The Drazin Inverse of the Sum of Two Bounded Linear Operators and it's Applications

Hua Wang ${ }^{\text {a }}$, Junjie Huang ${ }^{\text {b }}$, Alatancang Chen ${ }^{\text {c }}$
${ }^{a}$ College of Sciences, Inner Mongolia University of Technology, Hohhot, PRC
${ }^{b}$ School of Mathematical Sciences, Inner Mongolia University, Hohhot, PRC
${ }^{c}$ Hohhot Minzu College, Hohhot, PRC

Abstract

Let P and Q be bounded linear operators on a Banach space. The existence of the Drazin inverse of $P+Q$ is proved under some assumptions, and the representations of $(P+Q)^{D}$ are also given. The results recover the cases $P^{2} Q=0, Q P Q=0$ studied by Yang and Liu in [19] for matrices, $Q^{2} P=0, P Q P=0$ studied by Cvetković and Milovanović in [7] for operators and $P^{2} Q+Q P Q=0, P^{3} Q=0$ studied by Shakoor, Yang and Ali in [16] for matrices. As an application, we give representations for the Drazin inverse of the operator matrix $\mathcal{A}=\left(\begin{array}{cc}A & B \\ C & B\end{array}\right)$.

1. Introduction

Let X be a Banach space. The set $\mathcal{B}(\mathcal{X})$ consists of all bounded linear operators on \mathcal{X}. An operator $T \in \mathcal{B}(\mathcal{X})$ is said to be Drazin invertible, if there exists an operator $T^{D} \in \mathcal{B}(\mathcal{X})$ such that

$$
T T^{D}=T^{D} T, \quad T^{D}=T\left(T^{D}\right)^{2}, \quad T^{k+1} T^{D}=T^{k} \text { for some integer } \mathrm{k} \geq 0
$$

where T^{D} is called the Drazin inverse of T. The smallest integer k satisfying the previous system of equations is called the index of T, and is denoted by ind (T). In particular, if $\operatorname{ind}(T)=1, T^{D}$ is called the group inverse of T; if ind $(T)=0$, it can be seen that T is invertible and $T^{D}=T^{-1}$. Note that T^{D} may not exist, but T^{D} must be unique if it exists. Moreover, if T is nilpotent, then T is Drazin invertible, and $T^{D}=0$.

The Drazin inverse has become a useful tool in the researches of Markov chains, differential and difference equations, optimal control and iterative methods $[1,3]$.

In [11], M. P. Drazin proves that $(P+Q)^{D}=P^{D}+Q^{D}$ if $P Q=Q P=0$ in an associative ring. In the sequel, many authors begin to consider this problem for matrices and operators, and present explicit representations of $(P+Q)^{D}$ under the conditions such as
(1) $P Q=Q P=0$ (see [11]),
(2) $P Q=0$ (see $[9,12]$),
(3) $P^{2} Q=P Q^{2}=0$ (see [5]),

[^0](4) $P^{2} Q+P Q^{2}=0, P^{3} Q=P Q^{3}=0$ (see [13]),
(5) $P Q P=0, Q^{2} P=0\left(\right.$ or $\left.Q P Q=0, P^{2} Q=0\right)($ see $[7,19])$,
(6) $P^{2} Q+Q P Q=0, P^{3} Q=0$ (see [16]),
(7) $P^{2} Q P=P^{2} Q^{2}=P Q^{2} P=P Q^{3}=0$ (see [17]),
(8) $P^{D} Q=P Q^{D}=0, Q^{\pi} P Q P^{\pi}=0$ (see [6]).

For more general Drazin inverse problems, we refer the reader to $[2,4,14]$ and their references. Note that the representation of $(P+Q)^{D}$ by P, Q, P^{D} and Q^{D} is very difficult without any conditions.

In this paper, using the technique of the resolvent expansion, we investigate the existence of the Drazin inverse of $P+Q$ for bounded linear operators P and Q and the explicit representations of $(P+Q)^{D}$ in term of P, P^{D}, Q and Q^{D} under the conditions (1) $P^{2} Q+Q P Q=0, P^{n} Q=0,(2) P Q^{2}+P Q P=0 P Q^{n}=0$ for some integer n, respectively, which extend the relevant results in $[7,12,16,19]$. Then, we apply these results to establish representations of the Drazin inverse of the operator matrix, which can be regarded as the generalizations of some results given in [10,16]. Actually, the proof of the main results show the efficiency of the method employed to some extent.

Throughout this paper, we write $\rho(T), \sigma(T)$ and $r(T)$ for the resolvent set, the spectrum and the spectral radius of the operator T. Write $T^{\pi}=I-T T^{D}$.

Before giving our main results, we state some auxiliary lemmas as follows.

Lemma 1.1.[4] Let $T \in \mathcal{B}(\mathcal{X})$, then T is Drazin invertible if and only if $0 \notin \overline{\sigma(T) \backslash\{0\}}$ and the point zero, provided $0 \in \sigma(T)$, is a pole of the resolvent $R(\lambda, T)=(\lambda I-T)^{-1}$, and in this case the following representation holds:

$$
\begin{equation*}
R(\lambda, T)=\sum_{k=1}^{\operatorname{ind}(T)} \lambda^{-k} T^{k-1} T^{\pi}-\sum_{k=0}^{\infty} \lambda^{k}\left(T^{D}\right)^{k+1} \tag{1}
\end{equation*}
$$

where $0<|\lambda|<\left(\mathrm{r}\left(T^{D}\right)\right)^{-1}$.
Remark 1.2. From Lemma 1.1, T^{D} can be obtained by the coefficient at λ^{0} in the Laurent expansion of the resolvent $R(\lambda, T)$ in a punctured neighborhood of 0 , i.e,

$$
\begin{equation*}
T^{D}=-\frac{1}{2 \pi i} \int_{\Gamma} \frac{1}{\lambda} R(\lambda, T) d \lambda \tag{2}
\end{equation*}
$$

where $\Gamma:=\{\lambda \in \mathbb{C}:|\lambda|=\varepsilon\}$ with ε being sufficiently small such that $\{\lambda \in \mathbb{C}:|\lambda| \leq \varepsilon\} \cap \sigma(T)=\{0\}$.
Lemma 1.3.[18] Let $A \in \mathcal{B}(\mathcal{X}, \boldsymbol{Y})$ and $B \in \mathcal{B}(\boldsymbol{y}, \mathcal{X})$. If $B A$ is Drazin invertible, then $A B$ is also Drazin invertible. Moreover,

$$
\begin{equation*}
(A B)^{D}=A\left((B A)^{D}\right)^{2} B, \quad \operatorname{ind}(A B) \leq \operatorname{ind}(B A)+1 \tag{3}
\end{equation*}
$$

Lemma 1.4. For the operator matrix $\mathcal{A}=\left(\begin{array}{l}A \\ C \\ C\end{array}\right)$ with $A \in \mathcal{B}(\mathcal{X}), B \in \mathcal{B}(\boldsymbol{y}, \mathcal{X}), C \in \mathcal{B}(\mathcal{X}, \boldsymbol{Y})$ and $D \in \mathcal{B}(\boldsymbol{Y})$. If A is invertible, then \mathcal{A} is invertible if and only if $D-C A^{-1} B$ is invertible.

Remark 1.5. The Lemma above is well known, see, e.g., [15, Lemma 2.1].

2. Main Results

In this section, we investigate the Drazin inverse of the sum of two operators $P, Q \in \mathcal{B}(\mathcal{X})$. It is interesting that the conditions when $n \geq 2$ will share the same representation of the Drazin inverse of $P+Q$.

In order to show that $P+Q$ is Drazin invertible, we need to find out the resolvent of the operator matrix $M=\left(\begin{array}{cc}P & P Q \\ I & Q\end{array}\right)$ defined on the Banach space $\mathcal{X} \times \mathcal{X}$. Write $\Delta(\lambda)=\lambda I-Q-R(\lambda, P) P Q$. Then, the following two lemmas are necessary.

Lemma 2.1. Let $P, Q \in \mathcal{B}(X)$ be Drazin invertible, $r=\operatorname{ind}(P)$ and $s=\operatorname{ind}(Q)$. If $P^{2} Q+Q P Q=0$ and $P^{n} Q=0$ for some integer $n>0$, then

$$
\begin{equation*}
\Delta(\lambda)^{-1}=\lambda^{-2}\left(\lambda^{2} I+P Q\right) R(\lambda, Q) \tag{4}
\end{equation*}
$$

where $0<|\lambda|<\min \left\{\left(r\left(P^{D}\right)\right)^{-1},\left(r\left(Q^{D}\right)\right)^{-1}\right\}$.

Proof. From $P^{n} Q=0$ and $P^{D}=\left(P^{D}\right)^{2} P$, it follows that $P^{D} Q=0$, then $P^{m} Q=0$ if the integer $m \geq r$. Moreover, $P^{\pi} P Q=P Q$. By $P^{2} Q+Q P Q=0$, we have

$$
\begin{equation*}
P^{2 k-1} Q=(-1)^{k-1}(P Q)^{k}, \quad P^{2 k} Q=(-1)^{k} Q(P Q)^{k}, \quad k=1,2, \cdots \tag{5}
\end{equation*}
$$

Since there always exists an integer k_{0} such that $2^{k_{0}} \leq n \leq 2^{k_{0}+1}-1$ for each n, we deduce $P^{2^{k_{0}+1}-1} Q=0$ from $P^{n} Q=0$. This together with Eq.(5) shows that $P Q$ is Drazin invertible, $(P Q)^{D}=0$ and ind $(P Q) \leq 2^{k_{0}}$. Thus, using Lemma 1.1, we conclude that

$$
\begin{align*}
R(\lambda, P) P Q & =\left(\sum_{k=1}^{r} \lambda^{-k} P^{k-1} P^{\pi}-\sum_{k=0}^{\infty} \lambda^{k}\left(P^{D}\right)^{k+1}\right) P Q \\
& =\sum_{k=1}^{r} \lambda^{-k} P^{k} Q \\
& =\sum_{k=1}^{2^{k_{0}+1}-2} \lambda^{-k} P^{k} Q \tag{6}\\
& =(\lambda I-Q) \sum_{k=1}^{2^{k_{0}-1}}(-1)^{k-1} \lambda^{-2 k}(P Q)^{k} \\
& =(\lambda I-Q) P Q R\left(\lambda^{2},-P Q\right)
\end{align*}
$$

where $0<|\lambda|<\left(\mathrm{r}\left(P^{D}\right)\right)^{-1}$. Then,

$$
\begin{aligned}
\Delta(\lambda) & =\lambda I-Q-R(\lambda, P) P Q \\
& =(\lambda I-Q)\left(I-P Q R\left(\lambda^{2},-P Q\right)\right) \\
& =\lambda^{2}(\lambda I-Q) R\left(\lambda^{2},-P Q\right)
\end{aligned}
$$

Therefore, we have

$$
\Delta(\lambda)^{-1}=\lambda^{-2}\left(\lambda^{2} I+P Q\right) R(\lambda, Q)
$$

where $0<|\lambda|<\min \left\{\left(\mathrm{r}\left(P^{D}\right)\right)^{-1},\left(\mathrm{r}\left(Q^{D}\right)\right)^{-1}\right\}$.

Lemma 2.2. Under the assumptions of Lemma 2.1, the representation of the resolvent for the operator matrix $M=\left(\begin{array}{cc}P & P Q \\ I & Q\end{array}\right)$ is given by

$$
R(\lambda, M)=\left(\begin{array}{cc}
\lambda^{-2}(\lambda I-Q)\left(\lambda^{2} I+P Q\right) R(\lambda, Q) R(\lambda, P) & \lambda^{-2}(\lambda I-Q) P Q R(\lambda, Q) \tag{7}\\
\lambda^{-2}\left(\lambda^{2} I+P Q\right) R(\lambda, Q) R(\lambda, P) & \lambda^{-2}\left(\lambda^{2} I+P Q\right) R(\lambda, Q)
\end{array}\right)
$$

where $0<|\lambda|<\min \left\{\left(\mathrm{r}\left(P^{D}\right)\right)^{-1},\left(\mathrm{r}\left(Q^{D}\right)\right)^{-1}\right\}$.

Proof. Let $\rho(\Delta)$ denote the set of all $\lambda \in \mathbb{C}$ such that $\Delta(\lambda)$ is invertible in $\mathcal{B}(X)$. By Lemma 1.4, we obtain $\rho(M) \cap \rho(P)=\rho(P) \cap \rho(\Delta)$. If $\lambda \in \rho(M) \cap \rho(P)$, then

$$
R(\lambda, M)=\left(\begin{array}{cc}
R(\lambda, P)+R(\lambda, P) P Q \Delta(\lambda)^{-1} R(\lambda, P) & R(\lambda, P) P Q \Delta(\lambda)^{-1} \\
\Delta(\lambda)^{-1} R(\lambda, P) & \Delta(\lambda)^{-1}
\end{array}\right)
$$

where $0<|\lambda|<\min \left\{\left(\mathrm{r}\left(P^{D}\right)\right)^{-1},\left(\mathrm{r}\left(Q^{D}\right)\right)^{-1}\right\}$. By (4) and (6), we immediately have the expression

$$
\begin{aligned}
R(\lambda, P) P Q \Delta(\lambda)^{-1} & =(\lambda I-Q) P Q R\left(\lambda^{2},-P Q\right) \Delta(\lambda)^{-1} \\
& =\lambda^{-2}(\lambda I-Q) P Q R(\lambda, Q) .
\end{aligned}
$$

Then, we further have

$$
\begin{aligned}
& R(\lambda, P)+R(\lambda, P) P Q \Delta(\lambda)^{-1} R(\lambda, P) \\
= & \left(I+R(\lambda, P) P Q \Delta(\lambda)^{-1}\right) R(\lambda, P) \\
= & \left(I+\lambda^{-2}(\lambda I-Q) P Q R(\lambda, Q)\right) R(\lambda, P) \\
= & \lambda^{-2}(\lambda I-Q)\left(\lambda^{2} I+P Q\right) R(\lambda, Q) R(\lambda, P) .
\end{aligned}
$$

Moreover,

$$
\Delta(\lambda)^{-1} R(\lambda, P)=\lambda^{-2}\left(\lambda^{2} I+P Q\right) R(\lambda, Q) R(\lambda, P)
$$

The proof is completed.
We will give other two necessary lemmas in order to obtain the representation of $(P+Q)^{D}$.
Lemma 2.3. Under the assumptions of Lemma 2.1, the following statements are true:
(1) The coefficients α_{i} at $\lambda^{i}(i=-1,0,1,2)$ of $R(\lambda, Q) R(\lambda, P)$ are given by

$$
\begin{align*}
\alpha_{-1} & =-\left(Q^{\pi} \delta P^{D}+Q^{D} \tau P^{\pi}\right), \\
\alpha_{0} & =-\left(Q^{\pi} \delta\left(P^{D}\right)^{2}+\left(Q^{D}\right)^{2} \tau P^{\pi}\right)+Q^{D} P^{D}, \\
\alpha_{1} & =-\left(Q^{\pi} \delta\left(P^{D}\right)^{3}+\left(Q^{D}\right)^{3} \tau P^{\pi}\right)+Q^{D}\left(P^{D}\right)^{2}+\left(Q^{D}\right)^{2} P^{D}, \tag{8}\\
\alpha_{2} & =-\left(Q^{\pi} \delta\left(P^{D}\right)^{4}+\left(Q^{D}\right)^{4} \tau P^{\pi}\right)+Q^{D}\left(P^{D}\right)^{3}+\left(Q^{D}\right)^{2}\left(P^{D}\right)^{2}+\left(Q^{D}\right)^{3} P^{D},
\end{align*}
$$

where $\delta=\sum_{k=0}^{s-1} Q^{k}\left(P^{D}\right)^{k}, \tau=\sum_{k=0}^{r-1}\left(Q^{D}\right)^{k} P^{k}$.
(2) $\alpha_{-1}-Q \alpha_{0}+P Q \alpha_{1}-Q P Q \alpha_{2}$ and $\alpha_{0}+P Q \alpha_{2}$ are the coefficients at λ^{2} of $(\lambda I-Q)\left(\lambda^{2} I+P Q\right) R(\lambda, Q) R(\lambda, P)$ and $\left(\lambda^{2} I+P Q\right) R(\lambda, Q) R(\lambda, P)$, respectively.
(3) $-P Q^{D}-P^{2}\left(Q^{D}\right)^{2}$ and $-Q^{D}-P\left(Q^{D}\right)^{2}$ are the coefficients at λ^{2} of $(\lambda I-Q) P Q R(\lambda, Q)$ and $\left(\lambda^{2} I+P Q\right) R(\lambda, Q)$, respectively.

Proof. (1) Note that P, Q are Drazin invertible. Applying Eq.(1) for P, Q in a punctured neighborhood of 0 , we have

$$
R(\lambda, Q)=\sum_{k=1}^{s} \lambda^{-k} Q^{k-1} Q^{\pi}-\sum_{k=0}^{\infty} \lambda^{k}\left(Q^{D}\right)^{k+1}
$$

and

$$
R(\lambda, P)=\sum_{k=1}^{r} \lambda^{-k} P^{k-1} P^{\pi}-\sum_{k=0}^{\infty} \lambda^{k}\left(P^{D}\right)^{k+1}
$$

Then the coefficients α_{i} at $\lambda^{i}(i=-1,0,1,2)$ of $R(\lambda, Q) R(\lambda, P)$ can be easily obtained.
(2) Since

$$
(\lambda I-Q)\left(\lambda^{2} I+P Q\right) R(\lambda, Q) R(\lambda, P)=\left(\lambda^{3} I-\lambda^{2} Q+\lambda P Q-Q P Q\right) R(\lambda, Q) R(\lambda, P) .
$$

Thus, by Lemma 2.3 (1), $\alpha_{-1}-Q \alpha_{0}+P Q \alpha_{1}-Q P Q \alpha_{2}$ is the coefficient at λ^{2} of $(\lambda I-Q)\left(\lambda^{2} I+P Q\right) R(\lambda, Q) R(\lambda, P)$. Analogously, (3) can be proved.

Lemma 2.4. Under the assumptions of Lemma 2.1, the following statements are valid:
(1) $\tau Q=Q$, and hence $\tau P^{2} Q^{2}=P^{2} Q^{2}$.
(2) $\tau P Q=P Q+Q^{D} P^{2} Q$, and hence $\tau P Q^{D}=P Q^{D}+Q^{D} P^{2} Q^{D}$.
(3) $\tau \delta=\tau+\delta-I$.
(4) $\alpha_{-1} P Q=\alpha_{0} P Q=\alpha_{1} P Q=Q \alpha_{2} P Q=0$.
(5) $\alpha_{-1} Q=-Q^{D} Q, \alpha_{i} Q=-\left(Q^{D}\right)^{i+1}, i=0,1,2,3$.
(6) $\alpha_{i} \alpha_{-1}=-\alpha_{i+1}, i=-1,0,1,2$.
(7) $\alpha_{i} P^{2}\left(Q^{D}\right)^{2}=-\left(Q^{D}\right)^{i+2} P^{2}\left(Q^{D}\right)^{2}, i=-1,0,1,2$.

Here

$$
\begin{align*}
\alpha_{3}= & -\left(Q^{\pi} \delta\left(P^{D}\right)^{5}+\left(Q^{D}\right)^{5} \tau P^{\pi}\right) \tag{9}\\
& +Q^{D}\left(P^{D}\right)^{4}+\left(Q^{D}\right)^{2}\left(P^{D}\right)^{3}+\left(Q^{D}\right)^{4} P^{D}+\left(Q^{D}\right)^{3}\left(P^{D}\right)^{2}
\end{align*}
$$

and δ, τ are defined as in Lemma 2.3.
Proof. (1) By $\tau=\sum_{k=0}^{r-1}\left(Q^{D}\right)^{k} P^{k}$, we have $\tau Q=\sum_{k=0}^{r-1}\left(Q^{D}\right)^{k} P^{k} Q$. If r is odd, then, by Eq.(5), we get

$$
\begin{aligned}
\tau Q & =Q+\sum_{k=1}^{\frac{r-1}{2}}\left(\left(Q^{D}\right)^{2 k-1} P^{2 k-1} Q+\left(Q^{D}\right)^{2 k} P^{2 k} Q\right) \\
& =Q+\sum_{k=1}^{\frac{r-1}{2}}\left((-1)^{k-1}\left(Q^{D}\right)^{2 k-1}(P Q)^{k}+(-1)^{k}\left(Q^{D}\right)^{2 k} Q(P Q)^{k}\right) \\
& =Q+\sum_{k=1}^{\frac{r-1}{2}}\left((-1)^{k-1}\left(Q^{D}\right)^{2 k-1}(P Q)^{k}+(-1)^{k}\left(Q^{D}\right)^{2 k-1}(P Q)^{k}\right) \\
& =Q .
\end{aligned}
$$

If r is even, then

$$
\begin{aligned}
\tau Q & =Q+\sum_{k=1}^{\frac{r-2}{2}}\left(\left(Q^{D}\right)^{2 k-1} P^{2 k-1} Q+\left(Q^{D}\right)^{2 k} P^{2 k} Q\right)+\left(Q^{D}\right)^{r-1} P^{r-1} Q \\
& =Q+\left(Q^{D}\right)^{r-1} P^{r-1} Q \\
& =Q+(-1)^{\frac{r}{2}-1}\left(Q^{D}\right)^{r-1}(P Q)^{\frac{r}{2}} \\
& =Q+(-1)^{\frac{r}{2}-1}\left(Q^{D}\right)^{r} Q(P Q)^{\frac{r}{2}} \\
& =Q-\left(Q^{D}\right)^{r} P^{r} Q \\
& =Q
\end{aligned}
$$

since $P^{r} Q=P^{r+1} P^{D} Q=0$, and hence $\tau Q=Q$. Thus, (1) is proved.
(2) Obviously, $\tau P Q=\sum_{n=0}^{r-1}\left(Q^{D}\right)^{n} P^{n} P Q$. If r is even, then

$$
\begin{aligned}
\tau P Q & =P Q+Q^{D} P^{2} Q+\sum_{k=1}^{\frac{r}{2}-1}\left(\left(Q^{D}\right)^{2 k} P^{2 k+1} Q+\left(Q^{D}\right)^{2 k+1} P^{2 k+2} Q\right) \\
& =P Q+Q^{D} P^{2} Q+\sum_{k=1}^{\frac{r}{2}-1}\left((-1)^{k}\left(Q^{D}\right)^{2 k}(P Q)^{k+1}+(-1)^{k+1}\left(Q^{D}\right)^{2 k+1} Q(P Q)^{k+1}\right) \\
& =P Q+Q^{D} P^{2} Q+\sum_{k=1}^{\frac{r}{2}-1}\left((-1)^{k}\left(Q^{D}\right)^{2 k}(P Q)^{k+1}+(-1)^{k+1}\left(Q^{D}\right)^{2 k}(P Q)^{k+1}\right) \\
& =P Q+Q^{D} P^{2} Q .
\end{aligned}
$$

Similarly, if r is odd, then

$$
\begin{aligned}
\tau P Q & =P Q+Q^{D} P^{2} Q+\sum_{k=1}^{\frac{r-3}{2}}\left(\left(Q^{D}\right)^{2 k} P^{2 k+1} Q+\left(Q^{D}\right)^{2 k+1} P^{2 k+2} Q\right)+\left(Q^{D}\right)^{r-1} P^{r} Q \\
& =P Q+Q^{D} P^{2} Q+\left(Q^{D}\right)^{r-1} P^{r} Q \\
& =P Q+Q^{D} P^{2} Q .
\end{aligned}
$$

Therefore, the relation $\tau P Q=P Q+Q^{D} P^{2} Q$ is proved.
On the other hand, by $P^{2} Q=-Q P Q$, it is obvious that

$$
\tau P^{2} Q^{2}=-\tau Q P Q^{2}=-Q P Q^{2}=P^{2} Q^{2}
$$

(3) In view of $\tau Q=Q$, we clearly have

$$
\begin{aligned}
\tau \delta & =\tau \sum_{k=0}^{s-1} Q^{k}\left(P^{D}\right)^{k} \\
& =\tau+\left(Q P^{D}+Q^{2}\left(P^{D}\right)^{2}+\cdots+Q^{s-1}\left(P^{D}\right)^{s-1}\right) \\
& =\tau+\delta-I
\end{aligned}
$$

(4) We only prove $\alpha_{-1} P Q=0$, and the proof of others are similar.

Since $P^{\pi} P Q=P Q, \tau P Q=P Q+Q^{D} P^{2} Q$ and $P^{2} Q+Q P Q=0$, it follows that

$$
\begin{aligned}
\alpha_{-1} P Q & =-Q^{D} \tau P Q \\
& =-Q^{D}\left(P Q+Q^{D} P^{2} Q\right) \\
& =-Q^{D} P Q+\left(Q^{D}\right)^{2} Q P Q \\
& =0 .
\end{aligned}
$$

(5) The conclusion can be immediately obtained from $P^{D} Q=0, P^{\pi} Q=Q$ and $\tau Q=Q$.
(6) We only prove the case $i=-1$, and other cases are similar.

Note that $P^{D} Q^{\pi}=P^{D}, P^{\pi} Q^{D}=Q^{D}, P^{D} Q^{D}=0$ and $P^{\pi} Q^{\pi}=P^{\pi}-Q Q^{D}$, so

$$
\begin{aligned}
\alpha_{-1} \alpha_{-1} & =\left(Q^{\pi} \delta P^{D}+Q^{D} \tau P^{\pi}\right)^{2} \\
& =Q^{\pi} \delta P^{D} \delta P^{D}+\left(Q^{D}\right) \tau Q^{D} \tau P^{\pi}+Q^{D} \tau P^{\pi} \delta P^{D}-Q^{D} \tau Q Q^{D} \delta P^{D}
\end{aligned}
$$

On the other hand, the relation $P^{D} Q=0$ implies $P^{D} \delta=P^{D}$ and $P^{\pi} \delta=\delta-P P^{D}$. Also, $\tau Q^{D}=Q^{D}$ can be obtained based on $\tau Q=Q$. Therefore, we have

$$
\begin{aligned}
\alpha_{-1} \alpha_{-1} & =Q^{\pi} \delta\left(P^{D}\right)^{2}+\left(Q^{D}\right)^{2} \tau P^{\pi}+Q^{D} \tau\left(\delta-P P^{D}\right) P^{D}-Q^{D} Q Q^{D} \delta P^{D} \\
& =Q^{\pi} \delta\left(P^{D}\right)^{2}+\left(Q^{D}\right)^{2} \tau P^{\pi}-Q^{D} P^{D} \\
& =-\alpha_{0}
\end{aligned}
$$

since, by Lemma 2.4 (3),

$$
\begin{aligned}
Q^{D} \tau\left(\delta-P P^{D}\right) P^{D} & =Q^{D}\left(\tau \delta-\tau P P^{D}\right) P^{D} \\
& =Q^{D}\left(\tau+\delta-I-\tau P P^{D}\right) P^{D} \\
& =Q^{D}(\tau+\delta-I) P^{D}-Q^{D} \tau P^{D} \\
& =Q^{D}(\delta-I) P^{D}
\end{aligned}
$$

(7) Note that $\tau P^{2} Q^{2}=P^{2} Q^{2}$. Then, the claim follows from $P^{D} Q^{D}=0$ and $P^{\pi} P^{2}\left(Q^{D}\right)^{2}=P^{2}\left(Q^{D}\right)^{2}$.

The following is the main result of this section.

Theorem 2.5. Let $P, Q \in \mathcal{B}(\mathcal{X})$ be Drazin invertible, $r=\operatorname{ind}(P)$ and $s=\operatorname{ind}(Q)$. If $P^{2} Q+Q P Q=0$ and $P^{n} Q=0$ for some integer $n>0$, then $P+Q$ is Drazin invertible, and

$$
\begin{equation*}
(P+Q)^{D}=-\alpha_{0} P-P Q \alpha_{2} P+P\left(Q^{D}\right)^{2}+Q^{D} \tag{10}
\end{equation*}
$$

i.e.,

$$
\begin{align*}
(P+Q)^{D}= & Q^{\pi} \sum_{i=0}^{s-1} Q^{i}\left(P^{D}\right)^{i+1}+\sum_{i=0}^{r-1}\left(Q^{D}\right)^{i+1} P^{i} P^{\pi}+P \sum_{i=0}^{r-1}\left(Q^{D}\right)^{i+2} P^{i} P^{\pi} \\
& +P Q^{\pi} \sum_{i=0}^{s-2} Q^{i+1}\left(P^{D}\right)^{i+3}-P Q^{D} P^{D}-P Q Q^{D}\left(P^{D}\right)^{2} . \tag{11}
\end{align*}
$$

Moreover, $\operatorname{ind}(P+Q) \leq r+s+3$.
Proof. Let $A=\left(\begin{array}{ll}I & Q\end{array}\right): \mathcal{X} \oplus \mathcal{X} \rightarrow \mathcal{X}$ and $B=\binom{P}{I}: \mathcal{X} \rightarrow \mathcal{X} \oplus \mathcal{X}$. Then $P+Q=A B$ and $B A=M$, where M is defined as in Lemma 2.2. By Lemma 2.2, we obtain

$$
R(\lambda, B A)=\left(\begin{array}{cc}
\lambda^{-2}(\lambda I-Q)\left(\lambda^{2} I+P Q\right) R(\lambda, Q) R(\lambda, P) & \lambda^{-2}(\lambda I-Q) P Q R(\lambda, Q) \tag{12}\\
\lambda^{-2}\left(\lambda^{2} I+P Q\right) R(\lambda, Q) R(\lambda, P) & \lambda^{-2}\left(\lambda^{2} I+P Q\right) R(\lambda, Q)
\end{array}\right)
$$

for λ belonging to a punctured neighborhood of 0 , which shows that $R(\lambda, B A)$ has a pole at $\lambda=0$ of order at most $r+s+2$. So, according to Lemma 1.1, $B A$ is Drazin invertible and $R(\lambda, B A)$ has the Laurent series

$$
R(\lambda, B A)=\sum_{k=1}^{r+s+2} \lambda^{-k}(B A)^{k-1}(B A)^{\pi}-\sum_{k=0}^{\infty} \lambda^{k}\left((B A)^{D}\right)^{k+1}
$$

in a punctured neighborhood of 0 . Thus, by Lemma 2.1, $A B$ is Drazin invertible, i.e., $P+Q$ is Drazin invertible. In addition, we have

$$
\begin{equation*}
(P+Q)^{D}=(A B)^{D}=A\left((B A)^{D}\right)^{2} B \tag{13}
\end{equation*}
$$

and $\operatorname{ind}(P+Q) \leq \operatorname{ind}(B A)+1 \leq r+s+3$.
According to Lemma 2.3 and the expression (12) for $R(\lambda, B A), \alpha_{-1}-Q \alpha_{0}+P Q \alpha_{1}-Q P Q \alpha_{2}, \alpha_{0}+P Q \alpha_{2}$, $-P Q^{D}-P^{2}\left(Q^{D}\right)^{2}$ and $-Q^{D}-P\left(Q^{D}\right)^{2}$ are the coefficients at λ^{0} of $\lambda^{-2}(\lambda I-Q)\left(\lambda^{2} I+P Q\right) R(\lambda, Q) R(\lambda, P), \lambda^{-2}\left(\lambda^{2} I+\right.$
$P Q) R(\lambda, Q) R(\lambda, P), \lambda^{-2}(\lambda I-Q) P Q R(\lambda, Q)$ and $\lambda^{-2}\left(\lambda^{2} I+P Q\right) R(\lambda, Q)$, respectively. Thus, applying Eq.(2), we obtain that

$$
\begin{aligned}
(B A)^{D} & =-\frac{1}{2 \pi i} \int_{\Gamma} \frac{1}{\lambda} R(\lambda, B A) \mathrm{d} \lambda \\
& =-\left(\begin{array}{cc}
\alpha_{-1}-Q \alpha_{0}+P Q \alpha_{1}-Q P Q \alpha_{2} & -P Q^{D}-P^{2}\left(Q^{D}\right)^{2} \\
\alpha_{0}+P Q \alpha_{2} & -Q^{D}-P\left(Q^{D}\right)^{2}
\end{array}\right)
\end{aligned}
$$

Then

$$
\left((B A)^{D}\right)^{2}=\left(\begin{array}{ll}
C_{11} & C_{12} \tag{14}\\
C_{21} & C_{22}
\end{array}\right)
$$

where

$$
\begin{aligned}
C_{11}= & \left(\alpha_{-1}-Q \alpha_{0}+P Q \alpha_{1}-Q P Q \alpha_{2}\right)^{2}-\left(P Q^{D}+P^{2}\left(Q^{D}\right)^{2}\right)\left(\alpha_{0}+P Q \alpha_{2}\right), \\
C_{12}= & -\left(\alpha_{-1}-Q \alpha_{0}+P Q \alpha_{1}-Q P Q \alpha_{2}\right)\left(P Q^{D}+P^{2}\left(Q^{D}\right)^{2}\right) \\
& +\left(P Q^{D}+P^{2}\left(Q^{D}\right)^{2}\right)\left(Q^{D}+P\left(Q^{D}\right)^{2}\right), \\
C_{21}= & \left(\alpha_{0}+P Q \alpha_{2}\right)\left(\alpha_{-1}-Q \alpha_{0}+P Q \alpha_{1}-Q P Q \alpha_{2}\right)-\left(Q^{D}+P\left(Q^{D}\right)^{2}\right)\left(\alpha_{0}+P Q \alpha_{2}\right), \\
C_{22}= & -\left(\alpha_{0}+P Q \alpha_{2}\right)\left(P Q^{D}+P^{2}\left(Q^{D}\right)^{2}\right)+\left(Q^{D}+P\left(Q^{D}\right)^{2}\right)^{2} .
\end{aligned}
$$

By Lemma 2.3 and Lemma 2.4, together with $P^{2} Q+Q P Q=0, Q^{D}=Q\left(Q^{D}\right)^{2}$ and $\left(Q^{D}\right)^{2} P^{2}\left(Q^{D}\right)^{2}=-Q^{D} P\left(Q^{D}\right)^{2}$, we can deduce that

$$
\begin{aligned}
C_{11}= & -\alpha_{0}+Q^{D} Q \alpha_{0}+Q^{D} Q P Q \alpha_{2}-Q^{D} Q \alpha_{0}-Q Q^{D} P Q \alpha_{2}+P Q\left(Q^{D}\right)^{2} \alpha_{0} \\
& +P Q^{D} P Q \alpha_{2}+Q P Q \alpha_{3}-Q P Q\left(Q^{D}\right)^{3} \alpha_{0}-Q P Q\left(Q^{D}\right)^{3} P Q \alpha_{2}+Q \alpha_{1} \\
& -P Q \alpha_{2}-P Q^{D} \alpha_{0}-P Q^{D} P Q \alpha_{2}-P^{2}\left(Q^{D}\right)^{2} \alpha_{0}-P^{2}\left(Q^{D}\right)^{2} P Q \alpha_{2} \\
= & -\alpha_{0}+Q \alpha_{1}-P Q \alpha_{2}+Q P Q \alpha_{3}, \\
C_{12}= & Q^{D} P^{2}\left(Q^{D}\right)^{2}-Q\left(Q^{D}\right)^{2} P^{2}\left(Q^{D}\right)^{2}+P Q\left(Q^{D}\right)^{3} P^{2}\left(Q^{D}\right)^{2}-Q P Q\left(Q^{D}\right)^{4} P^{2}\left(Q^{D}\right)^{2} \\
& +P\left(Q^{D}\right)^{2}+P Q^{D} P\left(Q^{D}\right)^{2}+P^{2}\left(Q^{D}\right)^{3}+P^{2}\left(Q^{D}\right)^{2} P\left(Q^{D}\right)^{2} \\
= & P\left(Q^{D}\right)^{2}+P^{2}\left(Q^{D}\right)^{3}, \\
C_{21}= & -\alpha_{1}+Q^{D} \alpha_{0}+Q^{D} P Q \alpha_{2}-P Q \alpha_{3}+P Q\left(Q^{D}\right)^{3} Q \alpha_{0}+P Q\left(Q^{D}\right)^{3} P Q \alpha_{2} \\
& -Q^{D} \alpha_{0}-Q^{D} P Q \alpha_{2}-P\left(Q^{D}\right)^{2} \alpha_{0}-P\left(Q^{D}\right)^{2} P Q \alpha_{2} \\
= & -\alpha_{1}-P Q \alpha_{3} \\
C_{22}= & \left(Q^{D}\right)^{2} P^{2}\left(Q^{D}\right)^{2}+P Q\left(Q^{D}\right)^{4} P^{2}\left(Q^{D}\right)^{2}+\left(Q^{D}\right)^{2}+Q^{D} P\left(Q^{D}\right)^{2} \\
& +P\left(Q^{D}\right)^{3}+P\left(Q^{D}\right)^{2} P\left(Q^{D}\right)^{2} \\
= & \left(Q^{D}\right)^{2}+P\left(Q^{D}\right)^{3} .
\end{aligned}
$$

Thus,

$$
\left((B A)^{D}\right)^{2}=\left(\begin{array}{cc}
-\alpha_{0}+Q \alpha_{1}-P Q \alpha_{2}+Q P Q \alpha_{3} & P\left(Q^{D}\right)^{2}+P^{2}\left(Q^{D}\right)^{3} \\
-\alpha_{1}-P Q \alpha_{3} & \left(Q^{D}\right)^{2}+P\left(Q^{D}\right)^{3}
\end{array}\right)
$$

Therefore, from Eq.(13), we obtain

$$
\begin{align*}
(P+Q)^{D} & =(I Q)\left(\begin{array}{cc}
-\alpha_{0}+Q \alpha_{1}-P Q \alpha_{2}+Q P Q \alpha_{3} & P\left(Q^{D}\right)^{2}+P^{2}\left(Q^{D}\right)^{3} \\
-\alpha_{1}-P Q \alpha_{3} & \left(Q^{D}\right)^{2}+P\left(Q^{D}\right)^{3}
\end{array}\right)\binom{P}{I} \\
& =-\alpha_{0} P-P Q \alpha_{2} P+P\left(Q^{D}\right)^{2}+P^{2}\left(Q^{D}\right)^{3}+Q\left(Q^{D}\right)^{2}+Q P\left(Q^{D}\right)^{3} \\
& =-\alpha_{0} P-P Q \alpha_{2} P+P\left(Q^{D}\right)^{2}+Q^{D} . \tag{15}
\end{align*}
$$

Instituting the expression (8) of α_{0}, α_{2} into Eq.(15), then we have

$$
\begin{aligned}
(P+Q)^{D}= & Q^{\pi} \sum_{i=0}^{s-1} Q^{i}\left(P^{D}\right)^{i+1}+\sum_{i=0}^{r-1}\left(Q^{D}\right)^{i+1} P^{i} P^{\pi}+P \sum_{i=0}^{r-1}\left(Q^{D}\right)^{i+2} P^{i} P^{\pi} \\
& +P Q^{\pi} \sum_{i=0}^{s-2} Q^{i+1}\left(P^{D}\right)^{i+3}-P Q^{D} P^{D}-P Q Q^{D}\left(P^{D}\right)^{2}
\end{aligned}
$$

from $Q^{\pi} Q^{s}=0, P^{r} P^{\pi}=0, Q^{D}-Q^{D} P^{D} P=Q^{D} P^{\pi}$ and $P\left(Q^{D}\right)^{2}-P\left(Q^{D}\right)^{2} P^{Q} P=P\left(Q^{D}\right)^{2} P^{\pi}$.

Remark 2.6. In Theorem 2.5, we find that the representation (11) of $(P+Q)^{D}$ is the same when $n \geq 2$.

If let $A=(Q I): \mathcal{X} \oplus \mathcal{X} \rightarrow \mathcal{X}$ and $B=\binom{I}{P}: \mathcal{X} \rightarrow \mathcal{X} \oplus \mathcal{X}$, then $P+Q=A B$, and we have
Theorem 2.7. Let $P, Q \in \mathcal{B}(\mathcal{X})$ be Drazin invertible, $r=\operatorname{ind}(P)$ and $s=\operatorname{ind}(Q)$. If $P Q^{2}+P Q P=0$ and $P Q^{n}=0$ for some integer $n>0$, then $P+Q$ is Drazin invertible, and

$$
\begin{aligned}
(P+Q)^{D}= & Q^{\pi} \sum_{i=0}^{s-1} Q^{i}\left(P^{D}\right)^{i+1}+\sum_{i=0}^{r-1}\left(Q^{D}\right)^{i+1} P^{i} P^{\pi}+\sum_{i=0}^{r-2}\left(Q^{D}\right)^{i+3} P^{i+1} P^{\pi} Q \\
& +Q^{\pi} \sum_{i=0}^{s-1} Q^{i}\left(P^{D}\right)^{i+2} Q-Q^{D} P^{D} Q-\left(Q^{D}\right)^{2} P P^{D} Q
\end{aligned}
$$

The following corollary is the case when $n=1$ of Theorem 2.5.
Corollary 2.8.[9, 12] Let $P, Q \in \mathcal{B}(\mathcal{X})$ is Drazin invertible, $r=\operatorname{ind}(P)$ and $s=\operatorname{ind}(Q)$. If $P Q=0$. Then $P+Q$ is Drazin invertible, and

$$
(P+Q)^{D}=Q^{\pi} \sum_{i=0}^{s-1} Q^{i}\left(P^{D}\right)^{i+1}+\sum_{i=0}^{r-1}\left(Q^{D}\right)^{i+1} P^{i} P^{\pi}
$$

Remark 2.9. When $n=2$ in Theorem 2.5 and Theorem 2.7, we obtain the results of [19, Theorem 2.1, Theorem 2.2] and [7, Lemma 4]. When $n=3$ in Theorem 2.5, we get the result of [16, Theorem 5].

In fact, the condition $P Q P Q=0$ in [16, Theorem 5] can be obtained from $P^{2} Q+Q P Q=0$ and $P^{3} Q=0$. On the other hand, since $\operatorname{ind}\left(P^{2}\right)=\left[\frac{\operatorname{ind}(P)+1}{2}\right]$ and $P^{k} P^{\pi}=0(k \geq \operatorname{ind}(P))$, X in [16, Theorem 5] can be simplified as $X=\sum_{i=0}^{r-1}\left(Q^{D}\right)^{i+3} P^{i} P^{\pi}+\sum_{i=0}^{s-1} Q^{\pi} Q^{i}\left(P^{D}\right)^{i+3}-\left(Q^{D}\right)^{2} P^{D}-Q^{D}\left(P^{D}\right)^{2}$, where $r=\operatorname{ind}(P), s=\operatorname{ind}(Q)$. Thus, the representation of $(P+Q)^{D}$ in $[16$, Theorem 5] is reduced to the formula of (11).

3. Application to Bounded Operator Matrices

Let $\boldsymbol{y}, \mathcal{Z}$ be Banach spaces, and let $\mathcal{A}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ be a bounded linear operator matrix on $\boldsymbol{y} \times \mathcal{Z}$. In the following, we illustrate an application of our results to establish representations for \mathcal{A}^{D} under some conditions.

Lemma 3.1.[8] Let $M_{1}=\left(\begin{array}{cc}A & 0 \\ C & D\end{array}\right), M_{2}=\left(\begin{array}{cc}A & B \\ 0 & D\end{array}\right)$ be operator matrices. If $\operatorname{ind}(A)=a, \operatorname{ind}(D)=d$, then M_{1} and M_{2} are Drazin invertible, and

$$
M_{1}^{D}=\left(\begin{array}{cc}
A^{D} & 0 \\
X_{1} & D^{D}
\end{array}\right), \quad M_{2}^{D}=\left(\begin{array}{cc}
A^{D} & X_{2} \\
0 & D^{D}
\end{array}\right),
$$

where $X_{1}=D^{\pi} \sum_{i=0}^{d-1} D^{i} C\left(A^{D}\right)^{i+2}+\sum_{i=0}^{a-1}\left(D^{D}\right)^{i+2} C A^{i} A^{\pi}-D^{D} C A^{D}$,
$X_{2}=A^{\pi} \sum_{i=0}^{d-1} A^{i} B\left(D^{D}\right)^{i+2}+\sum_{i=0}^{a-1}\left(A^{D}\right)^{i+2} B D^{i} D^{\pi}-A^{D} B D^{D}$.

The case $B C=0, B D C=0$ and $B D^{2}=0$ has been studied in [10] and the case $A B C=0, B D C=0, C B C=0$ and $D^{2} C=0$ in [16] for matrices. We focus our attention in the generalization of the mentioned results.

Theorem 3.2. Let $A \in \mathcal{B}(\mathcal{Y}), \mathcal{D} \in \mathcal{B}(\mathcal{Z})$ be Drazin invertible, $a=\operatorname{ind}(A), d=\operatorname{ind}(D)$. Assume that one of the following holds:
(1) $A B C+B D C=0, C B C+D^{2} C=0$ and $D^{n} C=0$ for some integer $n>0$. further, $B D^{n-1} C=0$ if n is odd;
(2) $C A B+C B D=0, C B C+C A^{2}=0$ and $C A^{n}=0$ for some integer $n>0$. further, $C A^{n-1} B=0$ if n is odd.

Then the operator matrix \mathcal{A} is Drazin invertible, and

$$
\mathcal{A}^{D}=\left(\begin{array}{cc}
A^{D}+B C\left(A^{D}\right)^{3} & X+B C\left(A^{D}\right)^{2} X+B C A^{D} X D^{D}+B C X\left(D^{D}\right)^{2} \\
C\left(A^{D}\right)^{2}+D C\left(A^{D}\right)^{3} & D^{D}+C A^{D} X+C X D^{D}+D C\left(\left(A^{D}\right)^{2} X+A^{D} X D^{D}+X\left(D^{D}\right)^{2}\right)
\end{array}\right) \text {. }
$$

where $X=A^{\pi} \sum_{i=0}^{a-1} A^{i} B\left(D^{D}\right)^{i+2}+\sum_{i=0}^{d-1}\left(A^{D}\right)^{i+2} B D^{i} D^{\pi}-A^{D} B D^{D}$.

Proof. We consider the splitting $\mathcal{A}=P+Q$, where $P=\left(\begin{array}{cc}A & B \\ 0 & D\end{array}\right), Q=\left(\begin{array}{ll}0 & 0 \\ C & 0\end{array}\right)$. Then

$$
P^{n} Q=\left(\begin{array}{cc}
\sum_{k=0}^{n-1} A^{k} B D^{n-1-k} C & 0 \\
D^{n} C & 0
\end{array}\right) .
$$

If (1) holds, then $D^{2 k} C=C(-B C)^{k}$ by $C B C+D^{2} C=0$. Thus, using $A B C+B D C=0$, we have

$$
\begin{aligned}
\sum_{k=0}^{n-1} A^{k} B D^{n-1-k} C & =\sum_{k=0}^{\frac{n}{2}-1}\left(A^{2 k+1} B D^{n-2-2 k} C+A^{2 k} B D^{n-1-2 k} C\right) \\
& =\sum_{k=0}^{\frac{n}{2}-1}\left(A^{2 k+1} B C(-B C)^{\frac{n-2-2 k}{2}}+A^{2 k} B D C(-B C)^{\frac{n-2-2 k}{2}}\right) \\
& =\sum_{k=0}^{\frac{n}{2}-1} A^{2 k}(A B C+B D C)(-B C)^{\frac{n-2-2 k}{2}} \\
& =0
\end{aligned}
$$

when n is even, and

$$
\begin{aligned}
\sum_{k=0}^{n-1} A^{k} B D^{n-1-k} C & =B D^{n-1} C+\sum_{k=1}^{n-1} A^{k} B D^{n-1-k} C \\
& =\sum_{k=1}^{\frac{n-1}{2}}\left(A^{2 k} B D^{n-1-2 k} C+A^{2 k-1} B D^{n-2 k} C\right) \\
& =\sum_{k=1}^{\frac{n-1}{2}}\left(A^{2 k} B C(-B C)^{\frac{n-1-2 k}{2}}+A^{2 k-1} B D C(-B C)^{\frac{n-1-2 k}{2}}\right) \\
& =\sum_{k=1}^{\frac{n-1}{2}} A^{2 k-1}(A B C+B D C)(-B C)^{\frac{n-1-2 k}{2}} \\
& =0
\end{aligned}
$$

when n is odd. So, $P^{n} Q=0$ according to $D^{n} C=0$. On the other hand, a straightforward calculation shows that $P^{2} Q+Q P Q=0$. The desired result follows from Theorem 2.5 and Lemma 3.1.

Similarly, if (2) holds, then we conclude that $Q P^{2}+Q P Q=0$ and $Q P^{n}=0$. Therefore, the claim follows from Theorem 2.7.

If we consider the splitting $M=P+Q$, where $P=\left(\begin{array}{ll}A & 0 \\ C & D\end{array}\right), Q=\left(\begin{array}{ll}0 & B \\ 0 & 0\end{array}\right)$, then we obtain the following result.
Theorem 3.3. Let $A \in \mathcal{B}(\mathcal{Y}), \mathcal{D} \in \mathcal{B}(\mathcal{Z})$ be Drazin invertible, $a=\operatorname{ind}(A), d=\operatorname{ind}(D)$. Assume that one of the following holds:
(1) $C A B+D C B=0, B C B+A^{2} B=0$ and $A^{n} B=0$ for some integer $n>0$. further, $C A^{n-1} B=0$ if n is odd;
(2) $B C A+B D C=0, B C B+B D^{2}=0$ and $B D^{n}=0$ for some integer $n>0$. further, $B D^{n-1} C=0$ if n is odd.

Then the operator matrix \mathcal{A} is Drazin invertible, and

$$
\mathcal{A}^{D}=\left(\begin{array}{cc}
A^{D}+B X A^{D}+B D^{D} X+A B\left(\left(D^{D}\right)^{2} X+D^{D} X A^{D}+X\left(A^{D}\right)^{2}\right) & B\left(D^{D}\right)^{2}+A B\left(D^{D}\right)^{3} \\
X+C B X\left(A^{D}\right)^{2}+C B D^{D} X A^{D}+C B\left(D^{D}\right)^{2} X & \left.D^{D}+C B\left(D^{D}\right)^{3}\right)
\end{array}\right) .
$$

where $X=D^{\pi} \sum_{i=0}^{d-1} D^{i} C\left(A^{D}\right)^{i+2}+\sum_{i=0}^{a-1}\left(D^{D}\right)^{i+2} C A^{i} A^{\pi}-D^{D} C A^{D}$.

Acknowledgments

The author would like to thank the anonymous referees for their very detailed comments and many constructive suggestions which helped to improve the paper.

References

[1] A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, second ed., Springer-Verlag, New York, 2003.
[2] C. Bu, C. Zhang, A note on the formulas for the Drazin inverse of the sum of two matrices, Linear Algebra Appl. 439 (2013) 565-576.
[3] S.L. Campbell, C.D. Meyer, Generalized Inverses of Linear Transformations, Dover, New York, 1991, originally published: Pitman, London, 1979.
[4] S.R. Caradus, Operators Theory of the Generalized Inverse, Queen's Papers in Pure and Appl. Math., Vol.38, Queen's University, Kingston, Ontario, 1974.
[5] N. Castro-González, E. Dopazo, M.F. Martínez-Serrano, On the Drazin inverse of the sum of two operators and its application to operator matrices, J. Math. Anal. Appl. 350 (2009) 207-215.
[6] N. Castro-González, Additive perturbations result for Drazin inverse, Linear Algebra Appl. 397 (2005) 279-297.
[7] A.S. Cvetković, G.V. Milovanović, On Drazin inverse of operator matrices, J. Math. Anal. Appl. 375 (2011) 331-335.
[8] D.S. Djordjević, P.S. Stanimirović, On the generalized Drazin inverse and generalized resolvent, Czechoslovak Math. J. 51 (2001) 617-634.
[9] D.S. Djordjevicć, Y. Wei, Additive results for the generalized Drazin inverse, J. Austral. Math. Soc. 73 (2002) 115-125.
[10] E. Dopazo, M.F. Martinez-Serrano, Further results on the representation of the Drazin inverse of a 2×2 block matrix, Linear Algebra Appl. 432 (2010) 1896-1904.
[11] M.P. Drazin, Pseudoinverse in associative rings and semigroups, Amer. Math. Monthly 65 (1958) 506-514.
[12] R.E. Hartwig, G. Wang, Y. Wei, Some additive results on Drazin inverse, Linear Algebra Appl. 322 (2001) 207-217.
[13] J. Huang, Y. Shi, A. Chen, Additive results of the Drazin inverse for bounded linear operators, Complex Anal. Oper. Theory, 8 (2014) 349-358.
[14] J. Ljubisavljević, D. S. Cvetković-Ilić, Additive results for the Drazin inverse of block matrices and applications, J. Comput. Appl. Math. 235 (2011) 3683-3690.
[15] R. Nagel, Towards a "matrix theory" for unbounded operator matrices, Math. Z. 201 (1989) 57-68.
[16] A. Shakoor, H. Yang, I. Ali, Some results for the Drazin inverses of the sum of two matrices and some block matrices, J. Appl. Math. 2013 (2013) 804313.
[17] J. Višjić, On additive properties of the Drazin inverse of block matrices and representations, Appl. Math. Comput. 250 (2015) 444-450.
[18] G. Wang, Y. Wei, S. Qiao, Generalized Inverses: Theory and Computations, Grad. Ser. Math., Science Press, Beijing, 2004.
[19] H. Yang, X. Liu, The Drazin inverse of the sum of two matrices and its applications, J. Comput. Appl. Math. 235 (2011) 1412-1417.

[^0]: 2010 Mathematics Subject Classification. 46C07; 46C05; 15A09.
 Keywords. Drazin inverse, bounded linear operator, operator matrix.
 Received: 01 December 2015; Accepted: 29 April 2016
 Communicated by Dragan S. Djordjević
 Research supported by the NNSF of China (11261034, 11461049 and 71561020), and the NSF of Inner Mongolia (2014MS0113).
 Email addresses: hrenly@163.com (Hua Wang), huangjunjie@imu.edu. cn (Junjie Huang), alatanca@imu.edu. cn (Alatancang Chen)

