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Abstract. We introduce the concept of neighbourhood systems which are common generalizations of
topological spaces, locales and topological systems. The category NS of neighbourhood systems has co-
products but does not have products. The relationship between convergence of filters on neighbourhood
systems and convergence of filters on locales is investigated.

1. Introduction

Topological systems were first introduced by S. Vickers in [8] arising from topological and localic aspects
of domains and finite observational logic in computer science. In [1], J. Adamek and M.-C. Pedicchio showed
that the category of topological systems is dually equivalent to the category of grids introduced in [3]. One
of the purposes of the introduction of topological systems is to provide a single framework in which to
treat both spaces and locales(see [8]). It is not difficult to see that the underlying locale of any nontrivial
topological system has at least one point. This seems that topological systems can only deal with locales
which has points. So for pointless locales there are no corresponding nontrivial topological systems. But
in locale theory there exist a large number of pointless locales, thus for the same purpose of providing a
single framework in which to treat both spaces and locales, we introduce the concept of neighbourhood
systems and show that the category of neighbourhood systems contains the category of topological spaces,
the category of locales and the category of topological systems respectively as full subcategories.

2. Preliminaries

Our notation and terminology follow that of Johnstone [6]. For instance, by a point of locale we mean a
prime element, and we write pt(L) for the set of points of a locale L. The frame of open sets of a topological
space X is denoted by ΩX. Recall that pt(L) can be made into a topological space such that the assignment
L 7→ pt(L) defines a functor from the category of locales to the category of topological spaces which is right
adjoint to the functor Ω.
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By a filter in a locale L we mean a proper filter; and we write Fil(L) for the set of all filters on a locale L.
Recall that a filter F in a locale L is prime if for any a, b ∈ L, a ∨ b ∈ F implies a ∈ F or b ∈ F. On the other
hand, it is completely prime if for any S ⊆ L,

∨
S ∈ F implies S∩ F , ∅. Finally, we write Spec(L) for the set of

all prime ideals on L.

3. Neighbourhood Systems

Let L be a locale. A subset F ⊆ L is called filtered if for any two elements a, b ∈ F, there exists an element
c ∈ F such that c ≤ a, c ≤ b hold. F ⊆ L is said to be a filter on L if F is filtered upper set. The set of all filters
on L which don’t contain the bottom element 0 of L is denoted by Fil(L).

Definition 3.1. Let X be a set and L be a locale. Let N : X → Fil(L) be a map which assigns to every point
x ∈ X a filter N(x) in L. We call N a neighbourhood assignment on X to L and elements in N(x) are called
neighbourhoods of x. X and L with a neighbourhood assignment N is called a neighbourhood system
which is denoted by (X,L,N).

Example 3.2. Let X be the set of all real numbers. Let L be the frame of all regular open sets of X, i.e., open
subsets u of X in the usual topology satisfying int(cl(u)) = u. Then L has no points. For every x ∈ X, take
N(x) = {u ∈ L | x ∈ u}. Then (X,L,N) is a neighbourhood system.

Definition 3.3. Let (X,L,N) and (Y,T,M) be two neighbourhood systems. A continuous map from (X,L,N)
to (Y,T,M) is a pair ( f , f̄ ) where f : X→ Y is a function, f̄ : T→ L is a frame homomorphism and for every
x ∈ X, u ∈M( f (x)) if and only if f̄ (u) ∈ N(x).

Example 3.4. Let f : R→ R be a continuous open function whereR is the real line. Take the neighbourhood
system (X,L,N) in Example 3.2, then the pair ( f , f−1) is a continuous map from (X,L,N) to itself.

Continuous maps between neighbourhood systems are clearly stable under composition and for every
neighbourhood system (X,L,N), there exists obviously an identity map from (X,L,N) to itself. Thus we
have a category NS of neighbourhood systems and continuous maps.

Definition 3.5. A continuous map ( f , f̄ ) : (X,L,N) → (Y,T,M) is a homeomorphism if there is continuous
map (1, 1̄) : (Y,T,M)→ (X,L,L) such that the compositions 1 f = idX, f1 = idY, 1̄ f̄ = idT, f̄ 1̄ = idL.

When there is a homeomorphism from (X,L,N) to (Y,T,M), we say (X,L,N) and (Y,T,M) are homeomor-
phic and write (X,L,N) � (Y,T,M). This means that not only the sets X and Y have same cardinal and the
frames L and T are isomorphic, but also the restriction map f̄ : N(x)→M( f (x)) is a bijection for each x ∈ X.

Similar with topological systems, a neighbourhood system can be described as a finite meet preserving
map from a locale to the power set of a set as following.

We consider the category Frm ↓Set its objects are those finite meet preserving maps ϕ : L→ P(X) from
a locale L to the power set P(X) of a set X, for two objects ψ : L → P(X) and ϕ : T → P(Y) in Frm ↓Set, a
morphisms from ψ : L→ P(X) to ϕ : T→ P(Y) is a pair

f : X→ Y, f̄ : T→ L

where f : X → Y is a function, f̄ : T → L is a frame homomorphism such that the following square
commutes:

T
f̄ //

ϕ

��

L

ψ

��
P(Y)

f−1
// P(X)
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Given a neighbourhood system (X,L,N), we have a map from L to the power set P(X) of X which
preserves finite meets

ψ : L→ P(X), a 7→ {x ∈ X | a ∈ N(x)}.

It is not difficult to see that this assignment defines a functor from the category NS of neighbourhood
systems to the category Frm↓Set. This functor is in fact an isomorphism of categories such that its inverse
maps each object ψ : L→ P(X) of Frm↓Set to a neighbourhood system (X,L,N) defined by

N(x) = {u ∈ L | x ∈ ψ(u)}.

Let (X,L,N) be a neighbourhood system. Then the collection {ψ(a) = {x ∈ X | a ∈ N(x)} | a ∈ L} of subsets
of X forms a base for a topology on X. We denote the topological space by X̃. By the arguments above the
following result is clear.

Proposition 3.6. The assignment (X,L,N) 7→ X̃ defines a functor from the category NS of neighbourhood systems
to the category Top of topological spaces.

4. Spatial Neighbourhood Systems

Let X be a topological space. Write Ω(X) for the topology on X. Let N : X → Fil(Ω(X)) be the ordinary
neighbourhood assignment, i.e., N(x) = {U ∈ Ω(X) | x ∈ U} for each x ∈ X. Then (X,Ω(X),N) is a
neighbourhood system, we call it the neighbourhood system generated by X.

Suppose X and Y are topological spaces, (X,Ω(X),N) and (Y,Ω(Y),M) are the neighbourhood systems
generated by X and Y respectively. For every continuous map ( f , f̄ ) : (X,Ω(X),N)→ (Y,Ω(Y),M), U ∈ Ω(Y),
we have f (x) ∈ U ⇔ x ∈ f̄ (U), which implies that f̄ = f−1, so that f̄ is the inverse image mapping induced
by f . Thus the following result is clear.

Theorem 4.1. The category Top of topological spaces and continuous functions can be embedded as a full subcategory
of the category NS of neighbourhood systems.

We call a neighbourhood system spatial if it is isomorphic to a neighbourhood system induced by a
topological space.

Lemma 4.2. A neighbourhood system (X,L,N) is spatial if and only if there exists a frame mono-homomorphism
1 : L→ P(X) from L to the powerset lattice P(X) of X such that u ∈ N(x)⇔ x ∈ 1(u) for every x ∈ X.

Theorem 4.1 implies that the category of topological spaces is equivalent to the category of spatial
neighbourhood systems.

Let (X,L,N) be a neighbourhood system. Write pt(L) for the set of all prime elements of L, and Ω(pt(L))
for the topology on pt(L) such that every open set has the form φ(u) = {p ∈ pt(L) | u � p} for some u ∈ L. The
topological space (pt(L),Ω(pt(L))) generates a neighbourhood system (pt(L),Ω(pt(L)),Φ). We call a neigh-
bourhood system (X,L,N) sober neighbourhood system if (X,L,N) and (pt(L),Ω(pt(L)),Φ) are homeomorphic.

Lemma 4.3. (X,L,N) is a sober neighbourhood system if and only if L is spatial and there is a one-to-one onto
mapping ϕ : X→ pt(L) such that N(x) = L\ ↓ ϕ(x) for every x ∈ X.

Corollary 4.4. The category Sob of sober topological spaces is equivalent to the category of sober neighbourhood
systems.
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5. Topological Neighbourhood Systems

Definition 5.1. A neighbourhood system (X,L,N) is said to be a topological neighbourhood system if for every
x ∈ X, N(x) is a completely prime filter, i.e., N(x) satisfies the following condition:

(?)
∨
i∈I

ui ∈ N(x)⇒ ∃i ∈ I, such that ui ∈ N(x).

Let (X,L) be a topological system. For each x ∈ X, take N(x) = {u ∈ L | x |= u}. Then (X,L,N) is a
neighbourhood system, we call it the neighbourhood system generated by the topological system (X,L).

Lemma 5.2. A neighbourhood system (X,L,N) is a topological neighbourhood system if and only if it can be generated
by a topological system (X,L, |=).

Proof. Suppose (X,L,N) is a topological neighbourhood system. Define a binary relation |= from X to L such
that

x |= u⇔ u ∈ N(x).

Then (X,L, |=) is a topological system and (X,L,N) is generated by (X,L, |=).
Conversely, if (X,L,N) is generated by a topological system (X,L, |=), and

∨
i∈I ui ∈ N(x) for x ∈ X, then

x |=
∨

ui which implies that ∃i ∈ I, such that x |= ui. Hence ui ∈ N(x).

Let (X1,L1) and (X2,L2) be two topological systems. It is not difficult to see that ( f , f̄ ) : (X1,L1) → (X2,L2)
is a continuous map of topological systems if and only if ( f , f̄ ) : (X1,L1,N1) → (X2,L2,N2) is a continuous
map of neighbourhood systems where (X1,L1,N1) and (X2,L2,N2) are neighbourhood systems generated
by topological systems (X1,L1) and (X2,L2) respectively. Hence the following result is clear.

Theorem 5.3. The category of topological systems and continuous maps is isomorphic to the category of topological
neighbourhood systems and continuous maps, hence can be embedded as a full subcategory of the category NS of
neighbourhood systems.

6. Localic Neighbourhood Systems

Let L be a locale. The set of all prime ideals of L is denoted by Spec(L). For each j ∈ Spec(L), put
NL( j) = {x ∈ L | x < j}, then (Spec(L),L,NL) is a neighbourhood system. We call it the neighbourhood system
generated by L.

Lemma 6.1. The correspondence L 7→ (Spec(L),L,NL) between objects defines a full embedding functor from the
category of locales into the category NS of neighbourhood systems.

Proof. Suppose f : L → Q is a localic map and f ∗ : Q → L is the corresponding frame homomorphism.
For each j ∈ Spec(L), put f̃ ( j) = {a ∈ Q | f ∗(a) ∈ j}. Then it is clear that f̃ ( j) is a prime ideal on Q
and ( f̃ , f ∗) : (Spec(L),L,NL) → (Spec(Q),Q,NQ) is a continuous map of neighbourhood systems where
(Spec(L),L,NL) and (Spec(Q),Q,NQ) are the neighbourhood systems generated by L and Q respectively.
This implies that the correspondence L 7→ (Spec(L),L,N) is an embedding functor. To show it is full, we
note that if (1, f ∗) : (Spec(L),L,NL)→ (Spec(Q),Q,NQ) is a continuous map of neighbourhood systems then
for every prime ideal j on L, a ∈ 1( j) if and only if f ∗(a) ∈ j. Thus 1( j) = {a ∈ Q | f ∗(a) ∈ j}. This implies that
the above functor is full.

A neighbourhood system is called localic if it is homeomorphic to a neighbourhood system generated
by a locale.

Corollary 6.2. The category of locales and localic maps is equivalent to the category of localic neighbourhood systems
and continuous maps.
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A neighbourhood system (X,L,N) is said a T0 neighbourhood system if for any two points x, y ∈ X, x , y
implies N(x) , N(y). (X,L,N) is said a pre-localic neighbourhood system if it is a T0 neighbourhood system
and satisfying the condition that for any point x ∈ X, u1 ∨ u2 ∈ N(x) implies that u1 ∈ N(x) or u2 ∈ N(x).
Every localic neighbourhood system is a pre-localic neighbourhood system but the converse is not true.

Theorem 6.3. The category of localic neighbourhood systems is reflective in the category of pre-localic neighbourhood
systems.

Proof. Let (X,L,M) be a pre-localic neighbourhood system. We can regard X as a subset of the set of all
prime filters on L, hence a subset of the set Spec(L) of prime ideals on L. Thus we have a continuous map
( f , f̄ ) : (X,L,M) → (Spec(L),L,NL) where f : X → Spec(L) is an embedding and f̄ : L → L is the identity.
Suppose (1, 1̄) : (X,L,N)→ (Spec(H),H,NH) is a continuous map. Then 1 can be regarded as a restriction of
the map

1̂ : Spec(L)→ Spec(H), J 7→ 1̄−1(J)

Hence (1, 1̄) can be uniquely factored through ( f , f̄ ) by the continuous map (1̂, 1̄) : (Spec(L),L,NL) →
(Spec(H),H,NH).

7. Operations of Neighbourhood Systems

In this section we consider some operations of neighbourhood systems.

Definition 7.1. A continuous map ( f , f̄ ) : (Y,T,M) → (X,L,N) of neighbourhood systems is said an em-
bedding if f is injective and f̄ is surjective. A neighbourhood system (Y,T,M) is called a neighbourhood
subsystem of (X,L,N) if there is an embedding ( f , f̄ ) : (Y,T,M)→ (X,L,N) of neighbourhood systems.

Let (X,L,N) be a neighbourhood system. Given a subset Y ⊆ X and a sublocale T ⊆ L, there will be
no suitable neighbourhood assignment M on Y to T such that it becomes a neighbourhood subsystem of
(X,L,N) in general.

Lemma 7.2. Let (X,L,N) be a neighbourhood system. Let Y ⊆ X and f : L → T be a surjective frame morphism.
Then there is a neighbourhood assignment M on Y to T such that (Y,T,M) becomes a neighbourhood subsystem of
(X,L,N) if and only if ∀y ∈ Y, v ∈ T such that f̄ (u) ≤ f̄ (v) for some u ∈ N(y) implies that v ∈ N(y).

Now we consider sums of neighbourhood systems which is in fact coproducts of neighbourhood systems
in categorical sense.

Let {(X j,L j,N j) | j ∈ J} be a family of neighbourhood systems. The sum of {(X j,L j,N j) | j ∈ J} is defined
as following.

Take X =
⋃

i∈J X j be the disjoint union of {X j | j ∈ J}, L =
∏

L j be the frame product of {L j | j ∈ J}. Define

N : X→ Fil(L),N(x) = {(u j) | ui ∈ Ni(x)}, x ∈ Xi

Theorem 7.3. (X,L,N) is the coproduct of {(X j,L j,N j) | j ∈ J} in the category of neighbourhood systems with
injections (i j, ī j) : (X j,L j,N j)→ (X,L,N), j ∈ J defined by i j(x) = x and ī j(xt) = x j for each j ∈ J.

Proof. We only need to check the universal property that for any neighbourhood system (Y,P,M) and
continuous maps ( f j, f̄ j) : (X j,L j,N j) → (Y,P,M), j ∈ J, there exists a unique continuous map ( f , f̄ ) :
(X,L,N) → (Y,P,M) such that f j = f ji j, f̄ j = ī j f̄ j for each j ∈ J. But it is clear if we take f (x) = f j(x) for
x ∈ X j and f̄ (u) = ( f̄ j(u)) for u ∈ P as the following diagram shows.

(X j,L j,N j)
( f j, f̄ j) //

(i j,ī j)
&&

(Y,P,M)

( f , f̄ )
yy

(X,L,N)
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Corollary 7.4. (1) A coproduct of a family of spatial neighbourhood systems is still spatial.
(2) A coproduct of a family of topological neighbourhood systems is still topological.
(3) A coproduct of a family of localic neighbourhood systems is still localic.

Proof. (1) Let {(X j,L j,N j) | j ∈ J} be a family of spatial neighbourhood systems. It is clear that the frame
product

∏
L j is isomorphic to the topology of the sum space

⊎
X j.

(2) Suppose {(X j,L j,N j) | j ∈ J} is a family of topological neighbourhood systems, it is clear that each N(x)
is a completely prime filter, i.e., satisfying the condition (?). Hence the coproduct (X,L,N) is topological.

(3) Suppose {(X j,L j,N j) | j ∈ J} is a family of localic neighbourhood systems. We note that every prime
ideal on

∏
L j has the form p−1

j (I) for some projection p j :
∏

L j → L j and a prime ideal I on L j. Thus the set
of all prime ideals pi(

∏
L j) on

∏
L j is one-one to the join set

⋃
j∈J pi(L j).

Let {(X j,L j,N j) | j ∈ J} be a family of neighbourhood systems. Write
∏

j∈J X j for the Cartesian product
of {X j}, and

∐
j∈J L j for the coproduct of frames {L j}, equivalently the product of locales {L j}. We define a

neighbourhood assignment N :
∏

j∈J X j → Fil(
∐

j∈J L j) such that

N(x j) =↑ {↓ (u j) | ∃a finite set F ⊆ J, such that u j = 1, j ∈ J \ F,ui ∈ Ni(xi), i ∈ F}

Write p j :
∏

X j → X j and p̄ j : L j →
∐

L j be the j′th projection and co-projection respectively. Then
(p j, p̄ j) : (

∏
X j,
∐

L j,N)→ (X j,L j,N j) is a continuous map.

Lemma 7.5. Let {(X j,L j,N j) | j ∈ J} be a family of neighbourhood systems. Suppose that (
∏̃

X j,
∏̃

L j, Ñ) is the
product of {(X j,L j,N j) | j ∈ J} with projections ( f j, f̄ j) : (

∏̃
X j,
∏̃

L j, Ñ) → (X j,L j,N j), j ∈ J, then
∏̃

X j is
equipotent with

∏
X j and

∏̃
L j is isomorphic with

∐
L j.

Proof. By the universal property there is a continuous map (h, h̄) : (
∏

X j,
∐

L j,N) → (
∏̃

X j,
∏̃

L j, Ñ) such
that the following diagram commutes:

(
∏

X j,
∐

L j,N)
(h,h̄) //

(p j,p̄ j)

''

(
∏̃

X j,
∏̃

L j, Ñ)

( f j, f̄ j)

ww
(X j,L j,N j)

Let f :
∏̃

X j →
∏

X j be a map such that p j f = f j for ∀ j ∈ J, and let f̄ :
∐

L j →
∏̃

L j be a frame
homomorphism such that f̄ p̄ j = f̄ j for ∀ j ∈ J. Then we have p j f h = f jh = p j, j ∈ J, this implies that f h be
an identity on

∏
X j. Thus h is injective. So we can regard

∏
X j as a subset of

∏̃
X j. But it is clear that

the induced neighbourhood system (
∏

X j,
∏̃

L j, Ñ) is still a product of {(X j,L j,N j) | j ∈ J}. Hence
∏̃

X j is
equipotent with

∏
X j.

To show that
∏̃

L j is isomorphic with
∐

L j. We first note that f̄ p̄ j = f̄ j implies that h̄ f̄ p̄ j = h̄ f̄ j = p̄ j, i ∈ J.
It implies that h̄ f̄ be an identity on

∏
L j.

Secondly, we show that { f̄ j : L j →
∏̃

L j | j ∈ J} is an epi-sink, i.e. 1 f̄ j = r f̄ j implies 1 = r for any two frame
homomorphisms 1 and r. Write L be the sub-frame of

∏̃
L j generated by { f̄ j(x) | x ∈ L j, j ∈ J}. Then it is not

difficult to see that the induced neighbourhood system (
∏

X j,L, Ñ) is still a product of {(X j,L j,N j) | j ∈ J}.
Thus L =

∏̃
L j and this implies that { f̄ j : L j →

∏̃
L j | j ∈ J} is an epi-sink.

Now h̄ f̄ j = p̄ j implies that f̄ h̄ f̄ j = f̄ p̄ j = f̄ j, j ∈ J. This implies that f̄ h̄ is an identity on
∏̃

L j since
{ f̄ j : L j →

∏̃
L j | j ∈ J} is an epi-sink. Hence

∏̃
L j is isomorphic with

∐
L j.

By the above Lemma, it is clear that the continuous map (h, h̄) : (
∏

X j,
∐

L j,N) → (
∏̃

X j,
∏̃

L j, Ñ) is a
homeomorphism. This shows that if the category NS of neighbourhood systems has products, they must
be the form of (

∏
X j,
∐

L j,N) defined above. The following example shows that there are no products in
the category of neighbourhood systems.
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Example 7.6. Let L = Ω(R) be the frame of all open sets of the real line R and let X = R. Let

M : X→ Fil(L),u 7→↑ u

Consider the diagonal map (4, 4̄) : (X,L,M) → (X × X,L ×l L,N) where L ×l L be the localic product
of L and itself and the neighbourhood assignment N defined as in Lemma 6.2. Write S = {(x, y) | x2 <
y <

√
x, 0 < x < 1}. For u = (0, 1) be the unit interval, take J = {(v,w) | v × w ⊆ S} ∈ L ×l L. Then

4̄(J) =
∨
{v ∩ w | v × w ⊆ S} = (0, 1) = u ∈M(u) but J < N(u,u). Thus the diagonal map is not continuous.

Regarding the category NS of neighbourhood systems and continuous maps as a concrete category over
SET × Loc, by the above result we know that NS is not topological over SET × Loc since there are no initial
structures in NS .

8. Convergence in Neighbourhood Systems

In this section we show that neighbourhood systems provide us a unified framework to deal with
convergence of filters.

The concept of convergence of filters on locales (or frames) was first considered by Banaschewski and
Pultr in [2], where they define a filter in a frame to be convergent if it contains a completely prime filter.
Subsequently, Hong in [5] defined a filter on a frame L to be convergent if for every cover

∨
S = 1, S ⊆ L,

there exists s ∈ S such that s ∈ F; A filter F on a frame L is a clustered filter if
∨
{¬a | a ∈ F} , 1. Hong’s

definition is more general since it does not require the existence of completely prime filters. We will adopt
Hong’s definition in the following.

Recall that for a topological space X, if F is a filter on X consists of open sets, then F has a cluster point
if and only if

⋂
{cl(u) | u ∈ F} , ∅, and F has a limit point if and only if it includes a neighbourhood filter

of a point. So it is clear that the concept of clustered filters is a pointless extension of the concept of filters
having cluster point, and the concept of convergence of filters is a pointless extension of the concept of filters
which having limit point. Similar with spacial case, convergence of filters in a frame has many interesting
properties and we list two basic properties which can be found in [5].

Lemma 8.1. (1) Every convergence filter is a clustered filter.
(2) Every clustered ultrafilter is convergence.

Let L be a locale and F a filter on L. F is said a finite convergence filter if every finite cover s1 ∨ · · · ∨ sn = 1,
si ∈ L, i = 1, · · ·,n, there exists s j, 1 ≤ j ≤ n such that s j ∈ F.

Lemma 8.2. Let L be a locale. The following conditions are equivalent.
(1) L is compact.
(2) Every finite convergence filter on L is convergence.

Let (X,L,N) be a neighbourhood system and F a filter on L. A point x ∈ X is called a cluster point of F if
for every u ∈ F and every a ∈ N(x) we have u ∧ a , 0; x is called a limit point of F if N(x) ⊆ F.

A neighbourhood system (X,L,N) is said coverable if
∨
{ux | x ∈ X} = 1 for ux ∈ N(x), x ∈ X.

Lemma 8.3. Let (X,L,N) be a neighbourhood system and consider the following conditions:
(1) (X,L,N) is coverable;
(2) Every convergence filter on L has a limit point x ∈ X;
(3) Every clustered filter on L has a cluster point x ∈ X.
Then (1)⇒ (2), (1)⇒ (3).

Proof. (1)⇒ (2) Suppose F is a convergence filter on L. If ∀x ∈ X, x is not a limit point of F then there
exist ux ∈ N(x) such that ux < F. Thus

∨
ux = 1 will induce a contradiction with the condition that F is

convergence.
(1)⇒ (3) Suppose F is a clustered filter on L. If ∀x ∈ X, x is not a cluster point of F then there exist

ux ∈ N(x), ax ∈ F such that ux ∧ ax = 0. This implies that 1 =
∨
{ux | x ∈ X} ≤

∨
{¬ax | x ∈ X} ≤

∨
{¬a | a ∈ F} it

contradicts with the condition that F is clustered.
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Lemma 8.4. Let (X,L,N) be a neighbourhood system and consider the following conditions:
(1) (X,L,N) is topological;
(2) Every filter on L which having a limit point is convergence;
(3) Every filter on L which having a cluster point is a clustered filter.
Then (1)⇔(2), (1)⇒(3).

Proof. (1)⇔(2) Suppose (X,L,N) is topological and F ⊆ L is a filter which having a limit point x ∈ X. Given
a cover

∨
S = 1 of L, there exists u ∈ S such that u ∈ N(x). Thus u ∈ F.

Conversely, if every filter on L which having a limit point is convergence, then for each x ∈ X, N(x) is
convergence. Hence

∨
S = 1 implies that ∃s ∈ S such that s ∈ N(x).

(1)⇒(3) Suppose F ⊆ L is a filter which having a cluster point x ∈ X. If
∨
{¬a | a ∈ F} = 1 then there exists

a ∈ F such that ¬a ∈ N(x). Hence a ∧ ¬a = 0 contradicts with the condition that x is cluster point of F.

Corollary 8.5. Let (X,L,N) be a topological coverable neighbourhood system. Then
(1) A filter F on L is convergence if and only if it has a limit point x ∈ X;
(2) A filter F on L is clustered if and only if it has a cluster point x ∈ X.

Let (X,L,N) be a neighbourhood system. We call (X,L,N) a Hausdorff neighbourhood system if for any two
points x, y ∈ X, x , y, there exist u ∈ N(x), v ∈ N(y) such that u ∧ v = 0.

Lemma 8.6. (X,L,N) is a Hausdorff neighbourhood system if and only if every filter F on L has at most one limit.

The Hausdorff separation (or T2 separation) of locales has been widely studied by many authors. For
example J. Paseka and B. S̆marda in [7] defined T2-frames in the form usual in the case of regular frames by
introducing a binary relation on frames. More usually one defines a locale L to be Hausdorff if the diagonal
map 4 : L→ L × L is a closed embedding.

As an application of the convergence of filters, we now give a new definition of Hausdorffness of locales
which coincides with T2-axiom defined by J. Paseka and B. S̆marda in the realm of T0 spaces.

Let L be a locale and F a filter on L. F is said minimal convergence if it is convergence and there is no
convergence filter F′ ⊆ F such that F′ , F.

Definition 8.7. A locale L is said a T∗2 locale if every convergence filter on L contains at most one minimal
convergence filter.

It is not difficult to see that for a T0 space X, X is Hausdorff if and only if its open sets locale Ω(X) is a
T∗2 locale.

Example 8.8. Let L be a locale. Write L∗ be the locale generated by L add a new top element 1∗ which does
not belong to L. Then every filter on L∗ converges and {1∗} is the unique minimal convergence filter. Hence
L∗ is a T∗2 locale.

If we take a locale L which is not T2 in the sense of J. Paseka and B. S̆marda then L∗ is T∗2 but not T2. This
shows that T∗2 axiom does not imply T2 axiom. We don’t know whether T2 frames are T∗2.

Proposition 8.9. Let (X,L,N) be a T0 topological coverable neighbourhood system. Then (X,L,N) is a Hausdorff
neighbourhood system if and only if L is a T∗2 locale.

Note that the neighbourhood system defined in Example 3.2 is a Hausdorff neighbourhood system, so
by this proposition, the locale of regular open sets of real line R is a T∗2 locale.
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