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Abstract. Let P and Q be bounded linear operators on a Banach space. The existence of the Drazin inverse
of P + Q is proved under some assumptions, and the representations of (P + Q)D are also given. The results
recover the cases P2Q = 0,QPQ = 0 studied by Yang and Liu in [19] for matrices, Q2P = 0,PQP = 0 studied
by Cvetković and Milovanović in [7] for operators and P2Q + QPQ = 0, P3Q = 0 studied by Shakoor, Yang
and Ali in [16] for matrices. As an application, we give representations for the Drazin inverse of the operator
matrixA =

(
A B
C D

)
.

1. Introduction

Let X be a Banach space. The set B(X) consists of all bounded linear operators on X. An operator
T ∈ B(X) is said to be Drazin invertible, if there exists an operator TD

∈ B(X) such that

TTD = TDT, TD = T(TD)2, Tk+1TD = Tk for some integer k ≥ 0,

where TD is called the Drazin inverse of T. The smallest integer k satisfying the previous system of equations
is called the index of T, and is denoted by ind(T). In particular, if ind(T) = 1, TD is called the group inverse
of T; if ind(T) = 0, it can be seen that T is invertible and TD = T−1. Note that TD may not exist, but TD must
be unique if it exists. Moreover, if T is nilpotent, then T is Drazin invertible, and TD = 0.

The Drazin inverse has become a useful tool in the researches of Markov chains, differential and
difference equations, optimal control and iterative methods[1, 3].

In [11], M. P. Drazin proves that (P + Q)D = PD + QD if PQ = QP = 0 in an associative ring. In
the sequel, many authors begin to consider this problem for matrices and operators, and present explicit
representations of (P + Q)D under the conditions such as

(1) PQ = QP = 0 (see [11]),
(2) PQ = 0 (see [9, 12]),
(3) P2Q = PQ2 = 0 (see [5]),
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(4) P2Q + PQ2 = 0, P3Q = PQ3 = 0 (see [13]),
(5) PQP = 0, Q2P = 0 (or QPQ = 0, P2Q = 0 ) (see [7, 19]),
(6) P2Q + QPQ = 0, P3Q = 0 (see [16]),
(7) P2QP = P2Q2 = PQ2P = PQ3 = 0 (see [17]),
(8) PDQ = PQD = 0,QπPQPπ = 0 (see [6]).

For more general Drazin inverse problems, we refer the reader to [2, 4, 14] and their references. Note that
the representation of (P + Q)D by P,Q,PD and QD is very difficult without any conditions.

In this paper, using the technique of the resolvent expansion, we investigate the existence of the Drazin
inverse of P + Q for bounded linear operators P and Q and the explicit representations of (P + Q)D in term
of P,PD,Q and QD under the conditions (1) P2Q + QPQ = 0, PnQ = 0, (2) PQ2 + PQP = 0 PQn = 0 for some
integer n, respectively, which extend the relevant results in [7, 12, 16, 19]. Then, we apply these results
to establish representations of the Drazin inverse of the operator matrix, which can be regarded as the
generalizations of some results given in [10, 16]. Actually, the proof of the main results show the efficiency
of the method employed to some extent.

Throughout this paper, we write ρ(T), σ(T) and r(T) for the resolvent set, the spectrum and the spectral
radius of the operator T. Write Tπ = I − TTD.

Before giving our main results, we state some auxiliary lemmas as follows.

Lemma 1.1.[4] Let T ∈ B(X), then T is Drazin invertible if and only if 0 < σ(T) \ {0} and the point zero, provided
0 ∈ σ(T), is a pole of the resolvent R(λ,T) = (λI − T)−1, and in this case the following representation holds:

R(λ,T) =
ind(T)∑

k=1
λ−kTk−1Tπ −

∞∑
k=0
λk(TD)k+1, (1)

where 0 < |λ| < (r(TD))−1.

Remark 1.2. From Lemma 1.1, TD can be obtained by the coefficient at λ0 in the Laurent expansion of the resolvent
R(λ,T) in a punctured neighborhood of 0, i.e,

TD = −
1

2πi

∫
Γ

1
λ

R(λ,T)dλ, (2)

where Γ := {λ ∈ C : |λ| = ε} with ε being sufficiently small such that {λ ∈ C : |λ| ≤ ε} ∩ σ(T) = {0}.

Lemma 1.3.[18] Let A ∈ B(X,Y) and B ∈ B(Y,X). If BA is Drazin invertible, then AB is also Drazin invertible.
Moreover,

(AB)D = A((BA)D)2B, ind(AB) ≤ ind(BA) + 1. (3)

Lemma 1.4. For the operator matrixA =
(

A B
C D

)
with A ∈ B(X), B ∈ B(Y,X), C ∈ B(X,Y) and D ∈ B(Y) . If A is

invertible, thenA is invertible if and only if D − CA−1B is invertible.

Remark 1.5. The Lemma above is well known, see, e.g., [15, Lemma 2.1].

2. Main Results

In this section, we investigate the Drazin inverse of the sum of two operators P,Q ∈ B(X). It is
interesting that the conditions when n ≥ 2 will share the same representation of the Drazin inverse of P + Q.

In order to show that P + Q is Drazin invertible, we need to find out the resolvent of the operator matrix
M =

(
P PQ
I Q

)
defined on the Banach space X ×X. Write ∆(λ) = λI −Q − R(λ,P)PQ. Then, the following two

lemmas are necessary.
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Lemma 2.1. Let P,Q ∈ B(X) be Drazin invertible, r = ind(P) and s = ind(Q). If P2Q + QPQ = 0 and PnQ = 0 for
some integer n > 0, then

∆(λ)−1 = λ−2(λ2I + PQ)R(λ,Q), (4)

where 0 < |λ| < min{(r(PD))−1, (r(QD))−1
}.

Proof. From PnQ = 0 and PD = (PD)2P, it follows that PDQ = 0, then PmQ = 0 if the integer m ≥ r. Moreover,
PπPQ = PQ. By P2Q + QPQ = 0, we have

P2k−1Q = (−1)k−1(PQ)k, P2kQ = (−1)kQ(PQ)k, k = 1, 2, · · · . (5)

Since there always exists an integer k0 such that 2k0 ≤ n ≤ 2k0+1
− 1 for each n, we deduce P2k0+1

−1Q = 0 from
PnQ = 0. This together with Eq.(5) shows that PQ is Drazin invertible, (PQ)D = 0 and ind(PQ) ≤ 2k0 . Thus,
using Lemma 1.1, we conclude that

R(λ,P)PQ =

 r∑
k=1

λ−kPk−1Pπ −
∞∑

k=0

λk(PD)k+1

 PQ

=

r∑
k=1

λ−kPkQ

=

2k0+1
−2∑

k=1

λ−kPkQ (6)

= (λI −Q)
2k0−1∑
k=1

(−1)k−1λ−2k(PQ)k

= (λI −Q)PQR(λ2,−PQ),

where 0 < |λ| < (r(PD))−1. Then,

∆(λ) = λI −Q − R(λ,P)PQ
= (λI −Q)(I − PQR(λ2,−PQ))
= λ2(λI −Q)R(λ2,−PQ).

Therefore, we have

∆(λ)−1 = λ−2(λ2I + PQ)R(λ,Q),

where 0 < |λ| < min{(r(PD))−1, (r(QD))−1
}.

Lemma 2.2. Under the assumptions of Lemma 2.1, the representation of the resolvent for the operator matrix
M =

(
P PQ
I Q

)
is given by

R(λ,M) =

(
λ−2(λI −Q)(λ2I + PQ)R(λ,Q)R(λ,P) λ−2(λI −Q)PQR(λ,Q)

λ−2(λ2I + PQ)R(λ,Q)R(λ,P) λ−2(λ2I + PQ)R(λ,Q)

)
, (7)

where 0 < |λ| < min{(r(PD))−1, (r(QD))−1
}.
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Proof. Let ρ(∆) denote the set of all λ ∈ C such that ∆(λ) is invertible in B(X). By Lemma 1.4, we obtain
ρ(M) ∩ ρ(P) = ρ(P) ∩ ρ(∆). If λ ∈ ρ(M) ∩ ρ(P), then

R(λ,M) =

(
R(λ,P) + R(λ,P)PQ∆(λ)−1R(λ,P) R(λ,P)PQ∆(λ)−1

∆(λ)−1R(λ,P) ∆(λ)−1

)
,

where 0 < |λ| < min{(r(PD))−1, (r(QD))−1
}. By (4) and (6), we immediately have the expression

R(λ,P)PQ∆(λ)−1 = (λI −Q)PQR(λ2,−PQ)∆(λ)−1

= λ−2(λI −Q)PQR(λ,Q).

Then, we further have

R(λ,P) + R(λ,P)PQ∆(λ)−1R(λ,P)
= (I + R(λ,P)PQ∆(λ)−1)R(λ,P)
= (I + λ−2(λI −Q)PQR(λ,Q))R(λ,P)
= λ−2(λI −Q)(λ2I + PQ)R(λ,Q)R(λ,P).

Moreover,

∆(λ)−1R(λ,P) = λ−2(λ2I + PQ)R(λ,Q)R(λ,P).

The proof is completed.

We will give other two necessary lemmas in order to obtain the representation of (P + Q)D.

Lemma 2.3. Under the assumptions of Lemma 2.1, the following statements are true:
(1) The coefficients αi at λi (i = −1, 0, 1, 2) of R(λ,Q)R(λ,P) are given by

α−1 = −(QπδPD + QDτPπ),
α0 = −(Qπδ(PD)2 + (QD)2τPπ) + QDPD,

α1 = −(Qπδ(PD)3 + (QD)3τPπ) + QD(PD)2 + (QD)2PD, (8)
α2 = −(Qπδ(PD)4 + (QD)4τPπ) + QD(PD)3 + (QD)2(PD)2 + (QD)3PD,

where δ =
s−1∑
k=0

Qk(PD)k, τ =
r−1∑
k=0

(QD)kPk.

(2) α−1 −Qα0 + PQα1 −QPQα2 and α0 + PQα2 are the coefficients at λ2 of (λI −Q)(λ2I + PQ)R(λ,Q)R(λ,P)
and (λ2I + PQ)R(λ,Q)R(λ,P), respectively.

(3) −PQD
−P2(QD)2 and −QD

−P(QD)2 are the coefficients at λ2 of (λI−Q)PQR(λ,Q) and (λ2I + PQ)R(λ,Q),
respectively.

Proof. (1) Note that P,Q are Drazin invertible. Applying Eq.(1) for P,Q in a punctured neighborhood of 0,
we have

R(λ,Q) =

s∑
k=1

λ−kQk−1Qπ
−

∞∑
k=0

λk(QD)k+1

and

R(λ,P) =

r∑
k=1

λ−kPk−1Pπ −
∞∑

k=0

λk(PD)k+1.

Then the coefficients αi at λi (i = −1, 0, 1, 2) of R(λ,Q)R(λ,P) can be easily obtained.
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(2) Since

(λI −Q)(λ2I + PQ)R(λ,Q)R(λ,P) = (λ3I − λ2Q + λPQ −QPQ)R(λ,Q)R(λ,P).

Thus, by Lemma 2.3 (1), α−1−Qα0 +PQα1−QPQα2 is the coefficient at λ2 of (λI−Q)(λ2I+PQ)R(λ,Q)R(λ,P).
Analogously, (3) can be proved.

Lemma 2.4. Under the assumptions of Lemma 2.1, the following statements are valid:
(1) τQ = Q, and hence τP2Q2 = P2Q2.
(2) τPQ = PQ + QDP2Q, and hence τPQD = PQD + QDP2QD.
(3) τδ = τ + δ − I.
(4) α−1PQ = α0PQ = α1PQ = Qα2PQ = 0.
(5) α−1Q = −QDQ, αiQ = −(QD)i+1, i = 0, 1, 2, 3.
(6) αiα−1 = −αi+1, i = −1, 0, 1, 2.
(7) αiP2(QD)2 = −(QD)i+2P2(QD)2, i = −1, 0, 1, 2.

Here

α3 = −(Qπδ(PD)5 + (QD)5τPπ) (9)
+QD(PD)4 + (QD)2(PD)3 + (QD)4PD + (QD)3(PD)2,

and δ, τ are defined as in Lemma 2.3.

Proof. (1) By τ =
r−1∑
k=0

(QD)kPk, we have τQ =
r−1∑
k=0

(QD)kPkQ. If r is odd, then, by Eq.(5), we get

τQ = Q +

r−1
2∑

k=1

((QD)2k−1P2k−1Q + (QD)2kP2kQ)

= Q +

r−1
2∑

k=1

((−1)k−1(QD)2k−1(PQ)k + (−1)k(QD)2kQ(PQ)k)

= Q +

r−1
2∑

k=1

((−1)k−1(QD)2k−1(PQ)k + (−1)k(QD)2k−1(PQ)k)

= Q.

If r is even, then

τQ = Q +

r−2
2∑

k=1

((QD)2k−1P2k−1Q + (QD)2kP2kQ) + (QD)r−1Pr−1Q

= Q + (QD)r−1Pr−1Q
= Q + (−1)

r
2−1(QD)r−1(PQ)

r
2

= Q + (−1)
r
2−1(QD)rQ(PQ)

r
2

= Q − (QD)rPrQ
= Q

since PrQ = Pr+1PDQ = 0, and hence τQ = Q. Thus, (1) is proved.
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(2) Obviously, τPQ =
r−1∑
n=0

(QD)nPnPQ. If r is even, then

τPQ = PQ + QDP2Q +

r
2−1∑
k=1

((QD)2kP2k+1Q + (QD)2k+1P2k+2Q)

= PQ + QDP2Q +

r
2−1∑
k=1

((−1)k(QD)2k(PQ)k+1 + (−1)k+1(QD)2k+1Q(PQ)k+1)

= PQ + QDP2Q +

r
2−1∑
k=1

((−1)k(QD)2k(PQ)k+1 + (−1)k+1(QD)2k(PQ)k+1)

= PQ + QDP2Q.

Similarly, if r is odd, then

τPQ = PQ + QDP2Q +

r−3
2∑

k=1

((QD)2kP2k+1Q + (QD)2k+1P2k+2Q) + (QD)r−1PrQ

= PQ + QDP2Q + (QD)r−1PrQ
= PQ + QDP2Q.

Therefore, the relation τPQ = PQ + QDP2Q is proved.
On the other hand, by P2Q = −QPQ, it is obvious that

τP2Q2 = −τQPQ2 = −QPQ2 = P2Q2.

(3) In view of τQ = Q, we clearly have

τδ = τ
s−1∑
k=0

Qk(PD)k

= τ + (QPD + Q2(PD)2 + · · · + Qs−1(PD)s−1)
= τ + δ − I.

(4) We only prove α−1PQ = 0, and the proof of others are similar.
Since PπPQ = PQ, τPQ = PQ + QDP2Q and P2Q + QPQ = 0, it follows that

α−1PQ = −QDτPQ
= −QD(PQ + QDP2Q)
= −QDPQ + (QD)2QPQ
= 0.

(5) The conclusion can be immediately obtained from PDQ = 0, PπQ = Q and τQ = Q.
(6) We only prove the case i = −1, and other cases are similar.
Note that PDQπ = PD, PπQD = QD, PDQD = 0 and PπQπ = Pπ −QQD, so

α−1α−1 = (QπδPD + QDτPπ)2,

= QπδPDδPD + (QD)τQDτPπ + QDτPπδPD
−QDτQQDδPD.
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On the other hand, the relation PDQ = 0 implies PDδ = PD and Pπδ = δ − PPD. Also, τQD = QD can be
obtained based on τQ = Q. Therefore, we have

α−1α−1 = Qπδ(PD)2 + (QD)2τPπ + QDτ(δ − PPD)PD
−QDQQDδPD

= Qπδ(PD)2 + (QD)2τPπ −QDPD

= −α0,

since, by Lemma 2.4 (3),

QDτ(δ − PPD)PD = QD(τδ − τPPD)PD

= QD(τ + δ − I − τPPD)PD

= QD(τ + δ − I)PD
−QDτPD

= QD(δ − I)PD.

(7) Note that τP2Q2 = P2Q2. Then, the claim follows from PDQD = 0 and PπP2(QD)2 = P2(QD)2.

The following is the main result of this section.

Theorem 2.5. Let P,Q ∈ B(X) be Drazin invertible, r = ind(P) and s = ind(Q). If P2Q + QPQ = 0 and PnQ = 0
for some integer n > 0, then P + Q is Drazin invertible, and

(P + Q)D = −α0P − PQα2P + P(QD)2 + QD, (10)

i.e.,

(P + Q)D = Qπ
s−1∑
i=0

Qi(PD)i+1 +

r−1∑
i=0

(QD)i+1PiPπ + P
r−1∑
i=0

(QD)i+2PiPπ

+ PQπ
s−2∑
i=0

Qi+1(PD)i+3
− PQDPD

− PQQD(PD)2. (11)

Moreover, ind(P + Q) ≤ r + s + 3.

Proof. Let A = (I Q) : X ⊕ X → X and B =
(

P
I

)
: X → X ⊕ X. Then P + Q = AB and BA = M, where M is

defined as in Lemma 2.2. By Lemma 2.2, we obtain

R(λ,BA) =

(
λ−2(λI −Q)(λ2I + PQ)R(λ,Q)R(λ,P) λ−2(λI −Q)PQR(λ,Q)

λ−2(λ2I + PQ)R(λ,Q)R(λ,P) λ−2(λ2I + PQ)R(λ,Q)

)
(12)

for λ belonging to a punctured neighborhood of 0, which shows that R(λ,BA) has a pole at λ = 0 of order
at most r + s + 2. So, according to Lemma 1.1, BA is Drazin invertible and R(λ,BA) has the Laurent series

R(λ,BA) =
r+s+2∑
k=1

λ−k(BA)k−1(BA)π −
∞∑

k=0
λk((BA)D)k+1

in a punctured neighborhood of 0. Thus, by Lemma 2.1, AB is Drazin invertible, i.e., P + Q is Drazin
invertible. In addition, we have

(P + Q)D = (AB)D = A((BA)D)2B (13)

and ind(P + Q) ≤ ind(BA) + 1 ≤ r + s + 3.
According to Lemma 2.3 and the expression (12) for R(λ,BA), α−1 − Qα0 + PQα1 − QPQα2 , α0 + PQα2,

−PQD
−P2(QD)2 and −QD

−P(QD)2 are the coefficients at λ0 of λ−2(λI−Q)(λ2I +PQ)R(λ,Q)R(λ,P), λ−2(λ2I +
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PQ)R(λ,Q)R(λ,P), λ−2(λI −Q)PQR(λ,Q) and λ−2(λ2I + PQ)R(λ,Q), respectively. Thus, applying Eq.(2), we
obtain that

(BA)D = −
1

2πi

∫
Γ

1
λ

R(λ,BA)dλ

= −

(
α−1 −Qα0 + PQα1 −QPQα2 −PQD

− P2(QD)2

α0 + PQα2 −QD
− P(QD)2

)
.

Then

((BA)D)2 =

(
C11 C12
C21 C22

)
, (14)

where

C11 = (α−1 −Qα0 + PQα1 −QPQα2)2
− (PQD + P2(QD)2)(α0 + PQα2),

C12 = −(α−1 −Qα0 + PQα1 −QPQα2)(PQD + P2(QD)2)
+(PQD + P2(QD)2)(QD + P(QD)2),

C21 = (α0 + PQα2)(α−1 −Qα0 + PQα1 −QPQα2) − (QD + P(QD)2)(α0 + PQα2),
C22 = −(α0 + PQα2)(PQD + P2(QD)2) + (QD + P(QD)2)2.

By Lemma 2.3 and Lemma 2.4, together with P2Q+QPQ = 0, QD = Q(QD)2 and (QD)2P2(QD)2 = −QDP(QD)2,
we can deduce that

C11 = −α0 + QDQα0 + QDQPQα2 −QDQα0 −QQDPQα2 + PQ(QD)2α0

+PQDPQα2 + QPQα3 −QPQ(QD)3α0 −QPQ(QD)3PQα2 + Qα1

−PQα2 − PQDα0 − PQDPQα2 − P2(QD)2α0 − P2(QD)2PQα2

= −α0 + Qα1 − PQα2 + QPQα3,

C12 = QDP2(QD)2
−Q(QD)2P2(QD)2 + PQ(QD)3P2(QD)2

−QPQ(QD)4P2(QD)2

+P(QD)2 + PQDP(QD)2 + P2(QD)3 + P2(QD)2P(QD)2

= P(QD)2 + P2(QD)3,

C21 = −α1 + QDα0 + QDPQα2 − PQα3 + PQ(QD)3Qα0 + PQ(QD)3PQα2

−QDα0 −QDPQα2 − P(QD)2α0 − P(QD)2PQα2

= −α1 − PQα3,

C22 = (QD)2P2(QD)2 + PQ(QD)4P2(QD)2 + (QD)2 + QDP(QD)2

+P(QD)3 + P(QD)2P(QD)2

= (QD)2 + P(QD)3.

Thus,

((BA)D)2 =

(
−α0 + Qα1 − PQα2 + QPQα3 P(QD)2 + P2(QD)3

−α1 − PQα3 (QD)2 + P(QD)3

)
.

Therefore, from Eq.(13), we obtain

(P + Q)D = (I Q)
(
−α0 + Qα1 − PQα2 + QPQα3 P(QD)2 + P2(QD)3

−α1 − PQα3 (QD)2 + P(QD)3

) (P
I

)
= −α0P − PQα2P + P(QD)2 + P2(QD)3 + Q(QD)2 + QP(QD)3

= −α0P − PQα2P + P(QD)2 + QD. (15)
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Instituting the expression (8) of α0, α2 into Eq.(15), then we have

(P + Q)D = Qπ
s−1∑
i=0

Qi(PD)i+1 +

r−1∑
i=0

(QD)i+1PiPπ + P
r−1∑
i=0

(QD)i+2PiPπ

+ PQπ
s−2∑
i=0

Qi+1(PD)i+3
− PQDPD

− PQQD(PD)2

from QπQs = 0, PrPπ = 0, QD
−QDPDP = QDPπ and P(QD)2

− P(QD)2PQP = P(QD)2Pπ.

Remark 2.6. In Theorem 2.5, we find that the representation (11) of (P + Q)D is the same when n ≥ 2.

If let A = (Q I) : X ⊕X → X and B =
(

I
P

)
: X → X⊕X, then P + Q = AB, and we have

Theorem 2.7. Let P,Q ∈ B(X) be Drazin invertible, r = ind(P) and s = ind(Q). If PQ2 + PQP = 0 and PQn = 0
for some integer n > 0, then P + Q is Drazin invertible, and

(P + Q)D = Qπ
s−1∑
i=0

Qi(PD)i+1 +

r−1∑
i=0

(QD)i+1PiPπ +

r−2∑
i=0

(QD)i+3Pi+1PπQ

+ Qπ
s−1∑
i=0

Qi(PD)i+2Q −QDPDQ − (QD)2PPDQ.

The following corollary is the case when n = 1 of Theorem 2.5.

Corollary 2.8.[9, 12] Let P,Q ∈ B(X) is Drazin invertible, r = ind(P) and s = ind(Q). If PQ = 0. Then P + Q is
Drazin invertible, and

(P + Q)D = Qπ
s−1∑
i=0

Qi(PD)i+1 +

r−1∑
i=0

(QD)i+1PiPπ.

Remark 2.9. When n = 2 in Theorem 2.5 and Theorem 2.7, we obtain the results of [19, Theorem 2.1, Theorem
2.2] and [7, Lemma 4]. When n = 3 in Theorem 2.5, we get the result of [16, Theorem 5].

In fact, the condition PQPQ = 0 in [16, Theorem 5] can be obtained from P2Q + QPQ = 0 and P3Q = 0 .
On the other hand, since ind(P2) = [ ind(P)+1

2 ] and PkPπ = 0 (k ≥ ind(P)), X in [16, Theorem 5] can be simplified

as X =

r−1∑
i=0

(QD)i+3PiPπ +

s−1∑
i=0

QπQi(PD)i+3
− (QD)2PD

− QD(PD)2, where r = ind(P), s = ind(Q). Thus, the

representation of (P + Q)D in [16, Theorem 5] is reduced to the formula of (11).

3. Application to Bounded Operator Matrices

Let Y,Z be Banach spaces, and let A =
(

A B
C D

)
be a bounded linear operator matrix on Y × Z. In

the following, we illustrate an application of our results to establish representations for AD under some
conditions.
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Lemma 3.1.[8] Let M1 =

(
A 0
C D

)
,M2 =

(
A B
0 D

)
be operator matrices. If ind(A) = a, ind(D) = d, then M1 and

M2 are Drazin invertible, and

MD
1 =

(
AD 0
X1 DD

)
, MD

2 =

(
AD X2
0 DD

)
,

where X1 = Dπ
d−1∑
i=0

DiC(AD)i+2 +

a−1∑
i=0

(DD)i+2CAiAπ
−DDCAD,

X2 = Aπ
d−1∑
i=0

AiB(DD)i+2 +

a−1∑
i=0

(AD)i+2BDiDπ
− ADBDD.

The case BC = 0, BDC = 0 and BD2 = 0 has been studied in [10] and the case ABC = 0, BDC = 0, CBC = 0
and D2C = 0 in [16] for matrices. We focus our attention in the generalization of the mentioned results.

Theorem 3.2. Let A ∈ B(Y),D ∈ B(Z) be Drazin invertible, a = ind(A), d = ind(D). Assume that one of the
following holds:

(1) ABC + BDC = 0,CBC + D2C = 0 and DnC = 0 for some integer n > 0. further, BDn−1C = 0 if n is odd;
(2) CAB + CBD = 0,CBC + CA2 = 0 and CAn = 0 for some integer n > 0. further, CAn−1B = 0 if n is odd.
Then the operator matrixA is Drazin invertible, and

A
D =

(
AD+BC(AD)3 X+BC(AD)2X+BCADXDD+BCX(DD)2

C(AD)2+DC(AD)3 DD+CADX+CXDD+DC((AD)2X+ADXDD+X(DD)2)

)
.

where X = Aπ
a−1∑
i=0

AiB(DD)i+2 +

d−1∑
i=0

(AD)i+2BDiDπ
− ADBDD.

Proof. We consider the splittingA = P + Q, where P =
(

A B
0 D

)
, Q =

(
0 0
C 0

)
. Then

PnQ =

( ∑n−1
k=0 AkBDn−1−kC 0

DnC 0

)
.

If (1) holds, then D2kC = C(−BC)k by CBC + D2C = 0. Thus, using ABC + BDC = 0, we have

n−1∑
k=0

AkBDn−1−kC =

n
2−1∑
k=0

(A2k+1BDn−2−2kC + A2kBDn−1−2kC)

=

n
2−1∑
k=0

(A2k+1BC(−BC)
n−2−2k

2 + A2kBDC(−BC)
n−2−2k

2 )

=

n
2−1∑
k=0

A2k(ABC + BDC)(−BC)
n−2−2k

2

= 0
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when n is even, and
n−1∑
k=0

AkBDn−1−kC = BDn−1C +

n−1∑
k=1

AkBDn−1−kC

=

n−1
2∑

k=1

(A2kBDn−1−2kC + A2k−1BDn−2kC)

=

n−1
2∑

k=1

(A2kBC(−BC)
n−1−2k

2 + A2k−1BDC(−BC)
n−1−2k

2 )

=

n−1
2∑

k=1

A2k−1(ABC + BDC)(−BC)
n−1−2k

2

= 0

when n is odd. So, PnQ = 0 according to DnC = 0. On the other hand, a straightforward calculation shows
that P2Q + QPQ = 0. The desired result follows from Theorem 2.5 and Lemma 3.1.

Similarly, if (2) holds, then we conclude that QP2 + QPQ = 0 and QPn = 0. Therefore, the claim follows
from Theorem 2.7.

If we consider the splitting M = P + Q, where P =
(

A 0
C D

)
, Q =

(
0 B
0 0

)
, then we obtain the following result.

Theorem 3.3. Let A ∈ B(Y),D ∈ B(Z) be Drazin invertible, a = ind(A), d = ind(D). Assume that one of the
following holds:

(1) CAB + DCB = 0,BCB + A2B = 0 and AnB = 0 for some integer n > 0. further, CAn−1B = 0 if n is odd;
(2) BCA + BDC = 0,BCB + BD2 = 0 and BDn = 0 for some integer n > 0. further, BDn−1C = 0 if n is odd.
Then the operator matrixA is Drazin invertible, and

A
D =

(
AD+BXAD+BDDX+AB((DD)2X+DDXAD+X(AD)2) B(DD)2+AB(DD)3

X+CBX(AD)2+CBDDXAD+CB(DD)2X DD+CB(DD)3)

)
.

where X = Dπ
d−1∑
i=0

DiC(AD)i+2 +

a−1∑
i=0

(DD)i+2CAiAπ
−DDCAD.
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