I}_{0}(\lambda, M, p)$, $\ell_{\infty}(\lambda, M, p)$, $m^{I}(\lambda, M, p)$ and $m^{I}_{0}(\lambda, M, p)$ respectively.

The following is easy to prove.

Theorem 2.1. Let $p = (p_k)$ be a bounded sequence of positive real numbers. The spaces $c_0^I(\lambda, M, B_{(m)}^n, p), c^I(\lambda, M, B_{(m)}^n, p), \ell_{\infty}(\lambda, M, B_{(m)}^n, p)$, $m^I(\lambda, M, B_{(m)}^n, p)$ and $m_0^I(\lambda, M, B_{(m)}^n, p)$ are linear.

Theorem 2.2. Let $p = (p_k) \in \ell_{\infty}$. Then $m^I(\lambda, M, B^n_{(m)}, p)$ and $m^I_0(\lambda, M, B^n_{(m)}, p)$ are paranormed spaces with the paranorm $g_{B^n_{(m)}}$ defined by

$$g_{B_{(m)}^n}(u) = \inf\left\{\rho^{\frac{p_k}{G}} > 0 : \sup_i \frac{1}{\lambda_i} \sum_{k \in J_i} \left[M\left(\frac{|B_{(m)}^n u_k|}{\rho}\right)\right] \le 1, \text{ for } \rho > 0\right\},$$

where $G = \max\{1, \sup_k p_k\}$.

Proof. Clearly $g_{B_{(m)}^n}(-u) = g_{B_{(m)}^n}(u)$ and $g_{B_{(m)}^n}(0) = 0$. Let $u = (u_k)$ and $v = (v_k)$ be two elements in $m_0^I(\lambda, M, B_{(m)}^n, p)$. Now for $\rho_1, \rho_2 > 0$ we put

$$A_{1} = \left\{ \rho_{1} > 0 : \sup_{i} \frac{1}{\lambda_{i}} \sum_{k \in J_{i}} \left[M\left(\frac{|B_{(m)}^{n}u_{k}|}{\rho_{1}}\right) \right] \le 1 \right\} \text{ and } A_{2} = \left\{ \rho_{2} > 0 : \sup_{i} \frac{1}{\lambda_{i}} \sum_{k \in J_{i}} \left[M\left(\frac{|B_{(m)}^{n}v_{k}|}{\rho_{2}}\right) \right] \le 1 \right\}$$

Let us take $\rho = \rho_1 + \rho_2$. Then using the convexity of Orlicz function *M*, we obtain

$$M\left(\frac{|B_{(m)}^{n}(u_{k}+v_{k})|}{\rho}\right) \leq \frac{\rho_{1}}{\rho_{1}+\rho_{2}}M\left(\frac{|B_{(m)}^{n}u_{k}|}{\rho_{1}}\right) + \frac{\rho_{2}}{\rho_{1}+\rho_{2}}M\left(\frac{|B_{(m)}^{n}v_{k}|}{\rho_{2}}\right)$$

which in turn gives us

$$\sup_{i} \frac{1}{\lambda_{i}} \sum_{k \in J_{i}} \left[M \left(\frac{|B_{(m)}^{n}(u_{k} + v_{k})|}{\rho} \right) \right]^{p_{k}} \leq 1$$

and

$$g_{B_{(m)}^{n}}(u+v) = \inf \left\{ (\rho_{1}+\rho_{2})^{\frac{p_{k}}{G}} : \rho_{1} \in A_{1}, \rho_{2} \in A_{2} \right\}$$

$$\leq \inf \left\{ \rho_{1}^{\frac{p_{k}}{G}} : \rho_{1} \in A_{1} \right\} + \inf \left\{ \rho_{2}^{\frac{p_{k}}{G}} : \rho_{2} \in A_{2} \right\} = g_{B_{(m)}^{n}}(u) + g_{B_{(m)}^{n}}(v)$$

Let $\alpha^i \to \alpha$, where $\alpha^i, \alpha \in \mathbb{R}$ and let $g_{B^n_{(m)}}(u^i - u) \to \infty$ as $i \to \infty$. To prove that $g_{B^n_{(m)}}(\alpha^i u^i - \alpha u) \to \infty$ as $i \to \infty$. We put

$$A_3 = \left\{\rho_m > 0 : \sup_i \frac{1}{\lambda_i} \sum_{k \in J_i} \left[M\left(\frac{|B_{(m)}^n u^i|}{\rho_m}\right) \right]^{p_k} \le 1 \right\} \text{ and } A_4 = \left\{\rho_l > 0 : \sup_i \frac{1}{\lambda_i} \sum_{k \in J_i} \left[M\left(\frac{|B_{(m)}^n (u^i - u)|}{\rho_l}\right) \right]^{p_k} \le 1 \right\}$$

By the continuity of *M* we observe that

$$\begin{split} M\left(\frac{|B_{(m)}^{n}(\alpha^{i}u^{i}-\alpha u)|}{|\alpha^{i}-\alpha|\rho_{m}+|\alpha|\rho_{l}}\right) &\leq M\left(\frac{|B_{(m)}^{n}(\alpha^{i}u^{i}-\alpha u^{i})|}{|\alpha^{i}-\alpha|\rho_{m}+|\alpha|\rho_{l}}\right) + M\left(\frac{|B_{(m)}^{n}(\alpha u^{i}-\alpha u)|}{|\alpha^{i}-\alpha|\rho_{m}+|\alpha|\rho_{l}}\right) \\ &\leq \frac{|\alpha^{i}-\alpha|\rho_{m}}{|\alpha^{i}-\alpha|\rho_{m}+|\alpha|\rho_{l}}M\left(\frac{|B_{(m)}^{n}u^{i}|}{\rho_{m}}\right) + \frac{|\alpha|\rho_{l}}{|\alpha^{i}-\alpha|\rho_{m}+|\alpha|\rho_{l}}M\left(\frac{|B_{(m)}^{n}(u^{i}-u)|}{\rho_{l}}\right) \end{split}$$

From the last inequality it follows that

$$\sup_{i} \frac{1}{\lambda_{i}} \sum_{k \in J_{i}} \left[M \left(\frac{|B_{(m)}^{n}(\alpha^{i}u^{i} - \alpha u)|}{|\alpha^{i} - \alpha|\rho_{m} + |\alpha|\rho_{l}} \right) \right] \leq 1$$

and consequently

$$g_{B_{(m)}^{n}}(\alpha^{i}u^{i} - \alpha u) = \inf \left\{ \left(|\alpha^{i} - \alpha|\rho_{m} + |\alpha|\rho_{l} \right)^{\frac{p_{k}}{G}} : \rho_{m} \in A_{3}, \rho_{l} \in A_{4} \right\} \\ \leq |\alpha^{i} - \alpha|^{\frac{p_{k}}{G}} \inf \left\{ (\rho_{m})^{\frac{p_{k}}{G}} : \rho_{m} \in A_{3} \right\} + |\alpha|^{\frac{p_{k}}{G}} \inf \left\{ (\rho_{l})^{\frac{p_{k}}{G}} : \rho_{l} \in A_{4} \right\} \\ \leq \max \left\{ 1, |\alpha^{i} - \alpha|^{\frac{p_{k}}{G}} \right\} g_{B_{(m)}^{n}}(u^{i}) + \max \left\{ 1, |\alpha|^{\frac{p_{k}}{G}} \right\} g_{B_{(m)}^{n}}(u^{i} - u).$$
(1)

Hence by our assumption the right hand side of (1) tends to 0 as $i \to \infty$. This completes the proof of the theorem. \Box

Theorem 2.3. Let M_1 and M_2 be two Orlicz functions. Then

- $(i) \ Z(\lambda,M_2,B^n_{(m)},p)\subseteq Z(\lambda,M_1\circ M_2,B^n_{(m)},p),$
- (*ii*) $Z(\lambda, M_1, B^n_{(m)}, p) \cap Z(\lambda, M_2, B^n_{(m)}, p) \subseteq Z(\lambda, M_1 + M_2, B^n_{(m)}, p),$

for
$$Z = c_0^I, c^I, m_0^I, m^I, \ell_{\infty}$$
.

Proof. (i) Let $u = (u_k) \in c^I(\lambda, M_2, B^n_{(m)}, p)$. For $\rho > 0$ we have

$$\left\{i \in \mathbb{N} : \frac{1}{\lambda_i} \sum_{k \in J_i} \left[M_2 \left(\frac{|B_{(m)}^n u_k - u_0|}{\rho} \right) \right]^{p_k} \ge \varepsilon \right\} \in I \text{ for every } \varepsilon > 0.$$
(2)

Let $\varepsilon > 0$ and choose α with $0 < \alpha < 1$ such that $M_1(t) < \varepsilon$ for $0 \le t \le \alpha$. We define

$$v_k = M_2\left(\frac{|B_{(m)}^n u_k - u_0|}{\rho}\right)$$

and consider

$$\lim_{k\in\mathbb{N};0\leq v_k\leq\alpha}[M_1(v_k)]^{p_k}=\lim_{k\in\mathbb{N};v_k\leq\alpha}[M_1(v_k)]^{p_k}+\lim_{k\in\mathbb{N};v_k>\alpha}[M_1(v_k)]^{p_k}.$$

We have

$$\lim_{k \in \mathbb{N}; v_k \le \alpha} [M_1(v_k)]^{p_k} \le [M_1(2)]^H \lim_{k \in \mathbb{N}; v_k \le \alpha} [v_k]^{p_k}, H = \sup_k p_k.$$
(3)

For the second summation (i.e. $v_k > \alpha$), we go through the following procedure. We have

$$v_k < \frac{v_k}{\alpha} < 1 + \frac{v_k}{\alpha}.$$

Since M_1 is non-decreasing and convex, it follows that

$$M_1(v_k) < M_1\left(1 + \frac{v_k}{\alpha}\right) \le \frac{1}{2}M_1(2) + \frac{1}{2}M_1\left(\frac{2v_k}{\alpha}\right)$$

Since M_1 satisfies Δ_2 -condition, we can write

$$M_1(v_k) < \frac{1}{2} K \frac{v_k}{\alpha} M_1(2) + \frac{1}{2} K \frac{v_k}{\alpha} M_1(2) = K \frac{v_k}{\alpha} M_1(2).$$

We get the following estimates:

$$\lim_{k \in \mathbb{N}; v_k > \alpha} [M_1(v_k)]^{p_k} \le \max\left\{1, (K\alpha^{-1}M_1(2))^H\right\} \lim_{k \in \mathbb{N}; v_k > \alpha} [v_k]^{p_k}.$$
(4)

From (2), (3) and (4), it follows that $(u_k) \in c^{l}(\lambda, M_1.M_2, B^{n}_{(m)}, p)$. Hence $c^{l}(\lambda, M_2, B^{n}_{(m)}, p) \subseteq c^{l}(\lambda, M_1 \circ M_2, B^{n}_{(m)}, p)$.

(ii) Let $(u_k) \in c^l(\lambda, M_1, B^n_{(m)}, p) \cap c^l(\lambda, M_2, B^n_{(m)}, p)$. Let $\varepsilon > 0$ be given. Then there exists $\rho > 0$ such that

$$\left\{i \in \mathbb{N} : \frac{1}{\lambda_i} \sum_{k \in J_i} \left[M_1 \left(\frac{|B_{(m)}^n u_k - u_0|}{\rho} \right) \right]^{p_k} \ge \varepsilon \right\} \in I \text{ and } \left\{i \in \mathbb{N} : \frac{1}{\lambda_i} \sum_{k \in J_i} \left[M_2 \left(\frac{|B_{(m)}^n u_k - u_0|}{\rho} \right) \right]^{p_k} \ge \varepsilon \right\} \in I.$$

The rest of the proof follows from the following relation:

$$\begin{cases} i \in \mathbb{N} : \frac{1}{\lambda_i} \sum_{k \in J_i} \left[(M_1 + M_2) \left(\frac{|B_{(m)}^n u_k - u_0|}{\rho} \right) \right]^{p_k} \ge \varepsilon \\ \\ \subseteq \left\{ i \in \mathbb{N} : \frac{1}{\lambda_i} \sum_{k \in J_i} \left[M_1 \left(\frac{|B_{(m)}^n u_k - u_0|}{\rho} \right) \right]^{p_k} \ge \varepsilon \right\} \bigcup \left\{ i \in \mathbb{N} : \frac{1}{\lambda_i} \sum_{k \in J_i} \left[M_2 \left(\frac{|B_{(m)}^n u_k - u_0|}{\rho} \right) \right]^{p_k} \ge \varepsilon \right\}. \end{cases}$$

1831

We remark that if $M_2(x) = x$ and $M_1(x) = M(x)$ for all $x \in [0, \infty)$ in the above theorem then $Z(\lambda, B_{(m)}^n, p) \subseteq Z(\lambda, M, B_{(m)}^n, p)$ for $Z = c_0^I, c^I, m_0^I, m^I, \ell_\infty$, where *I* is an admissible ideal.

Theorem 2.4. The spaces $m_0^I(\lambda, M, B_{(m)}^n, p)$ and $m^I(\lambda, M, B_{(m)}^n, p)$ are nowhere dense subsets of $\ell_{\infty}(\lambda, M, B_{(m)}^n, p)$.

Proof. From Theorem 3 [25] it follows that $m_0^I(\lambda, M, B_{(m)}^n, p)$ and $m^I(\lambda, M, B_{(m)}^n, p)$ are closed subspaces of $\ell_{\infty}(\lambda, M, B_{(m)}^n, p)$. Since the inclusion relations $m_0^I(\lambda, M, B_{(m)}^n, p) \subset \ell_{\infty}(\lambda, M, B_{(m)}^n, p)$ and $m^I(\lambda, M, B_{(m)}^n, p) \subset \ell_{\infty}(\lambda, M, B_{(m)}^n, p)$ are strict, then the spaces $m_0^I(\lambda, M, B_{(m)}^n, p)$ and $m^I(\lambda, M, B_{(m)}^n, p)$ are nowhere dense subsets of $\ell_{\infty}(\lambda, M, B_{(m)}^n, p)$. \Box

Theorem 2.5. The inclusions $Z(\lambda, M, B_{(m)}^{n-1}, p) \subseteq Z(\lambda, M, B_{(m)}^{n}, p)$ are strict for $n \ge 1$. In general $Z(\lambda, M, B_{(m)}^{i}, p) \subseteq Z(\lambda, M, B_{(m)}^{n}, p)$ for i = 1, 2, ..., n - 1 and the inclusion is strict, for $Z = c_0^I, c^I, m_0^I, m^I, \ell_{\infty}$.

Proof. Let $u = (u_k) \in c_0^I(\lambda, M, B_{(m)}^{n-1}, p)$. Let $\varepsilon > 0$ be given. Then there exists $\rho > 0$ such that

$$\left\{i \in \mathbb{N} : \frac{1}{\lambda_i} \sum_{k \in J_i} \left[M\left(\frac{|B_{(m)}^{n-1}u_k|}{\rho}\right) \right]^{p_k} \ge \varepsilon \right\} \in I.$$

Since *M* is non-decreasing and convex it follows that

$$\begin{split} \left[M\left(\frac{|B_{(m)}^{n}u_{k}|}{2\rho}\right)\right]^{p_{k}} &\leq D\left[\frac{1}{2}M\left(\frac{|B_{(m)}^{n-1}u_{k}|}{\rho}\right)\right]^{p_{k}} + D\left[\frac{1}{2}M\left(\frac{|B_{(m)}^{n-1}u_{k+1}|}{\rho}\right)\right]^{p_{k}} \\ &\leq DK\left[M\left(\frac{|B_{(m)}^{n-1}u_{k}|}{\rho}\right)\right]^{p_{k}} + DK\left[M\left(\frac{|B_{(m)}^{n-1}u_{k+1}|}{\rho}\right)\right]^{p_{k}}, \end{split}$$

where $K = \max\{1, \left(\frac{1}{2}\right)^H\}$. Therefore, we obtain

$$\begin{cases} i \in \mathbb{N} : \frac{1}{\lambda_i} \sum_{k \in J_i} \left[M\left(\frac{|B_{(m)}^n u_k|}{2\rho}\right) \right]^{p_k} \ge \varepsilon \\ \\ \subseteq \left\{ i \in \mathbb{N} : DK \frac{1}{\lambda_i} \sum_{k \in J_i} \left[M\left(\frac{|B_{(m)}^{n-1} u_k|}{\rho}\right) \right]^{p_k} \ge \varepsilon \right\} \bigcup \left\{ i \in \mathbb{N} : DK \frac{1}{\lambda_i} \sum_{k \in J_i} \left[M\left(\frac{|B_{(m)}^{n-1} u_{k+1}|}{\rho}\right) \right]^{p_k} \ge \varepsilon \right\} \in I. \end{cases}$$

Hence $(u_k) \in c_0^I(\lambda, M, B_{(m)}^n, p)$. The inclusion is strict follows from the following example.

Example 2.6. Let M(x) = x for all $x \in [0, \infty)$ and $(\lambda_i) = i$ for all $i \in \mathbb{N}$. Suppose also that n = 5, m = 2, r = 1, s = -1 and $p_k = 1$ for all $k \in \mathbb{N}$. Let us define the sequence (u_k) by

$$u_k = \begin{cases} k^3 + 2k + 1 &, & if k is even; \\ 0 &, & otherwise. \end{cases}$$

Thus we have

$$B_{(2)}^{4}u_{k} = \sum_{\nu=0}^{4} \binom{4}{\nu} r^{4-\nu} s^{\nu} u_{k-2\nu},$$

which gives $B_{(2)}^4 u_k = -64$. So, we have $B_{(2)}^5 u_k = 0$. Therefore $(u_k) \in c_0^I(M, B_{(2)}^5, p)$ but $(u_k) \notin c_0^I(M, B_{(2)}^4, p)$.

This completes the proof of the result. \Box

Theorem 2.7. Let (p_k) and (q_k) be two sequences of positive real numbers. Then $m_0^I(\lambda, M, B_{(m)}^n, p) \subseteq m_0^I(\lambda, M, B_{(m)}^n, q)$ if and only if $\lim \inf_{k \in K} \frac{p_k}{q_k}$ where $K \subseteq \mathbb{N}$ such that $K \notin I$.

Proof. If we take $(v_k) = M\left(\frac{|B_{(m)}^n u_k|}{\rho}\right)$ for all $k \in \mathbb{N}$. Then the result follows from the Theorem 6, [25].

Corollary 2.8. Let (p_k) and (q_k) be two sequences of positive real numbers. Then $m_0^I(\lambda, M, B_{(m)}^n, p) = m_0^I(\lambda, M, B_{(m)}^n, q)$ if and only if $\liminf_{k \in K} \frac{p_k}{q_k}$ and $\liminf_{k \in K} \frac{q_k}{p_k} > 0$ where $K \subseteq \mathbb{N}$ such that $K \notin I$.

The proof of the above result follows from the Corollary 7 in [25].

Theorem 2.9. If I is not a maximal ideal and $I \neq I_f$, then the sequence spaces $c^I(\lambda, M, B^n_{(m)}, p)$ and $m^I(\lambda, M, B^n_{(m)}, p)$ are neither normal nor monotone, where I_f denotes the class of all finite subsets of \mathbb{N} .

We prove this result with the help of following example.

Example 2.10. Let M(x) = x for all $x \in [0, \infty)$ and $(\lambda_i) = i$ for all $i \in \mathbb{N}$. Suppose also that r = 1, s = -1, n = 1, m = 1 and $p_k = 1$ for all $k \in \mathbb{N}$. Taking $I = I_{\delta}$, where $I_{\delta} = \{A \subset \mathbb{N} : asymptotic density of A (in symbol, \delta(A)) = 0\}$ and note that I_{δ} is an ideal of \mathbb{N} . Define the sequence (u_k) by $u_k = k$ for all $k \in \mathbb{N}$. Let

$$\alpha_k = \begin{cases} -1 & , & if k is even; \\ 1 & , & if k is odd. \end{cases}$$

Then we see that $(u_k) \in Z(\lambda, M, B^n_{(m)}, p)$ for $Z = c^I$. But $(\alpha_k u_k) \notin Z(\lambda, M, B^n_{(m)}, p)$ for $Z = c^I$. Therefore $c^I(\lambda, M, B^n_{(m)}, p)$ is not normal and hence not monotone. Similarly, we can show that $c^I_0(\lambda, M, B^n_{(m)}, p)$ and $m^I_0(\lambda, M, B^n_{(m)}, p)$ are neither normal nor monotone by considering $u_k = 3$ for all $k \in \mathbb{N}$.

Theorem 2.11. If *I* is an admissible ideal and $I \neq I_f$, then the sequence spaces $Z(\lambda, M, B^n_{(m)}, p)$ are not symmetric, where $Z = c^I_{0,r} c^I, m^I_{0,r} m^I$.

We prove this result only for $c^{I}(\lambda, M, B^{n}_{(m)}, p)$ with the help of following example. The rest of the results follow similar way.

Example 2.12. Let M(x) = x for all $x \in [0, \infty)$ and $(\lambda_i) = i$ for all $i \in \mathbb{N}$. Suppose that r = 1, s = -1, n = 1, m = 1. Taking $I = I_{\delta}$ and $p_k = 1$ for all $k \in \mathbb{N}$. Let us define a sequence (u_k) by

$$u_k = \begin{cases} -2k+1 &, & if \ k = i^2, i \in \mathbb{N} \\ 0 &, & otherwise. \end{cases}$$

Thus, we obtain $(u_k) \in c^I(\lambda, M, B^n_{(m)}, p)$. The rearrangement (v_k) of (u_k) defined as

 $v_k = \{u_1, u_4, u_2, u_9, u_3, u_{16}, u_5, u_{25}, u_6, \ldots\}.$

This implies that $(v_k) \notin c^I(\lambda, M, B^n_{(m)}, p)$. Hence $c^I(\lambda, M, B^n_{(m)}, p)$ is not symmetric.

Theorem 2.13. If I is an admissible ideal, then $c_0^I(\lambda, M, B_{(m)}^n, p)$, $c^I(\lambda, M, B_{(m)}^n, p)$ and $\ell_{\infty}(\lambda, M, B_{(m)}^n, p)$ are convex sets.

The proof of the above theorem follows directly by using the convexity of Orlicz function.

Theorem 2.14. If *I* is an admissible ideal, then the spaces $c_0^I(\lambda, M, B_{(m)}^n, p)$, $c^I(\lambda, M, B_{(m)}^n, p)$ and $\ell_{\infty}(\lambda, M, B_{(m)}^n, p)$ are topologically isomorphic with the spaces $c_0^I(\lambda, M, p)$, $c^I(\lambda, M, p)$ and $\ell_{\infty}(\lambda, M, p)$, respectively.

Proof. Let us consider the mapping $T : Z(\lambda, M, B^n_{(m)}, p) \to Z(\lambda, M, p)$ defined by

$$Tu = v = (B_{(m)}^n u_k)$$
 for every $u = (u_k) \in Z(\lambda, M, B_{(m)}^n, p)$,

where $Z = c^{I}$, c_{0}^{I} , ℓ_{∞} . Clearly *T* is linear homeomorphism.

Acknowledgement. This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (290-130-1436-G). The authors, therefore, acknowledge with thanks DSR technical and financial support.

References

- [1] A. Alotaibi, M. Mursaleen, S. K. Sharma, S. A. Mohiuddine, Sequence spaces of fuzzy numbers defined by a Musielak-Orlicz function, Filomat 29(7) (2015) 1461-1468.
- [2] F. Başar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J. 55(1) (2003) 136-147.
- [3] M. Başarir, M. Kayikçi, On the generalized B^m -Riesz difference sequence spaces and β -property, J. Inequa. Appl. Vol. 2009 (2009) Artcle ID 385029, 18 pages.
- [4] M. Başarir, Ş. Konca, E. E. Kara, Some generalized difference statistically convergent sequence spaces in 2-normed space, J. Inequa. Appl. Vol. 2013 (2013) Article 177.
- [5] H. Çakalli, B. Hazarika, Ideal quasi-Cauchy sequences, J. Inequa. Appl. Vol. 2012 (2012) Article 234.
- [6] H. Dutta, Some statistically convergent difference sequence spaces defined over real 2-normed linear space, Appl. Sci. 12 (2010)
- [7] M. Et, M. Başarir, On some new generalized difference sequence spaces, Periodica Math. Hung. 35(3) (1997) 169-175.
- [8] M. Et, R. Çolak, On some generalized difference sequence spaces, Soochow J. Math. 21(4) (1995) 377-386.
- H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241-244.
- [10] B. Hazarika, S. A. Mohiuddine, Ideal convergence of random variables, J. Func. Spaces Appl. Vol. 2013, Article ID 148249, 7 pages (2013).
- [11] B. Hazarika, On generalized difference ideal convergence in random 2-normed spaces, Filomat 26(6) (2012) 1273-1282.
- [12] B. Hazarika, Ideal convergence in locally solid Riesz spaces, Filomat 28(4) (2014) 797-809.
- [13] P. K. Kamthan, M Gupta, Sequence spaces and series, Marcel Dekkar, 1980.
- [14] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981) 169-176.
- [15] P. Kostyrko, T. Šalát, W. Wilczyśki, On I-convergence, Real Analysis Exchange 26(2) (2000-2001) 669-686.
- [16] M. A. Krasnoselskii, Y. B. Rutitsky, Convex functions and Orlicz spaces, Netherlands, Groningen, 1961.
- [17] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971) 379-390.
- [18] S. A. Mohiuddine, K. Raj, A. Alotaibi, Some paranormed double difference sequence spaces for Orlicz functions and boundedregular matrices, Abstr. Appl. Anal. Vol. 2014, Article ID419064, 10 pages (2014).
- [19] S. A. Mohiuddine, K. Raj, A. Alotaibi, Generalized spaces of double sequences for Orlicz functions and bounded-regular matrices over n-normed spaces, J. Inequa. Appl. Vol. 2014 (2014), Article 332.
- [20] M. Mursaleen, λ-Statistical convergence, Math. Slovaca 50 (2000) 111-115.
- [21] F. Nuray, W. H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000) 513-527.
- [22] T. Šalát, B. C. Tripathy, M. Ziman, On some properties of I-convergence, Tatra Mt. Math. Publ. 28 (2004) 279-286.
- [23] E. Savaş, Δ^m -strongly summable sequences in 2-normed spaces defined by ideal convergence and an Orlicz function, Appl. Math. Comp. 217 (2010) 271-276.
- [24] B. C. Tripathy, A. Esi, A new type of difference sequence spaces, Inter. J. Sci. Tech. 1(1) (2006) 11-14.
 [25] B. C. Tripathy, B. Hazarika, Paranorm *I*-convergent sequence spaces, Math. Slovaca 59(4) (2009) 485-494.
- [26] B. C. Tripathy, B. Hazarika, Some I-convergent sequence spaces defined by Orlicz function, Acta Appl. Math. Sinica 27(1) (2011) 149-154.
- [27] B. C. Tripathy, A. Esi, B. K. Tripathy, On a new type of generalized difference Cesàro sequence spaces, Soochow J. Math. 31 (2005) 333-340.

1834