On I- Lacunary Statistical Convergence of Order α of Sequences of Sets

Hacer Şengül ${ }^{\text {a }}$, Mikail Et ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics; Siirt University 56100; Siirt ; TURKEY
${ }^{b}$ Department of Mathematics; Firat University 23119; Elazıg ; TURKEY

Abstract

The idea of I-convergence of real sequences was introduced by Kostyrko et al. [Kostyrko, P. ; Šalát, T. and Wilczyński, W. I-convergence, Real Anal. Exchange 26(2) (2000/2001), 669-686] and also independently by Nuray and Ruckle [Nuray, F. and Ruckle, W. H. Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245(2) (2000), 513-527]. In this paper we introduce the concepts of Wijsman I-lacunary statistical convergence of order α and Wijsman strongly I-lacunary statistical convergence of order α, and investigated between their relationship.

1. Introduction

The concept of statistical convergence was introduced by Steinhaus [36] and Fast [15]. Schoenberg [34] established some basic properties of statistical convergence and studied the concept as a summability method. Later on it was further investigated from the sequence space point of view and linked with summability theory by Altın et al. [1], Başarır and Konca [2], Caserta et al. [3], Connor [4], Çakallı [5], Çolak ([8],[9]), Et et al. ([11],[12],[20],[21]), Fridy [17], Gadjiev and Orhan [19], Kolk [22], Mursaleen et al. ([25],[26]), Salat [29], Savaş et al. ([10],[32],[33]) and many others. Nuray and Rhoades [28] extended the notion to statistical convergence of sequences of sets and gave some basic theorems. Ulusu and Nuray [38] defined the Wijsman lacunary statistical convergence of sequence of sets, and considered its relation with Wijsman statistical convergence.

Let X be a non-empty set. Then a family of sets $I \subseteq 2^{X}$ (power sets of X) is said to be an ideal if I is additive i.e. $A, B \in I$ implies $A \cup B \in I$ and hereditary, i.e. $A \in I, B \subset A$ implies $B \in I$.

A non-empty family of sets $F \subseteq 2^{X}$ is said to be a filter of X if and only if (i) $\phi \notin F$, (ii) $A, B \in F$ implies $A \cap B \in F$ and (iii) $A \in F, A \subset B$ implies $B \in F$.

An ideal $I \subseteq 2^{X}$ is called non-trivial if $I \neq 2^{X}$.
A non-trivial ideal I is said to be admissible if $I \supset\{\{x\}: x \in X\}$.
If I is a non-trivial ideal in $X(X \neq \phi)$ then the family of sets $F(I)=\{M \subset X:(\exists A \in I)(M=X \backslash A)\}$ is a filter of X, called the filter associated with I.

Let (X, d) be a metric space. For any non-empty closed subset A_{k} of X, we say that the sequence $\left\{A_{k}\right\}$ is bounded if $\sup _{k} d\left(x, A_{k}\right)<\infty$ for each $x \in X$. In this case we write $\left\{A_{k}\right\} \in L_{\infty}$.

Throughout the paper I will stand for a non-trivial admissible ideal of \mathbb{N}.

[^0]The idea of I-convergence of real sequences was introduced by Kostyrko et al. [23] and also independently by Nuray and Ruckle [27] (who called it generalized statistical convergence) as a generalization of statistical convergence. Later on I-convergence was studied in ([6],[7],[14],[24],[30], [31],[32],[33],[37],[39]).

2. Main Results

In this section, we will extend the results of Et and Şengül ([13], [35]) to statistical convergence of set sequences, namely; the relationship between the concepts of Wijsman I-lacunary statistical convergence of order α and Wijsman strongly I-lacunary statistical convergence of order α are given

Definition 2.1. Let (X, d) be a metric space, θ be a lacunary sequence, $\alpha \in(0,1]$ and $I \subseteq 2^{\mathbb{N}}$ be an admissible ideal of subsets of \mathbb{N}. For any non-empty closed subsets $A, A_{k} \subset X$, we say that the sequence $\left\{A_{k}\right\}$ is Wijsman I-lacunary statistical convergent to A of order α (or $S_{\theta}^{\alpha}\left(I_{w}\right)$-convergent to A) if for each $\varepsilon>0, \delta>0$ and $x \in X$,

$$
\left\{r \in \mathbb{N}: \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \geq \delta\right\}
$$

belongs to I. In this case, we write $A_{k} \longrightarrow A\left(S_{\theta}^{\alpha}\left(I_{w}\right)\right)$. For $\theta=\left(2^{r}\right)$, we shall write $S^{\alpha}\left(I_{w}\right)$ instead of $S_{\theta}^{\alpha}\left(I_{w}\right)$ and in the special case $\alpha=1$ and $\theta=\left(2^{r}\right)$ we shall write $S\left(I_{w}\right)$ instead of $S_{\theta}^{\alpha}\left(I_{w}\right)$.

As an example, consider the following sequence:

$$
A_{k}= \begin{cases}\{3 x\}, & k_{r-1}<k<k_{r-1}+\sqrt{h_{r}} \\ \{0\}, & \text { otherwise } .\end{cases}
$$

Let (\mathbb{R}, d) be a metric space such that for $x, y \in X, d(x, y)=|x-y|, A=\{1\}, x>1$ and $\alpha=1$. Since

$$
\frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|d\left(x, A_{k}\right)-d(x, 1)\right| \geq \varepsilon\right\}\right| \geq \delta
$$

belongs to I, the sequences $\left\{A_{k}\right\}$ is Wijsman I-lacunary statistical convergent to $\{1\}$ of order α; that is $A_{k} \longrightarrow$ $\{1\}\left(S_{\theta}^{\alpha}\left(I_{w}\right)\right)$.

Definition 2.2. Let (X, d) be a metric space, θ be a lacunary sequence, $\alpha \in(0,1]$ and $I \subseteq 2^{\mathbb{N}}$ be an admissible ideal of subsets of \mathbb{N}. For any non-empty closed subsets $A, A_{k} \subset X$, we say that the sequence $\left\{A_{k}\right\}$ is said to be Wijsman strongly I-lacunary statistical convergent to A of order α (or $N_{\theta}^{\alpha}\left[I_{w}\right]$-convergent to A) iffor each $\varepsilon>0$ and $x \in X$,

$$
\left\{r \in \mathbb{N}: \frac{1}{h_{r}^{\alpha}} \sum_{k \in I_{r}}\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}
$$

belongs to I. In this case, we write $A_{k} \longrightarrow A\left(N_{\theta}^{\alpha}\left[I_{w}\right]\right)$. For $\theta=\left(2^{r}\right)$, we shall write $N^{\alpha}\left[I_{w}\right]$ instead of $N_{\theta}^{\alpha}\left[I_{w}\right]$ and in the special case $\alpha=1$ and $\theta=\left(2^{r}\right)$ we shall write $N\left[I_{w}\right]$ instead of $N_{\theta}^{\alpha}\left[I_{w}\right]$.

As an example, consider the following sequence:

$$
A_{k}= \begin{cases}\left\{\frac{x k}{2}\right\}, & k_{r-1}<k<k_{r-1}+\sqrt{h_{r}} \\ \{0\}, & \text { otherwise. }\end{cases}
$$

Let (\mathbb{R}, d) be a metric space such that for $x, y \in X, d(x, y)=|x-y|, A=\{1\}, x>1$ and $\alpha=1$. Since

$$
\frac{1}{h_{r}^{\alpha}} \sum_{k \in I_{r}}\left|d\left(x, A_{k}\right)-d(x, 1)\right| \geq \varepsilon,
$$

the sequences $\left\{A_{k}\right\}$ is Wijsman I-lacunary statistical convergent to $\{1\}$ of order α; that is $A_{k} \longrightarrow\{1\}\left(N_{\theta}^{\alpha}\left[I_{w}\right]\right)$.

Theorem 2.3. $S_{\theta}^{\alpha}\left(I_{w}\right) \cap L_{\infty}$ is a closed subset of L_{∞} for $0<\alpha \leq 1$.
Proof. Omitted.
Theorem 2.4. Let (X, d) be a metric space, $\theta=\left(k_{r}\right)$ be a lacunary sequence and $A, A_{k}($ for all $k \in \mathbb{N})$ be non-empty closed subsets of X, then
(i) $A_{k} \rightarrow A\left(N_{\theta}^{\alpha}\left[I_{w}\right]\right) \Rightarrow A_{k} \rightarrow A\left(S_{\theta}^{\alpha}\left(I_{w}\right)\right)$ and $N_{\theta}^{\alpha}\left[I_{w}\right]$ is a proper subset of $S_{\theta}^{\alpha}\left(I_{w}\right)$,
(ii) $\left\{A_{k}\right\} \in L_{\infty}$ and $A_{k} \rightarrow A\left(S_{\theta}^{\alpha}\left(I_{w}\right)\right) \Rightarrow A_{k} \rightarrow A\left(N_{\theta}^{\alpha}\left[I_{w}\right]\right)$,
(iii) $S_{\theta}^{\alpha}\left(I_{w}\right) \cap L_{\infty}=N_{\theta}^{\alpha}\left[I_{w}\right] \cap L_{\infty}$.

Proof. (i) The inclusion part of proof is easy. In order to show that the inclusion $N_{\theta}^{\alpha}\left[I_{w}\right] \subseteq S_{\theta}^{\alpha}\left(I_{w}\right)$ is proper, let θ be given and we define a sequence $\left\{A_{k}\right\}$ as follows

$$
A_{k}=\left\{\begin{array}{cc}
\left\{x^{2}\right\}, & k=1,2,3, \ldots,\left[\sqrt{h_{r}}\right] \\
\{0\}, & \text { otherwise }
\end{array}\right.
$$

Let (\mathbb{R}, d) be a metric space such that for $x, y \in X, d(x, y)=|x-y|$. We have for every $\varepsilon>0, x>0$ and $\frac{1}{2}<\alpha \leq 1$,

$$
\frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|d\left(x, A_{k}\right)-d(x,\{0\})\right| \geq \varepsilon\right\}\right| \leq \frac{\left[\sqrt{h_{r}}\right]}{h_{r}^{\alpha}}
$$

and for any $\delta>0$ we get

$$
\left\{r \in \mathbb{N}: \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|d\left(x, A_{k}\right)-d(x,\{0\})\right| \geq \varepsilon\right\}\right| \geq \delta\right\} \subseteq\left\{r \in \mathbb{N}: \frac{\left[\sqrt{h_{r}}\right]}{h_{r}^{\alpha}} \geq \delta\right\}
$$

Since the set on the right-hand side is a finite set and so belongs to I, it follows that for $\frac{1}{2}<\alpha \leq 1$, $A_{k} \rightarrow\{0\}\left(S_{\theta}^{\alpha}\left(I_{w}\right)\right)$.

On the other hand, for $\frac{1}{2}<\alpha \leq 1$ and $x>0$,

$$
\frac{1}{h_{r}^{\alpha}} \sum_{k \in I_{r}}\left|d\left(x, A_{k}\right)-d(x,\{0\})\right|=\frac{\left(x^{2}-2 x\right)\left[\sqrt{h_{r}}\right]}{h_{r}^{\alpha}} \rightarrow 0
$$

and for $0<\alpha<\frac{1}{2}$

$$
\frac{\left(x^{2}-2 x\right)\left[\sqrt{h_{r}}\right]}{h_{r}^{\alpha}} \rightarrow \infty .
$$

Hence we have

$$
\left\{r \in \mathbb{N}: \frac{1}{h_{r}^{\alpha}} \sum_{k \in I_{r}}\left|d\left(x, A_{k}\right)-d(x,\{0\})\right| \geq 0\right\}=\left\{r \in \mathbb{N}: \frac{\left(x^{2}-2 x\right)\left[\sqrt{h_{r}}\right]}{h_{r}^{\alpha}} \geq 0\right\}=\{a, a+1, a+2, \ldots\}
$$

for some $a \in \mathbb{N}$ which belongs to $F(I)$, since I is admissible. So $A_{k} \rightarrow\{0\}\left(N_{\theta}^{\alpha}\left[I_{w}\right]\right)$.
ii) Suppose that $\left\{A_{k}\right\} \in L_{\infty}$ and $A_{k} \rightarrow A\left(S_{\theta}^{\alpha}\left(I_{w}\right)\right)$. Then we can assume that

$$
\left|d\left(x, A_{k}\right)-d(x, A)\right| \leq M
$$

for each $x \in X$ and all $k \in \mathbb{N}$. Given $\varepsilon>0$, we get

$$
\begin{aligned}
\frac{1}{h_{r}^{\alpha}} \sum_{k \in I_{r}}\left|d\left(x, A_{k}\right)-d(x, A)\right|= & \frac{1}{h_{r}^{\alpha}} \sum_{\substack{k \in I_{r} \\
\left|d\left(x, A_{k}\right) d(x, A)\right| \geq \varepsilon}}\left|d\left(x, A_{k}\right)-d(x, A)\right| \\
& +\frac{1}{h_{r}^{\alpha}} \sum_{\substack{k \in I_{r} \\
\left|d\left(x, A_{k}\right) d(x, A)\right|<\varepsilon}}\left|d\left(x, A_{k}\right)-d(x, A)\right| \\
\leq & \frac{M}{h_{r}^{\alpha}}\left|\left\{\left|k \in I_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\} \mid+\varepsilon .\right.\right.
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& \left\{r \in \mathbb{N}: \frac{1}{h_{r}^{\alpha}} \sum_{k \in I_{r}}\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq M \delta+\varepsilon\right\} \\
\subset & \left\{r \in \mathbb{N}: \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \geq \delta\right\} \in I .
\end{aligned}
$$

Therefore $A_{k} \rightarrow A\left(N_{\theta}^{\alpha}\left[I_{w}\right]\right)$.
iii) Follows from (i) and (ii).

Theorem 2.5. Let $\theta=\left(k_{r}\right)$ be a lacunary sequence and α be a fixed real number such that $0<\alpha \leq 1$. If $\operatorname{lim~inf}_{r} q_{r}>1$, then $S^{\alpha}\left(I_{w}\right) \subset S_{\theta}^{\alpha}\left(I_{w}\right)$.
Proof. Suppose first that $\lim \inf _{r} q_{r}>1$; then there exists a $\lambda>0$ such that $q_{r} \geq 1+\lambda$ for sufficiently large r, which implies that

$$
\frac{h_{r}}{k_{r}} \geq \frac{\lambda}{1+\lambda} \Longrightarrow\left(\frac{h_{r}}{k_{r}}\right)^{\alpha} \geq\left(\frac{\lambda}{1+\lambda}\right)^{\alpha} \Longrightarrow \frac{1}{k_{r}^{\alpha}} \geq \frac{\lambda^{\alpha}}{(1+\lambda)^{\alpha}} \frac{1}{h_{r}^{\alpha}} .
$$

If $A_{k} \rightarrow A\left(S^{\alpha}\left(I_{w}\right)\right)$, then for every $\varepsilon>0$, for each $x \in X$, and for sufficiently large r, we have

$$
\begin{aligned}
\frac{1}{k_{r}^{\alpha}}\left|\left\{k \leq k_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| & \geq \frac{1}{k_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \\
& \geq \frac{\lambda^{\alpha}}{(1+\lambda)^{\alpha}} \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| .
\end{aligned}
$$

For $\delta>0$, we have

$$
\begin{aligned}
& \left\{r \in \mathbb{N}: \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \geq \delta\right\} \\
\subseteq & \left.\left.\left\{r \in \mathbb{N}: \frac{1}{k_{r}^{\alpha}}| | k \leq k_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\} \right\rvert\, \geq \frac{\delta \lambda^{\alpha}}{(1+\lambda)^{\alpha}}\right\} \in I .
\end{aligned}
$$

This completes the proof.
Theorem 2.6. Let $\theta=\left(k_{r}\right)$ be a lacunary sequence and the parameters α and β be fixed real numbers such that $0<\alpha \leq \beta \leq 1$, then $N_{\theta}^{\alpha}\left[I_{w}\right] \subseteq N_{\theta}^{\beta}\left[I_{w}\right]$ and the inclusion is strict.
Proof. The inclusion part of proof is easy. To show that the inclusion is strict define $\left\{A_{k}\right\}$ such that for (\mathbb{R}, d), $x>1$ and $A=\{0\}$,

$$
A_{k}=\left\{\begin{array}{cc}
\{3 x+5\}, & k_{r-1}<k<k_{r-1}+\sqrt{h_{r}} \\
\{0\}, & \text { otherwise }
\end{array} .\right.
$$

Then $\left\{A_{k}\right\} \in N_{\theta}^{\beta}\left[I_{w}\right]$ for $\frac{1}{2}<\beta \leq 1$ but $\left\{A_{k}\right\} \notin N_{\theta}^{\alpha}\left[I_{w}\right]$ for $0<\alpha \leq \frac{1}{2}$.

Theorem 2.7. Let $\theta=\left(k_{r}\right)$ be a lacunary sequence and the parameters α and β be fixed real numbers such that $0<\alpha \leq \beta \leq 1$, then $S_{\theta}^{\alpha}\left(I_{w}\right) \subseteq S_{\theta}^{\beta}\left(I_{w}\right)$ and the inclusion is strict.

Proof. The inclusion part of proof is easy. To show that the inclusion is strict define $\left\{A_{k}\right\}$ such that for $X=\mathbb{R}^{2}$

$$
A_{k}=\left\{\begin{array}{cc}
(x, y) \in \mathbb{R}^{2}, x^{2}+(y-1)^{2}=k^{2}, & \text { if } k \text { is square } \\
\{(0,0)\}, & \text { otherwise }
\end{array}\right.
$$

Then $\left\{A_{k}\right\} \in S_{\theta}^{\beta}\left(I_{w}\right)$ for $\frac{1}{2}<\beta \leq 1$ but $\left\{A_{k}\right\} \notin S_{\theta}^{\alpha}\left(I_{w}\right)$ for $0<\alpha \leq \frac{1}{2}$.
Theorem 2.8. Let the parameters α and β be fixed real numbers such that $0<\alpha \leq \beta \leq 1$, then $S^{\beta}\left(I_{w}\right) \subseteq N^{\alpha}\left[I_{w}\right]$.
Proof. For any sequence $\left\{A_{k}\right\}$ and $\varepsilon>0$, we have

$$
\begin{aligned}
\frac{1}{n^{\alpha}} \sum_{k=1}^{n}\left|d\left(x, A_{k}\right)-d(x, A)\right| & \geq \frac{1}{n^{\alpha}}\left|\left\{k \leq n:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \varepsilon \\
& \geq \frac{1}{n^{\beta}}\left|\left\{k \leq n:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \varepsilon
\end{aligned}
$$

and so

$$
\left\{n \in \mathbb{N}: \frac{1}{n^{\alpha}} \sum_{k=1}^{n}\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \delta\right\} \subseteq\left\{n \in \mathbb{N}: \frac{1}{n^{\beta}}\left|\left\{k \leq n:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \geq \frac{\delta}{\varepsilon}\right\} \in I
$$

This gives that $S^{\beta}\left(I_{w}\right) \subseteq N^{\alpha}\left[I_{w}\right]$.
Theorem 2.9. Let $\theta=\left(k_{r}\right)$ be a lacunary sequence and α be a fixed real number such that $0<\alpha \leq 1$. If $\lim _{r \rightarrow \infty}$ inf $\frac{h_{r}^{\alpha}}{k_{r}}>$ 0 then $S\left(I_{w}\right) \subseteq S_{\theta}^{\alpha}\left(I_{w}\right)$.

Proof. Let (X, d) be a metric space, $\theta=\left(k_{r}\right)$ be a lacunary sequence and A, A_{k} (for all $k \in \mathbb{N}$) be non-empty closed subsets of X. If $\lim _{r \rightarrow \infty} \inf \frac{h_{r}^{r}}{k_{r}}>0$, then we can write

$$
\begin{aligned}
\left\{k \leq k_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\} & \supset\left\{k \in I_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\} \\
\frac{1}{k_{r}}\left|\left\{k \leq k_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| & \geq \frac{1}{k_{r}}\left|\left\{k \in I_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \\
& =\frac{h_{r}^{\alpha}}{k_{r}} \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| .
\end{aligned}
$$

So

$$
\begin{aligned}
& \left\{r \in \mathbb{N}: \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \geq \delta\right\} \\
\subseteq & \left\{r \in \mathbb{N}: \frac{1}{k_{r}}\left|\left\{k \leq k_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \geq \delta \frac{h_{r}^{\alpha}}{k_{r}}\right\}
\end{aligned}
$$

which implies that $S\left(I_{w}\right) \subseteq S_{\theta}^{\alpha}\left(I_{w}\right)$.
Theorem 2.10. Let (X, d) be a metric space and $A, A_{k}(f o r ~ a l l ~ k \in \mathbb{N})$ be non-empty closed subsets of X. If $\theta=\left(k_{r}\right)$ is a lacunary sequence with $\lim \sup \frac{\left(k_{j}-k_{j-1}\right)^{\alpha}}{k_{r-1}^{\alpha}}<\infty(j=1,2, \ldots, r)$, then $A_{k} \rightarrow A\left(S_{\theta}^{\alpha}\left(I_{w}\right)\right)$ implies $A_{k} \rightarrow A\left(S^{\alpha}\left(I_{w}\right)\right)$.

Proof. If $\lim \sup \frac{\left(k_{j}-k_{j-1}\right)^{\alpha}}{k_{r-1}^{\alpha}}<\infty$, then without any loss of generality, we can assume that there exists a $0<B_{j}<\infty$ such that $\frac{\left(k_{j}-k_{j-1}\right)^{\alpha}}{k_{r-1}^{\alpha}}<B_{j},(j=1,2, \ldots, r)$ for all $r \geq 1$. Suppose that $A_{k} \rightarrow A\left(S_{\theta}^{\alpha}\left(I_{w}\right)\right)$ and for $\varepsilon, \delta, \delta_{1}>0$ define the sets

$$
C=\left\{r \in \mathbb{N}: \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right|<\delta\right\}
$$

and

$$
T=\left\{r \in \mathbb{N}: \frac{1}{n^{\alpha}}\left|\left\{k \leq n:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right|<\delta_{1}\right\} .
$$

It is obvious from our assumption that $C \in F(I)$, the filter associated with the ideal I. Further observe that

$$
A_{i}=\frac{1}{h_{i}^{\alpha}}\left|\left\{k \in I_{i}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right|<\delta
$$

for all $i \in C$. Let $n \in N$ be such that $k_{r-1}<n<k_{r}$ for some $r \in C$. Now

$$
\begin{aligned}
\frac{1}{n^{\alpha}}\left|\left\{k \leq n:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \leq & \frac{1}{k_{r-1}^{\alpha}}\left|\left\{k \leq k_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \\
= & \frac{1}{k_{r-1}^{\alpha}}\left|\left\{k \in I_{1}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right|+\ldots \\
& +\frac{1}{k_{r-1}^{\alpha}}\left|\left\{k \in I_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \\
= & \frac{k_{1}^{\alpha}}{k_{r-1}^{\alpha}} \frac{1}{h_{1}^{\alpha}}\left|\left\{k \in I_{1}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \\
& +\frac{\left(k_{2}-k_{1}\right)^{\alpha}}{k_{r-1}^{\alpha}} \frac{1}{h_{2}^{\alpha}}\left|\left\{k \in I_{2}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \\
& +\ldots+\frac{\left(k_{r}-k_{r-1}\right)^{\alpha}}{k_{r-1}^{\alpha}} \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \\
\leq & \sup _{i \in C} A_{i} . \frac{k_{1}^{\alpha}+\left(k_{2}-k_{1}\right)^{\alpha}+\ldots+\left(k_{r}-k_{r-1}\right)^{\alpha}}{k_{r-1}^{\alpha}} \\
\leq & \sup _{i \in C} A_{i}\left(B_{1}+B_{2}+\ldots+B_{r}\right)<\delta \sum_{j=1}^{r} B_{j} .
\end{aligned}
$$

Choosing $\delta_{1}=\frac{\delta}{\sum_{i=1}^{r} B_{j}}$ and in view of the fact that $\cup\left\{n: k_{r-1}<n<k_{r}, r \in C\right\} \subset T$ where $C \in F(I)$. This completes the proof of the theorem.

In [16], it is defined that the lacunary sequence $\theta^{\prime}=\left(s_{r}\right)$ is called a lacunary refinement of the lacunary sequence $\theta=\left(k_{r}\right)$ if $\left(k_{r}\right) \subseteq\left(s_{r}\right)$. In [18], the inclusion relationship between S_{θ} and $S_{\theta^{\prime}}$ is studied.

Theorem 2.11. Suppose $\theta^{\prime}=\left(s_{r}\right)$ is a lacunary refinement of the lacunary sequence $\theta=\left(k_{r}\right)$. Let $I_{r}=\left(k_{r-1}, k_{r}\right]$ and $J_{r}=\left(s_{r-1}, s_{r}\right], r=1,2,3, \ldots$. If there exists $\epsilon>0$ such that for $0<\alpha \leq \beta \leq 1$,

$$
\frac{\left|J_{j}\right|^{\beta}}{\left|I_{i}\right|^{\alpha}} \geq \epsilon \text { for every } J_{j} \subseteq I_{i}
$$

Then $A_{k} \rightarrow A\left(S_{\theta}^{\alpha}\left(I_{w}\right)\right)$ implies $A_{k} \rightarrow A\left(S_{\theta^{\prime}}^{\beta}\left(I_{w}\right)\right)$, i.e., $S_{\theta}^{\alpha}\left(I_{w}\right) \subseteq S_{\theta^{\prime}}^{\beta}\left(I_{w}\right)$.

Proof. For any $\varepsilon>0$, and every J_{j}, we can find I_{i} such that $J_{j} \subseteq I_{i}$; then we have

$$
\begin{aligned}
\frac{1}{\left|J_{j}\right|^{\beta}}\left|\left\{k \in J_{j}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| & =\left(\frac{\left.|I|^{\alpha}\right|^{\alpha}}{\left|J_{j}\right|^{\beta}}\right)\left(\frac{1}{\left|I_{i}\right|^{\alpha}}\right)\left|\left\{k \in J_{j}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \\
& \leq\left(\frac{\left|I_{i}\right|^{\alpha}}{\left|J_{j}\right|^{\beta}}\right)\left(\frac{1}{\left|I_{i}\right|^{\alpha}}\right)\left|\left\{k \in I_{i}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \\
& \leq\left(\frac{1}{\epsilon}\right)\left(\frac{1}{\left|I_{i}\right|^{\alpha}}\right)\left|\left\{k \in I_{i}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right|
\end{aligned}
$$

and so

$$
\begin{aligned}
& \left\{r \in \mathbb{N}: \frac{1}{\left|J_{j}\right|^{\beta}}\left|\left\{k \in J_{j}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \geq \delta\right\} \\
\subseteq & \left\{r \in \mathbb{N}:\left(\frac{1}{\left|I_{i}\right|^{\alpha}}\right)\left|\left\{k \in I_{i}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \geq \delta \epsilon\right\} \in I .
\end{aligned}
$$

The proof completes immediately.
Theorem 2.12. Suppose $\theta=\left(k_{r}\right)$ and $\theta^{\prime}=\left(s_{r}\right)$ are two lacunary sequences. Let $I_{r}=\left(k_{r-1}, k_{r}\right], J_{r}=\left(s_{r-1}, s_{r}\right]$, $r=1,2,3, \ldots$, and $I_{i j}=I_{i} \cap J_{j}, i, j=1,2,3, \ldots$. If there exists $\epsilon>0$ such that for $0<\alpha \leq \beta \leq 1$,

$$
\frac{\left|I_{i j}\right|^{\beta}}{\left|I_{i}\right|^{\alpha}} \geq \epsilon \text { for every } i, j=1,2,3, \ldots, \text { provided } I_{i j} \neq \varnothing \text {. }
$$

Then $A_{k} \rightarrow A\left(S_{\theta}^{\alpha}\left(I_{w}\right)\right)$ implies $A_{k} \rightarrow A\left(S_{\theta^{\prime}}^{\beta}\left(I_{w}\right)\right)$, i.e., $S_{\theta}^{\alpha}\left(I_{w}\right) \subseteq S_{\theta^{\prime}}^{\beta}\left(I_{w}\right)$.
Proof. Let $\theta^{\prime \prime}=\theta^{\prime} \cup \theta$. Then $\theta^{\prime \prime}$ is a lacunary refinement of the lacunary sequence θ^{\prime}, also θ. Then interval sequence of $\theta^{\prime \prime}$ is $\left\{I_{i j}=I_{i} \cap J_{j}: I_{i j} \neq \varnothing\right\}$. From Theorem 2.11, the condition in Theorem 2.12: $\frac{\left|I_{i j}\right|^{\beta}}{\left|I_{i}\right|^{\alpha \prime}} \geq \epsilon$, for every $i, j=1,2,3, \ldots$, provided $I_{i j} \neq \varnothing$ yields that $A_{k} \rightarrow A\left(S_{\theta}^{\alpha}\left(I_{w}\right)\right)$ implies $A_{k} \rightarrow A\left(S_{\theta^{\prime \prime}}^{\beta}\left(I_{w}\right)\right)$. Since $\theta^{\prime \prime}$ is also a lacunary refinement of the lacunary sequence θ^{\prime}, we have that $A_{k} \rightarrow A\left(S_{\theta^{\prime \prime}}^{\alpha}\left(I_{w}\right)\right)$ implies $A_{k} \rightarrow A\left(S_{\theta^{\prime}}^{\beta}\left(I_{w}\right)\right)$. The proof follows immediately.

Let $\theta=\left(k_{r}\right)$ and $\theta^{\prime}=\left(s_{r}\right)$ be two lacunary sequences such that $I_{r} \subset J_{r}$ for all $r \in \mathbb{N}$ and let α and β be positive real numbers such that $0<\alpha \leq \beta \leq 1$. Now we shall give some general inclusion relations between the sets of $S_{\theta}^{\alpha}\left(I_{w}\right)$-convergent sequences and $N_{\theta}^{\alpha}\left[I_{w}\right]$-summable sequences for different $\alpha^{\prime} s$ and $\theta^{\prime} s$ which also include Theorem 2.4, Theorem 2.6, Theorem 2.7 and Theorem 2.8 as a special case.

Theorem 2.13. Let $\theta=\left(k_{r}\right)$ and $\theta^{\prime}=\left(s_{r}\right)$ be two lacunary sequences such that $I_{r} \subset J_{r}$ for all $r \in \mathbb{N}$ and let α and β be such that $0<\alpha \leq \beta \leq 1$,
(i) If

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \inf \frac{h_{r}^{\alpha}}{\ell_{r}^{\beta}}>0 \tag{1}
\end{equation*}
$$

then $S_{\theta^{\prime}}^{\beta}\left(I_{w}\right) \subseteq S_{\theta}^{\alpha}\left(I_{w}\right)$,
(ii) If

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\ell_{r}}{h_{r}^{\beta}}=1 \tag{2}
\end{equation*}
$$

then $S_{\theta}^{\alpha}\left(I_{w}\right) \subseteq S_{\theta^{\prime}}^{\beta}\left(I_{w}\right)$.

Proof. (i) Let (X, d) be a metric space, $\theta=\left(k_{r}\right)$ be a lacunary sequence and A, A_{k} (for all $k \in \mathbb{N}$) be non-empty closed subsets of X. Suppose that $I_{r} \subset J_{r}$ for all $r \in \mathbb{N}$ and let (1) be satisfied. For given $\varepsilon>0$ we have

$$
\left\{k \in J_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\} \supseteq\left\{k \in I_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\},
$$

and so

$$
\frac{1}{\ell_{r}^{\beta}}\left|\left\{k \in J_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \geq \frac{h_{r}^{\alpha}}{\ell_{r}^{\beta}} \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right|
$$

Hence

$$
\begin{aligned}
& \left\{r \in \mathbb{N}: \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \geq \delta\right\} \\
\subseteq & \left\{r \in \mathbb{N}: \frac{1}{\ell_{r}^{\beta}}\left|\left\{k \in J_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \geq \delta \frac{h_{r}^{\alpha}}{\ell_{r}^{\beta}}\right\} \in I
\end{aligned}
$$

for all $r \in \mathbb{N}$, where $I_{r}=\left(k_{r-1}, k_{r}\right], J_{r}=\left(s_{r-1}, s_{r}\right], h_{r}=k_{r}-k_{r-1}, \ell_{r}=s_{r}-s_{r-1}$. Now taking the limit as $r \rightarrow \infty$ in the last inequality and using (1) we get $S_{\theta^{\prime}}^{\beta}\left(I_{w}\right) \subseteq S_{\theta}^{\alpha}\left(I_{w}\right)$.
(ii) Omitted.

Theorem 2.14. Let $\theta=\left(k_{r}\right)$ and $\theta^{\prime}=\left(s_{r}\right)$ be two lacunary sequences such that $I_{r} \subseteq J_{r}$ for all $r \in \mathbb{N}, \alpha$ and β be fixed real numbers such that $0<\alpha \leq \beta \leq 1$. Then we have
(i) If (1) holds then $N_{\theta^{\prime}}^{\beta}\left[I_{w}\right] \subset N_{\theta}^{\alpha}\left[I_{w}\right]$,
(ii) If (2) holds and $\left\{A_{k}\right\} \in L_{\infty}$ then $N_{\theta}^{\alpha}\left[I_{w}\right] \subset N_{\theta^{\prime}}^{\beta}\left[I_{w}\right]$.

Proof. Omitted.

Theorem 2.15. Let $\theta=\left(k_{r}\right)$ and $\theta^{\prime}=\left(s_{r}\right)$ be two lacunary sequences such that $I_{r} \subseteq J_{r}$ for all $r \in \mathbb{N}, \alpha$ and β be fixed real numbers such that $0<\alpha \leq \beta \leq 1$. Then
(i) Let (1) holds, if a sequence is strongly $N_{\theta^{\prime}}^{\beta}\left[I_{w}\right]$-summable to A, then it is $S_{\theta}^{\alpha}\left(I_{w}\right)$-statistically convergent to A,
(ii) Let (2) holds and $\left\{A_{k}\right\}$ be a bounded sequence, if a sequence is $S_{\theta}^{\alpha}\left(I_{w}\right)$-statistically convergent to A then it is strongly $N_{\theta^{\prime}}^{\beta}\left[I_{w}\right]$-summable to A.

Proof. (i) Omitted.
(ii) Suppose that $S_{\theta}^{\alpha}\left(I_{w}\right)-\lim A_{k}=A$ and $\left\{A_{k}\right\} \in L_{\infty}$. Then there exists some $M>0$ such that $\left|d\left(x, A_{k}\right)-d(x, A)\right| \leq M$ for all k, then for every $\varepsilon>0$ we may write

$$
\begin{aligned}
& \frac{1}{\ell_{r}^{\beta}} \sum_{k \in J_{r}}\left|d\left(x, A_{k}\right)-d(x, A)\right|= \frac{1}{\ell_{r}^{\beta}} \sum_{k \in J_{r}-I_{r}}\left|d\left(x, A_{k}\right)-d(x, A)\right|+\frac{1}{\ell_{r}^{\beta}} \sum_{k \in I_{r}}\left|d\left(x, A_{k}\right)-d(x, A)\right| \\
& \leq\left(\frac{\ell_{r}-h_{r}}{\ell_{r}^{\beta}}\right) M+\frac{1}{\ell_{r}^{\beta}} \sum_{k \in I_{r}}\left|d\left(x, A_{k}\right)-d(x, A)\right| \\
& \leq\left(\frac{\ell_{r}-h_{r}^{\beta}}{\ell_{r}^{\beta}}\right) M+\frac{1}{\ell_{r}^{\beta}} \sum_{k \in I_{r}}\left|d\left(x, A_{k}\right)-d(x, A)\right| \\
& \leq\left(\frac{\ell_{r}}{h_{r}^{\beta}}-1\right) M+\frac{1}{h_{r}^{\beta}} \sum_{k \in I_{r}}\left|d\left(x, A_{k}\right)-d(x, A)\right| \\
&+\frac{1}{h_{r}^{\beta}} \sum_{k \in I_{r}}\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon \\
&\left|d\left(x, A_{k}\right)-d(x, A)\right| \\
& \leq\left(\frac{\ell_{r}}{h_{r}^{\beta}}-1\right) M+\frac{M}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right|+\frac{\ell_{r}}{h_{r}^{\beta}} \varepsilon
\end{aligned}
$$

and so

$$
\begin{aligned}
& \left\{r \in \mathbb{N}: \frac{1}{\ell_{r}^{\beta}} \sum_{k \in J_{r}}\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \delta\right\} \\
\subseteq & \left\{r \in \mathbb{N}: \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}\right| \geq \frac{\delta}{M}\right\} \in I,
\end{aligned}
$$

for all $r \in \mathbb{N}$. Using (2) we obtain that $N_{\theta^{\prime}}^{\beta}\left[I_{w}\right]-\lim A_{k}=A$, whenever $S_{\theta}^{\alpha}\left(I_{w}\right)-\lim A_{k}=A$.

References

[1] Y. Altın, M. Et, M. Başarır, On some generalized difference sequences of fuzzy numbers, Kuwait J. Sci. Engrg. 34(1A) (2007) 1-14.
[2] M. Başarır, Ş. Konca, On some spaces of lacunary convergent sequences derived by Nörlund-type mean and weighted lacunary statistical convergence, Arab J. Math. Sci. 20(2) (2014) 250-263.
[3] A. Caserta, G. Di Maio, and L. D. R. Kočinac, Statistical convergence in function spaces, Abstr. Appl. Anal., Art. ID 420419 (2011) 11 pp .
[4] J. S. Connor, The Statistical and strong p-Cesàro convergence of sequences, Analysis 8 (1988) 47-63.
[5] H. Çakallı, Lacunary statistical convergence in topological groups, Indian J. Pure Appl. Math. 26(2) (1995) 113-119.
[6] H. Çakallı, B. Hazarika, Ideal quasi-Cauchy sequences, J. Inequal. Appl. 2012:234 (2012) 11 pp.
[7] H. Çakallı, A variation on ward continuity, Filomat 27(8) (2013) 1545-1549.
[8] R. Çolak, Statistical convergence of order α Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub, (2010) 121-129.
[9] R. Çolak, On λ-Statisitical Convergence, Conference on Summability and Applications 2011 Istanbul Commerce Univ. May 12-13 (2011) İstanbul.
[10] P. Das, E. Savaş, S. Kr. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Lett. 24 (9) (2011) 1509-1514.
[11] M. Et, Generalized Cesàro difference sequence spaces of non-absolute type involving lacunary sequences, Appl. Math. Comput. 219(17) (2013) 9372-9376.
[12] M. Et, Strongly almost summable difference sequences of order m defined by a modulus, Studia Sci. Math. Hungar. 40(4) (2003) 463-476.
[13] M. Et, H. Şengül, Some Cesaro-type summability spaces of order α and lacunary statistical convergence of order α, Filomat 28(8) (2014) 1593-1602.
[14] M. Et, A. Alotaibi, S. A. Mohiuddine, On $\left(\Delta^{m}, I\right)$-statistical convergence of order α, The Scientific World Journal Volume, Article ID 535419 (2014) 5 pages.
[15] H. Fast, Sur la convergence statistique. Colloq. Math. 2 (1951) 241-244.
[16] A. R. Freedman, J. J. Sember, M. Raphael, Some Cesàro-type summability spaces, Proc. London Math. Soc. 37(3) (1978) 508-520.
[17] J. A. Fridy, On statistical convergence. Analysis 5 (1985) 301-313.
[18] J. A. Fridy, C. Orhan, Lacunary statistical convergence. Pacific J. Math. 160(1) (1993) 43-51.
[19] A. D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32(1) (2002) 129-138.
[20] A. Gökhan, M. Et, M. Mursaleen, Almost lacunary statistical and strongly almost lacunary convergence of sequences of fuzzy numbers, Math. Comput. Modelling 49(3-4) (2009) 548-555.
[21] M. Güngör, M. Et, Δ^{r}-strongly almost summable sequences defined by Orlicz functions, Indian J. Pure Appl. Math. 34(8) (2003) 1141-1151.
[22] E. Kolk, The statistical convergence in Banach spaces, Acta Comment. Univ. Tartu 928 (1991) 41-52.
[23] P. Kostyrko, T. Šalát, W. Wilczyński, I-convergence, Real Anal. Exchange 26 (2000/2001) 669-686.
[24] P. Kostyrko, M. Mačaj, M. Sleziak, T. Šalát, I-convergence and extremal I-limit points, Math. Slovaca 55(4) (2005) 443-464.
[25] M. Mursaleen, V. Karakaya, M. Ertürk, F. Gürsoy, Weighted statistical convergence and its application to Korovkin type approximation theorem, Appl. Math. Comput. 218(18) (2012) 9132-9137.
[26] M.Mursaleen, and S. A. Mohiuddine, Korovkin type approximation theorem for almost and statistical convergence, Nonlinear analysis, 487-494, Springer Optim. Appl., 68 (2012) Springer, New York.
[27] F. Nuray, W. H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245(2) (2000) 513-527.
[28] F. Nuray, B. E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math. 49 (2012) 87-99.
[29] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980) 139-150.
[30] T. Šalát, B. C. Tripathy, M. Ziman, On I-convergence field, Ital. J. Pure Appl. Math. No. 17 (2005) 45-54.
[31] T. Šalát, B. C. Tripathy, M. Ziman, On some properties of I-convergence, Tatra Mt. Math. Publ. 28 part II (2004) 279-286.
[32] E. Savaş, P. A. Das, Generalized statistical convergence via ideals, Appl. Math. Lett. 24(6) (2011) 826-830.
[33] E. Savaş, On I-lacunary statistical convergence of order α for sequences of sets, Filomat 29(6) (2015) 1223-1229.
[34] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959) $361-375$.
[35] H. Şengül, M. Et, On lacunary statistical convergence of order α, Acta Math. Sci. Ser. B Engl. Ed. 34 (2) (2014) 473-482.
[36] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73-74.
[37] B. C. Tripathy, B. Hazarika, Paranorm I-convergent sequence spaces, Math. Slovaca 59(4) (2009) 485-494.
[38] U. Ulusu, F. Nuray, Lacunary statistical convergence of sequence of sets, Prog. Appl. Math. 4(2) (2012) 99-109.
[39] U. Ulusu, E. Dündar, I-lacunary statistical convergence of sequences of sets, Filomat 28(8) (2014) 1567-1574.

[^0]: 2010 Mathematics Subject Classification. 40A05, 40C05, 46A45
 Keywords. I-convergence, Wijsman convergence, lacunary sequence
 Received: 04 December 2015; Accepted: 25 April 2016
 Communicated by Ljubiša D.R. Kočinac
 Email addresses: hacer. sengul@hotmail.com (Hacer Şengül), mikailet@yahoo.com (Mikail Et)

