Filomat 31:8 (2017), 2189–2194 DOI 10.2298/FIL1708189W

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Generalized Invertibility in a Corner Ring

Long Wang^a, Jianlong Chen^b

^aDepartment of Mathematics, Taizhou University, Taizhou 225300, China. ^bDepartment of Mathematics, Southeast University, Nanjing, 210096, China.

Abstract. Let *R* be a ring with unity and let $a, g \in R$ be such that *a* is regular. In this article, the generalized invertibility of $ag + 1 - aa^-$ are investigated in term of the generalized invertibility of elements in a corner ring. As applications, several equivalent conditions on the Drazin invertibility of product and difference of idempotents are obtained. Moreover, we present the equivalent conditions for the existence of Moore-Penrose inverse in a ring with involution.

1. Introduction

Throughout this paper, *R* is an associative ring with unity. Given an element $a \in R$, *a* is (von Neumann) regular if there exists $b \in R$ such that a = aba. In this case, the element *b* is called an inner inverse of *a* and we will denote it by a^- . By $a\{1\} = \{b \in R : aba = a\}$ we denote the set of all inner inverses of *a*. Let * be an involution (anti-isomorphism of degree 2) on *R*. That is, the involution satisfies $(a + b)^* = a^* + b^*$, $(ab)^* = b^*a^*$ and $(a^*)^* = a$ for all $a, b \in R$. If *x* satisfies axa = a and $(ax)^* = ax$, then *x* is a $\{1, 3\}$ -inverse of *a*. If *y* satisfies aya = a and $(ya)^* = ya$, then *y* is a $\{1, 4\}$ -inverse of *a*. The standard notions of group, Drazin and Moore-Penrose inverse can be referred to the literature [5, 10]. From now on, $R^{\#}$, R^{D} and R^{\dagger} stand for the set of all group invertible elements, the set of all Drazin invertible elements and the set of all Moore-Penrose inverse inverse of *R*, respectively.

A motivation for this research appeared in [7]. There, the authors investigated the (Drazin) invertibility of $ag + 1 - aa^-$ for $a, g \in R$ when a is regular. If we set $e = aa^-$ and b = ag, then

$$t = ag + 1 - aa^{-} = eb + 1 - e.$$
(1)

In [9], the relation between generalized invertible elements of eRe and eRe + 1 - e was obtained. It should be stressed that the set

$$eRe + 1 - e = \{exe + 1 - e : x \in R\},\$$

Keywords. Drazin inverse, Moore-Penrose inverse, Corner rings, Involution.

Communicated by Dijana Mosić

²⁰¹⁰ Mathematics Subject Classification. Primary 15A09; Secondary 16W10.

Received: 09 October 2015; Accepted: 10 November 2015

Research supported by the NSFC (11371089), NSF of Jiangsu Province (BK20141327, BK20130599), Specialized Research Fund for the Doctoral Program of Higher Education (20120092110020), Natural Science Fund for Colleges and Universities in Jiangsu Province (15KJB110021).

Email addresses: wanglseu@163.com (Long Wang), jlchen@seu.edu.cn (Jianlong Chen)

is a (multiplicative) semigroup. The subrings of the form *eRe* are called corner rings. In section 3, the Drazin and group invertibility of $ag + 1 - aa^-$ are investigated in term of the generalized invertibility of elements in a corner ring. As applications, several equivalent conditions on the Drazin invertibility of product and difference of idempotents are obtained. In section 4, we consider the Moore-Penrose invertibility in a corner ring. Moreover, we present the equivalent conditions for the existence of Moore-Penrose inverse in a ring with involution.

2. Preliminaries

In this section, we will introduce some lemmas which will play an important role in the forthcoming section. Let $e \in R$ be an idempotent. The group U_e of *e*-units in the corner ring *eRe* is given by $U_e = \{exe : exeR = eR, Rexe = Re\}$. We can link elements in U_e and invertible elements in eRe + 1 - e.

Lemma 2.1. [1] Let R be a ring with unity and $e \in R$ be an idempotent. Then, for all $x \in R$,

 $exe \in U_e$ if and only if exe + 1 - e is invertible if and only if ex + 1 - e is invertible.

Lemma 2.2. [9] Let $a \in R$ and $e \in R$ be an idempotent. Then the following statements are equivalent:

(i) eae is Drazin invertible in eRe.

(*ii*) eae + 1 - e is Drazin invertible in R.

Lemma 2.3. [9] Let R be a ring with involution *, and let $a, e \in R$ be such that $e^2 = e^* = e$. Then, for all $x \in R$, the following statements are equivalent:

(i) eae is Moore-Penrose invertible in eRe.

(ii) eae + 1 - e is Moore-Penrose invertible in R.

Lemma 2.4. (*i*) [2, Theorem 3.6][Jacobson lemma] Let $a, b \in R$. If 1 - ab is (group) Drazin invertible with ind(1 - ab) = k, then 1 - ba is (group) Drazin invertible with ind(1 - ba) = k and

$$(1 - ba)^{D} = 1 + b((1 - ab)^{D} - (1 - ab)^{\pi}r)a,$$

where $r = \sum_{i=0}^{k-1} (1 - ab)^i$.

(*ii*) [4, Cline's Formula] Let $a, b \in R$ and ab is Drazin invertible. Then ba is Drazin invertible too and $(ba)^D = b((ab)^D)^2 a$.

3. Drazin Invertibility in a Corner Ring

Patricio in [7, Theorem 3.1] have considered the (Drazin) invertibility of the element $ag + 1 - aa^-$ when a is regular. In what follows, we provide new proofs of some results in [7] in term of the Drazin invertibility of elements in a corner ring. It is well known that $x \in R$ is Drazin invertible if and only if $x^k \in x^{k+1}R \cap Rx^{k+1}$ for some $k \in \mathbb{N}^+$, where \mathbb{N}^+ denote the set of all positive integer numbers.

Theorem 3.1. [7, theorem 3.1] Let $a, g \in R$ be such that a is regular with an inner inverse a^- . The element $ag+1-aa^-$ is Drazin invertible in R if and only if $(ag)^k a \in (ag)^{k+1} a R \cap R(ag)^{k+1} a$ for some $k \in \mathbb{N}^+$.

Proof. In view of (1.1), Lemma 2.2 and Lemma 2.4, one can see that $ag + 1 - aa^-$ is Drazin invertible in *R* if and only if *ebe* is Drazin invertible in *eRe*.

As a matter of fact, *ebe* is Drazin invertible in *eRe* if and only if $(ebe)^k \in (ebe)^{k+1}Re \cap eR(ebe)^{k+1}$ for some $k \in \mathbb{N}^+$. We note that

$$(ebe)^k \in (ebe)^{k+1}Re \cap eR(ebe)^{k+1}$$
 if and only if $(aq)^k a \in (aq)^{k+1}aR \cap R(aq)^{k+1}a$

Indeed, if $(ebe)^k \in (ebe)^{k+1}Re \cap eR(ebe)^{k+1}$, there exist $x, y \in R$ such that $(ebe)^k = (ebe)^{k+1}xe = ey(ebe)^{k+1}$. That is,

$$(ag)^{k}aa^{-} = (ag)^{k+1}aa^{-}xaa^{-} = aa^{-}y(ag)^{k+1}aa^{-}$$

Premultiplication by *a* gives $(ag)^k a = (ag)^{k+1}aa^-xa = aa^-y(ag)^{k+1}a$, and thus,

 $(aq)^k a \in (aq)^{k+1} a R \cap R(aq)^{k+1} a.$

Conversely, if $(ag)^k a \in (ag)^{k+1} a R \cap R(ag)^{k+1} a$, then

$$(ag)^kaa^- \in (ag)^{k+1}aRa^- \cap R(ag)^{k+1}aa^-.$$

It gives $(ebe)^k \in (ebe)^{k+1}eaRa^- \cap R(ebe)^{k+1}$, and then $(ebe)^k \in (ebe)^{k+1}R \cap R(ebe)^{k+1}$. This shows that $(ebe)^k \in (ebe)^{k+1}Re \cap eR(ebe)^{k+1}$, as desired. \Box

As we known, if $a \in R$ is regular, then $a + 1 - aa^-$ is invertible if and only if a is group invertible (See [9]). From Theorem 3.1, set g = 1, we obtain the following corollary.

Corollary 3.2. Let $a \in R$ be regular with an inner inverse a^- . Then $a + 1 - aa^- \in R^D$ if and only if $a \in R^D$.

Lemma 3.3. [9] Let $a \in R$ and $e \in R$ be an idempotent. Then the following statements are equivalent:

(i) eae is group invertible in eRe.

(ii) eae + 1 - e is group invertible in R.

Remark 3.4. It is worth to mention that, if $e \in R$ be an idempotent, eae is group invertible in eRe if and only if eae is group invertible in R. From Lemma 3.3 and Lemma 2.4 (i), if a is regular and let a^- be an arbitrary inner inverse of *a*, we set $e = aa^-$, then one can obtain that

$$a^2a^- \in R^{\sharp} \iff a^2a^- + 1 - aa^- \in R^{\sharp} \iff a + 1 - aa^- \in R^{\sharp}$$

Next, we will give a counter example to show that $a^2a^- \in R^{\sharp} \Leftrightarrow a \in R^{\sharp}$. It also implies that $a + 1 - aa^- \in R^{\sharp} \Leftrightarrow a \in R^{\sharp}$.

Example 3.5. Set $a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Note that $a^2 = 0$ and then a^2a^- is group invertible. Choose $a^- = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, and it is easy to check that $s = a + 1 - aa^- = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ is not invertible in \mathbb{R} , this leads to $a \notin \mathbb{R}^{\sharp}$.

In view of Corollary 3.2 and Remark 3.4, one can see that

 $a^2a^- \in R^{\sharp} \Longleftrightarrow a+1-aa^- \in R^{\sharp} \Longrightarrow a \in R^D$

But next example show that the converse is not true, in general.

Example 3.6. Set $a = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. It is easy to check that $a^3 = 0$ and $a^D = 0$. We can choose $a^- = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ and thus, $x = a^2 a^- = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Choose $x^- = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, then $x + 1 - xx^- = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ is not invertible in R, this leads to $x \notin R^{\sharp}$, that is, $a^2 a^- \notin R^{\sharp}$.

As an application, in what follows, p and q always mean two arbitrary idempotents in a ring R. In [3, proposition 3.1], several equivalent conditions on the Drazin invertibility of 1 - pq are given. As a matter of fact, it is a direct consequence of Lemma 2.2. Firstly, it is easy to check that $prp \in (pRp)^D$ if and only if $prp \in R^D$ for any $r \in R$.

Theorem 3.7. The following statements are equivalent: (1) $1 - pq \in R^D$, (2) $p - pq \in R^D$, (3) $p - qp \in R^D$, (4) $1 - pqp \in R^D$, (5) $p - pqp \in R^D$, (6) $1 - qp \in R^D$, (7) $q - qp \in R^D$, (8) $q - pq \in R^D$, (9) $1 - qpq \in R^D$, (10) $q - qpq \in R^D$. *Proof.* Note that item (5) $p - pqp \in \mathbb{R}^D$ if and only if $p(1 - q)p \in (pRp)^D$. By Lemma 2.2, it is equivalent to $p(1 - q)p + 1 - p \in \mathbb{R}^D$, that is, (4) $1 - pqp \in \mathbb{R}^D$ holds. By Lemma 2.4 (i), it is equivalent to (1) $1 - pq \in \mathbb{R}^D$. For item (2) and (3), since (5) $p(1 - q)p \in \mathbb{R}^D$ holds, we can check them directly by Lemma 2.4 (ii). Similarly, we obtain that (6), (7), (8), (9) and (10) hold. \Box

In [3, Theorem 3.4], it is proven that $p(p-q)p \in R^D$ if and only if $p-q \in R^D$. In the following, we extend the result to the $p(p-q)^n p \in R^D$ case. We need to give some elementary and known results which play an important role in the next theorem.

Lemma 3.8. [5] Let $a \in R$. Then a is Drazin invertible if and only if a^m is Drazin invertible for some (any) integer *m*.

Lemma 3.9. [5] Let $a, b \in \mathbb{R}^D$ with ab = ba. Then $ab \in \mathbb{R}^D$ and $(ab)^D = b^D a^D$.

Theorem 3.10. *The following statements are equivalent:*

 $\begin{array}{ll} (i) & p-q \in R^D.\\ (ii) & p(p-q)^n p \in R^D \mbox{ for any } n \geq 1.\\ (iii) & p(p-q)^n p \in R^D \mbox{ for some } n \geq 1. \end{array}$

Proof. Let us first observe that $p(p-q)^2 = p - pqp = (p-q)^2p$. Then we have $p(p-q)^{2k} = (p-q)^{2k}p$ for any integer $k \ge 1$. Thus, we claim that

$$p(p-q)^{2k-1}p = p(p-q)^{2k}p.$$
(2)

We now proceed by induction on *k*. If k = 1, then it is clear that $p(p - q)^2 = p(p - q)p = (p - q)^2p$. Assume that the result is true for some $k \ge 1$. This implies that $p(p - q)^{2k-1}p = p(p - q)^{2k}p$, and thus

$$p(p-q)^{2k+1}p = p(p-q)^{2k-1}(p-q)^2p = p(p-q)^{2k-1}p(p-q)^2p$$

= $p(p-q)^{2k}p(p-q)^2p = p(p-q)^{2k+2}p.$

(*i*) ⇒ (*ii*) By Lemma 3.8, $p - q \in \mathbb{R}^D$ if and only if $(p - q)^k \in \mathbb{R}^D$ for any $k \ge 1$. From (3.1) and Lemma 3.9, we obtain $p(p - q)^{2n-1}p = (p - q)^{2n}p = p(p - q)^{2n} = p(p - q)^{2n}p$ is Drazin invertible. This implies that $p(p - q)^n p \in \mathbb{R}^D$ whenever *n* is odd or even integer.

 $(ii) \Rightarrow (iii)$ It is clear.

(*iii*) ⇒ (*i*) By (3.1), there exists an even number *n* such that $p(p-q)^n p \in R^D$. This gives that $p(p-q)^{2k} p \in R^D$ for some $k \in \mathbb{N}$. Note that

$$(p-q)^2 = p(1-q) + q(1-p)$$

Set A = p(1 - q) and B = q(1 - p). By Bp = 0 and AB = BA = 0, it is easy to get

$$p(p-q)^{2k}p = p(A^k + B^k)p = pA^kp = A^kp$$

From Lemma 2.4 (ii) and Lemma 3.8, we have $p(p-q)^{2k}p \in \mathbb{R}^D \iff A \in \mathbb{R}^D$. By Theorem 3.7, one can see

$$A \in R^D \iff B \in R^D$$
.

Then $A + B \in \mathbb{R}^D$ and $(A + B)^D = A^D + B^D$ since AB = BA = 0. That implies that $(p - q)^2 \in \mathbb{R}^D$ and $p - q \in \mathbb{R}^D$. \Box

4. Moore-Penrose Invertibility in a Corner Ring

In what follows, *R* denotes an associate ring with unity and involution *. Moore-Penrose invertibility in a corner ring is considered in this section. Moreover, we present the equivalent conditions for the existence of Moore-Penrose inverse in *R*.

Lemma 4.1. [7, corollary 3.1] Let $a, g \in R$ be such that a is regular with an inner inverse a^- . Then $ag + 1 - aa^-$ is invertible if and only if $a \in agaR \cap Raga$.

Proof. Set b = ag and $e = aa^-$. From Lemma 2.1, it implies that $ag + 1 - aa^-$ is invertible if and only if $e \in ebeR \cap Rebe$. That is, $aa^- \in agaa^-R \cap Ragaa^-$. We claim that $aa^- \in agaa^-R \cap Ragaa^-$ is equivalent to $a \in agaR \cap Raga$. Indeed,

" \Rightarrow " $aa^- = agaa^-x = yagaa^-$ for some $x, y \in R$. Then $a = agaa^-xa = yaga$, so $a \in agaR \cap Raga$.

" \leftarrow " a = agat = saga for some $s, t \in R$. Then $aa^- = agaa^-ata^- = sagaa^-$, so $aa^- \in agaa^-R \cap Ragaa^-$.

Proposition 4.2. *Let* $a \in R$ *be regular. Then the following statements are equivalent:*

(i) $a \in R^+$. (ii) $a \in aa^*aR \cap Raa^*a$. (iii) $a \in aa^*R \cap Ra^*a$.

Proof. (*i*) \Leftrightarrow (*ii*) Note that $a \in R^+$ if and only if $u = 1 + aa^* - aa^-$ is an unit of R, where a^- is an arbitrary inner inverse of a (See [6, Theorem 1.1]). From Lemma 4.1, it is easy to get $a \in R^+$ if and only if $a \in aa^*aR \cap Raa^*a$. (*ii*) \Rightarrow (*iii*) It is clear.

 $(iii) \Rightarrow (ii)$ There exist $r_1, r_2 \in R$ such that $a = aa^*r_1 = r_2a^*a$. It implies that $a = a(r_2a^*a)^*r_1 = aa^*ar_2^*r_1$ and $a = r_2(aa^*r_1)^*a = r_2r_1^*aa^*a$. So, we have $a \in aa^*aR \cap Raa^*a$. \Box

In the following, we give new characterizations for an element *a* to have Moore-Penrose inverse.

Theorem 4.3. *Let* $a \in R$ *. The following statements are equivalent:*

(i) $a \in R^+$. (ii) $a \in aa^*aR$. (iii) $a \in Raa^*a$.

Proof. (*i*) \Rightarrow (*ii*) See Proposition 4.2.

 $(ii) \Rightarrow (i)$ Since $a \in aa^*aR$, there exists $x \in R$ such that $a = aa^*ax$ and $a^* = x^*a^*aa^*$. Note that

 $a^*ax = (x^*a^*aa^*)ax = (x^*a^*aa^*ax)^* = (a^*ax)^*$

It gives that $a = aa^*ax = a(a^*ax)^* = ax^*a^*a \in aRa$. So, we obtain that *a* is regular. Meanwhile, from $a = ax^*a^*a$, one can see that $a = ax^*a^*a = ax^*(x^*a^*aa^*)a \in Raa^*a$. By Porposition 4.2, we get $a \in R$ is Moore-Penrose invertible.

(*i*) \Leftrightarrow (*iii*) The proof is similar to (*i*) \Leftrightarrow (*ii*). \Box

Remark 4.4. If $a \in aa^*R$ (or $a \in Ra^*a$), then $a \in R$ is $\{1, 4\}$ -invertible (or $\{1, 3\}$ -invertible). Form $a \in aa^*R$, there exists $x \in R$ such that $a = aa^*x$. Then $x^*a = x^*aa^*x$, this gives that $(x^*a)^* = x^*a$. So, we have $a = aa^*x = a(x^*a)^* = ax^*a$.

Proposition 4.5. Let a be $\{1,3\}$ -invertible and $a^{(1,3)}$ be a $\{1,3\}$ -inverse of a. Then the following are equivalent:

- (*i*) $w = aqaa^{(1,3)} + 1 aa^{(1,3)} \in \mathbb{R}^+$.
- (*ii*) $aqa \in Ragaa^{(1,3)}(aq)^*aqa$.

Proof. Set aq = b and $aa^{(1,3)} = e$. Then the element

 $w = agaa^{(1,3)} + 1 - aa^{(1,3)} = ebe + 1 - e.$

By Lemma 2.3, $w \in R^{\dagger}$ if and only if $ebe \in (eRe)^{\dagger}$. As a matter of fact, when $e^2 = e = e^*$, $ebe \in (eRe)^{\dagger}$ if and only if $ebe \in R^{\dagger}$. By Theorem 4.3, it implies that $agaa^{(1,3)} \in Ragaa^{(1,3)}(ag)^*agaa^{(1,3)}$. It is equivalent to $aga \in Ragaa^{(1,3)}(ag)^*agaa$. \Box

Recall that an element $a \in R$ is called EP [11], if $a \in R^+ \cap R^\#$ and $a^+ = a^\#$. Hence, we get

Corollary 4.6. Let a be $\{1,3\}$ -invertible and $a^{(1,3)}$ be a $\{1,3\}$ -inverse of a. Then the following are equivalent:

- (*i*) $w = aa^* + 1 aa^{(1,3)} \in R^+$
- (*ii*) *aa*^{*} *is EP*.

2194

Proof. Set $g = a^*$ in item (ii) in Proposition 4.5. Then we can get $aa^*a \in Raa^*aa^*aa^*a$. Postmultiply by $a^{(1,3)}$, we get $aa^* \in Raa^*aa^*aa^*$. Note that $aa^* \in R^{\ddagger}$ if and only if $aa^* \in Raa^*aa^*aa^*$. Moreover, we obtain that aa^* is EP by [8, Proposition 2]. \Box

Recall from [12] that a ring *R* is said to be *-reducing if, for any element $a \in R$, $a^*a = 0$ implies a = 0. Note that *R* is *-reducing if and only if the following implications hold for any $a \in R$: $a^*ax = a^*ay \Rightarrow ax = ay$ and $xaa^* = yaa^* \Rightarrow xa = ya$.

Remark 4.7. Under the condition of corollary 4.6, if R is *-reducing, then we obtain that $w = aa^* + 1 - aa^{(1,3)} \in \mathbb{R}^+$ if and only if $a \in \mathbb{R}^+$. Set $x = a^*(aa^*)^+$. Now $(xa)^* = [a^*(aa^*)^+a]^* = a^*(aa^*)^+a = xa$; $(ax)^* = aa^*(aa^*)^+$ is self-adjoint; $xax = a^*(aa^*)^+aa^*(aa^*)^+ = a^*(aa^*)^+ = x$. Finally, $axaa^* = aa^*(aa^*)^+aa^* = aa^*$, and since R is *-reducing, we get axa = a.

Acknowledgments

The authors would like to thank the reviewers for their constructive comments that improved the presentation of the paper.

References

- N. Castro-González, J.L. Chen, L. Wang, Further results on generalized inverses in rings with involution, Electron. J. Linear Algebra, 30 (2015) 118–134.
- [2] N. Castro-González, C. Mendes-Araújo, P. Patrício, Generalized inverses of a sum in rings, Bull. Aust. Math. Soc., 82 (2010) 156–164.
- [3] J.L. Chen, H.H. Zhu, The Drazin invertibility of product and difference of idempotents in a ring, Filomat, 28 (2014) 1133–1137.
- [4] R. E. Cline, An application of representation for the generalized inverse of a matrix, MRC Technical Report 592, 1965.
- [5] M.P. Drazin, Pseudo-inverses in associative rings and semigroups, Am. Math. Monthly, 65 (1958) 506–514.
- [6] P. Patrício, The Moore-Penrose inverse of a companion matrix, Linear Algebra Appl., 437 (2012) 870–877.
- [7] P. Patrício, R.E. Hartwig, Some regular sums. Linear Multilinear Algebra, 63 (2015) 185-200.
- [8] P. Patrício, R. Puystjens, Drazin-Moore-Penrose invertibility in rings, Linear Algebra Appl., 389 (2004) 159–173.
- [9] P. Patrício, R. Puystjens, Generalized invertibility in two semigroups of a ring, Linear Algebra Appl., 377 (2004) 125-139.
- [10] R. Penrose, A generalized inverse for matrices, Proc. Camb. phil. Soc., 51 (1955) 406-413.
- [11] J.J. Koliha, Elements of C*-algebras commuting with their Moore-Penrose inverse, Studia Math., 139 (2000) 81–90.
- [12] J.J. Koliha, P. Patrício, Elements of rings with equal spectral idempotents, J. Aust.Math. Soc., 72 (2002) 137–152.